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Non-determinism:
possibly many computations on given input
accept input when at least one of these computations accepts.



Non-determinism  ab or bba
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Third from end

a,b(:é—va Ot 020
Also —deterministic
b bb
JIN 2 SN S
2 (@aa) b a (bbb) Db

AP TN V2
;

n+ 1 versus 2" states.

Automata Theory Non-Determinism, Regular Expressions, and Kleene's Theorem Examples

125 / 417



Distinguishing states

L ={aa, aab}*{b}
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{aa, aab}*{b}

X = aaaabaab
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Computation tree

X = aaaabaab

a a
@ a

a a a a @

@@
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Intro: A-transitions
{aab}*{a, aba}*

g

a a

@~

NFA

Automata Theory Non-Determinism, Regular Expressions, and Kleene's Theorem Allowing A-transitions 129 / 417



Non-determinism  {ab, aba}*
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Computation tree when A’s are around

Q=@
" bAa
%g

%%‘

&Q
O DO
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Formalism

From lecture 1:

Definition (FA)

[deterministic] finite automaton  5-tuple M = (Q, %, qo, A, 0),
— @ finite set  states;

— X finite input alphabet;

—qgo € Q@ initial state;

- AC Q accepting states;

- 80:Q x X — @ transition function.

0:QxX—=Q
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5-tuple M =(Q,Z, qo, A b)
Definition (<—FA)

[deterministic] finite automaton
-80:Q x X — Q transition function;

Definition (NFA)

nondeterministic finite automaton (with A-transitions)
—-d:...
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5-tuple M= (Q, L, qo,A2?)
Definition (<—FA)

[deterministic| finite automaton
—-5:Q x X —= Q transition function;

Definition (NFA)

nondeterministic finite automaton (with A-transitions)
-0:Qx (ZU{A}) — ...
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Function value

Example

{aab}*{a, aba}*
S|A a b

T\ﬁ
&%
0({3y {1} o

NFA 3|9 {3,4 o
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5-tuple M= (Q, L, qo,A2?)
Definition (<—FA)

[deterministic| finite automaton
—-5:Q x X —= Q transition function;

Definition (NFA)

nondeterministic finite automaton (with A-transitions)
-5:Q x (ZU{A}) — 29
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Extended transfer function, without A-transitions

Extend & to subsets P:

8(P,0) =U,epd(p, o) :{q\E Q| g€ d(p, o) for some p € P}.

\ /,\\
PR~y
T2V 8(Po)
I o) :
\

Nor=te}

/

\ ;O \ /

5*(q,x) ...

Automata Theory Non-Determinism, Regular Expressions, and Kleene's Theorem Definitions 137 / 417



Extended transfer function, without A-transitions

Extend 0 to subsets P:
8(P,0) =Upepdlp, o) ={qg € Qlqedp o) for some p € P}.

7 N

876’0 5(P. o)

\ ;O \ /

/

P/
i
I

6*(q, A\) ={q}
5*(q,y0) = 8(6"(q,y), 0)

Now, with A-transitions: 6*(q, x) ...
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Example NFA-A

? 2 5*(gg, \) = . ..
b a
A C A A-a

A 5*(qgg,a) = ...
(@) ®

a-b
A : A 0%(qo,ab) =...
a
é ) b ab-a
* —
b 3 5*(qo, aba) = ...
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/\-closure

NFA M =(Q,X,q0,A0) SCQ

- S CA(S)

Definition
—qg e A(S), then 8(g, A) C A(S)

Definition
-0"(g.A)=A({q}) q€@
-8 (q,y0) =A(8(06"(q,y),0)) qeQ yer* o€k
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Example NFA-A

A

A{q0}) = {q0. p. t}
8*(qo, A) ={qo, p. t}

b A-a
g b C a 5({qo. p, t}, a) = {p, u}
A 8\/\ 8*(qo, a) = Al{p, u}) = {p, u}
A a-b
@ d({p, u}, b) ={r, v}
A %//\ 0*(qo, ab) = A({r,v}) =

{r,v,w, qo, p, t}
ab-a

6({r1 v, W, qo, P, t}v a) = {51 VP, U}
6*(qo, aba) = Al{s, v, p, u}) =

{s,w,qo,p t, v,u}

b a
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NFA M = (Q, L, gg, A, 0)

Theorem

q € 8*(p, x) iff there is a path in [the transition graph of] M from p to q
with label x (possibly including A-transitions).

8*(qgo,x) = no path for x from initial state

Definition
A string x € £* is accepted by M = (Q, L, qo0, A, 8) if 8*(qo, x) N A #£ @.
The language L(M) accepted by M is the set of all strings accepted by M.
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{aab}*{a, aba}*

NFA-A NFA FA
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Theorem

For every language L C X* accepted by an NFA M = (Q, X, go, A, 8), there
is an NFA My with no A-transitions that also accepts L.

