Homework 4 Automata Theory 2023

Published on: Tuesday 5 December 2023.
Deadline for submission: Tuesday 19 December 2023, 23:59.
The assignment must be completed individually. A total of 100 points can be earned. Answers to be submitted via Brightspace. Submit a single file, e.g., a pdf or possibly a zip. Please include your name and student number in your submission. You may either type your answers or hand-write them. In the latter case, please hand in an easy-to-read scan / photos.

1. [50 pt] Let L_{1} be the language consisting of all strings $x \in\{a, b\}^{*}$, such that

- $n_{b}(x) \geq 1$, and
- after the last occurrence of b, x contains at least $n_{b}(x) a$'s, and
- $n_{a}(x)>n_{b}(x)$, i.e., in addition to the a 's from the previous condition, x contains at least one more a (at some point in the string).

Hence, the first five elements in the canonical (shortlex) order of L_{1} are: $a b a, b a a, a a b a, a b a a, b a a a, a a a b a$. But also, e.g., abbaa and babaa are elements of L_{1}.
(a) Give a pushdown automaton M_{1}, such that $L\left(M_{1}\right)=L_{1}$.
M_{1} should be based directly on properties of L_{1}. It must not be the result of applying a standard construction, e.g., to convert a context-free grammar into a pushdown automaton.
Try to ensure that M_{1} has no Λ-transitions. If you do not succeed in this, you lose 5 points.
N.B.: It may be hard / impossible to construct a deterministic pushdown automaton for this language.
(b) Explain how M_{1} uses its states and/or stack to accept exactly L_{1}.
(c) If your pushdown automaton M_{1} is deterministic (and correct), then move on to part (d). Otherwise, mention one state, stack symbol and input σ (either Λ, or a or b), for which M_{1} is nondeterministic.
(d) Adjust M_{1} in such a way, that the resulting pushdown automaton M_{1}^{\prime} accepts L_{1} by empty stack, i.e., not by final state.
It is allowed to apply an ad hoc adjustment of M_{1} for this. It is not allowed to introduce (extra) Λ-transitions in the automaton.
2. [20 pt] Consider the following pushdown automaton M_{2} :

(a) What is $L\left(M_{2}\right)$ for this automaton M_{2} ? Express (in words or in formulas, but at least clearly and completely) what are the elements of M_{2}.
(b) Explain how M_{2} uses its states and/or stack symbols to accept exactly the language you described at part (a).
3. [30 pt] Let G be the context-free grammar with start variable (and only variable) S, and the following productions:

$$
S \rightarrow S a S|b| \Lambda
$$

(a) Draw the nondeterministic bottom-up PDA $N B(G)$ for this grammar G.
(b) Give a derivation tree for $x=b a a$ in G.
(c) Execute a successful computation in $N B(G)$ for the input $x=b a a$, i.e., a computation that starts in the initial configuration for x and results in acceptance of x. The computation should correspond to the derivation tree of part (b).
Present this computation in a tabel of the following form:

state	stack (reversed)	remaining input	action
q_{0}	Z_{0}	$b a a$	\ldots
\ldots	\ldots	\ldots	\ldots

(see the lecture slides for an example).

