Homework 4 Automata Theory 2023

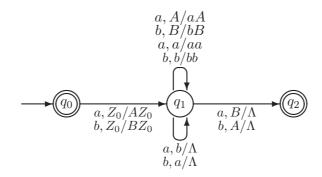
Published on: Tuesday 5 December 2023.

Deadline for submission: Tuesday 19 December 2023, 23:59.

The assignment must be completed individually. A total of 100 points can be earned. Answers to be submitted via Brightspace. Submit a single file, e.g., a pdf or possibly a zip. Please include your name and student number in your submission. You may either type your answers or hand-write them. In the latter case, please hand in an easy-to-read scan / photos.

- 1. [50 pt] Let L_1 be the language consisting of all strings $x \in \{a, b\}^*$, such that
 - $n_b(x) \ge 1$, and
 - after the last occurrence of b, x contains at least $n_b(x)$ a's, and
 - $n_a(x) > n_b(x)$, i.e., in addition to the *a*'s from the previous condition, *x* contains at least one more *a* (at some point in the string).

Hence, the first five elements in the canonical (shortlex) order of L_1 are: *aba*, *baa*, *aaba*, *baaa*, *aaaba*. But also, e.g., *abbaa* and *babaa* are elements of L_1 .


(a) Give a pushdown automaton M_1 , such that $L(M_1) = L_1$. M_1 should be based directly on properties of L_1 . It must not be the result of applying a

standard construction, e.g., to convert a context-free grammar into a pushdown automaton. Try to ensure that M_1 has no Λ -transitions. If you do not succeed in this, you lose 5 points. N.B.: It may be hard / impossible to construct a *deterministic* pushdown automaton for this language.

- (b) Explain how M_1 uses its states and/or stack to accept exactly L_1 .
- (c) If your pushdown automaton M_1 is deterministic (and correct), then move on to part (d). Otherwise, mention one state, stack symbol and input σ (either Λ , or a or b), for which M_1 is nondeterministic.
- (d) Adjust M_1 in such a way, that the resulting pushdown automaton M'_1 accepts L_1 by empty stack, i.e., not by final state.

It is allowed to apply an ad hoc adjustment of M_1 for this. It is not allowed to introduce (extra) Λ -transitions in the automaton.

2. [20 pt] Consider the following pushdown automaton M_2 :

- (a) What is $L(M_2)$ for this automaton M_2 ? Express (in words or in formulas, but at least clearly and completely) what are the elements of M_2 .
- (b) Explain how M_2 uses its states and/or stack symbols to accept exactly the language you described at part (a).
- 3. [30 pt] Let G be the context-free grammar with start variable (and only variable) S, and the following productions:

 $S \to SaS \ | \ b \ | \ \Lambda$

- (a) Draw the nondeterministic bottom-up PDA NB(G) for this grammar G.
- (b) Give a derivation tree for x = baa in G.
- (c) Execute a successful computation in NB(G) for the input x = baa, i.e., a computation that starts in the initial configuration for x and results in acceptance of x. The computation should correspond to the derivation tree of part (b).

Present this computation in a tabel of the following form:

state	stack	remaining	action
	(reversed)	input	
q_0	Z_0	baa	

(see the lecture slides for an example).