M] T 3.17
The precise inductive proof of this result does not have to be known for
the exam. However, the construction in the next slides has to be known.
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Construction: removing A-transitions

Different from book!

Example

but fewer edges!
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Construction: removing A-transitions

Different from book!

Example
0 9
@

A

but fewer edges!
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Formal construction

Different from book!

~@~@=0 ®*0
/A-removal

NFA M = (Q, Z, go, A, )

construct NFA My = (Q, Z, go, A1, 1) without A-transitions
— whenever g € Ap({p}) and r € 6(q, a), add r to d1(p, a)
— whenever Ay ({p}) N A # @, add p to A;.

In particular,
— non-A-transitions are maintained
-ACA
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Construction: removing A-transitions

Different from book!

Example

: )
A

a b | | a

A

Construction book: 81(p, o) = &*(p, 0)...
Accepting states. ..

Automata Theory Non-Determinism, Regular Expressions, and Kleene's Theorem Making the automaton deterministic 148 / 417



Example

L ={aab}*{a, aba}*
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NFA example 1) removing A-transitions

{a}*[{ab}*{b} U{b}*{a}]

q|d(g,a) 8(q.b) 8(q.A)| Al{g})
1 1 — 2.4 | 1,24
b 2 3 5 - 2
3] — 2 — 3
4| 5 4 — 4
5| — — — 5
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NFA example 1) removing A-transitions

{a}*[{ab}*{b} U{b}*{a}]

k&

but fewer edges!
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Theorem

For every language L C X* accepted by an NFA M = (Q, X, go, A, 8)
without A-transitions, there is an FA My that also accepts L.

M] T 3.18
The precise inductive proof of this result does not have to be known for
the exam. However, the construction in the next slides has to be known.
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Folding the computation tree

b

ab #m/ -
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Subset construction

Subset construction

NFA M = (@, L, go, A, 8) without A-transitions
construct FA My = (@1, Z, 81, g1, A1)

-@Q = 2Q

- q1 ={qo}

—Ai={geAlgnA#£2}

= 81(g,0) = Upeq 8(p. 0)
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Once more {aa, aba}*{b}

& WN = Oola
w
|
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Once more {aa, aba}*{b}

L ={aa, aab}*{b}

Minimal (this time)
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Once more {aa, aba}*{b}

a, b

[M] E 3.6 4nd E 3.21
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ABOVE

The subset construction (or powerset construction) can be used to
transform a non-deterministic finite state automaton (without A) into
an equivalent deterministic automaton. The states of the new automa-
ton consist of sets of states of the original automaton (hence powerset).
The set collects all possible states that the original automaton could
have ended in with the same input.

Note that the constructed automaton may be exponential in size com-
pared to the nondetereministic one.

REFERENCE

M.O. Rabin, D. Scott. Finite automata and their decision problems.
IBM Journal of Research and Development. 3 (2): 114125, 1959.
doi:10.1147/rd.32.0114

BELOW
Unreachable states can be omitted.



Reachable states

i ,
b CO+(1D22@)

, b
b (o)
LA
@@Ly D2 @@

also —3rd from the end
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Example: subset construction
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What about this one . ..

Example
L3 ={ x €{a, b}* | x contains the substring abbaab }

a, b a, b
H&@L@L@%%@ﬁ
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a, b a, b
H&@&@L%%@L
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ABOVE

Tllustration.

The determinization algorithm for the nondeterministic automaton for
“has substring x” will always generate two copies of x. In the last copy
all nodes are accepting, and they can be reduced to one node.



Worst case

Example (n = 4)

a, b

all 2" subsets are reachable, nonequivalent, states.
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ABOVE

Theoretically, the subset construction used on a set Q with n nodes
constructs an automaton with state set 29 with 2” nodes. In practice
however, not all nodes are really necessary.

Usually not all nodes are reachable, and we omit those from the con-
struction.

Sometimes nodes can be joined because they are equivalent.

This worst-case example however needs all nodes. So the determiniza-
tion algorithm applied to a finite state automaton in the worst case will
blow-up the original nondeterministic automaton exponentially in size.



NFA example 2) subset construction

{a}*[{ab}*{b} U{b}*{a}]

q|d(q,a) d(q,b)

1]1,35 45
b 2 3 5

3] — 2

4| 5 4

5 _ —
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NFA example 2) subset construction

{a}*[{ab}*{b} U{b}*{a}]
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Quiz

Construct an equivalent FA, applying the appropriate algorithms.
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