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Abstract

Tomography tries to reconstruct an object from a number of projexctiomultiple directions. There are
many obvious application domains, but we will focus on high throughppligations, and will therefore
try to reduce the number of necessary projections, while being able &ajergood quality reconstruc-
tions. We apply several forms of Neural Networks, an Artificial Inteltige method. These networks are
especially suited for solving underdetermined problems, and thenefdlsuited to our problem.

Many different variants of Neural Networks are developed since itednittion; some simple, while
other architectures can consist of many nodes in many hidden layeeséing the training complexity.
We will here focus on the simpler forms of Neural Networks: feed&mdmultilayer) perceptrons.

We show, for both artificial and real-life data, that these networks arafde of creating good quality
reconstructions from a limited set of projections, while avoiding image atsifdnat are often present in
traditional approaches.

1 Introduction

Tomography, or more especially computed tomography, i€lanigque used in a broad variety of research
areas: from medical to industrial, and archaeological téenel studies. It can be applied to investigate
(non-invasively) the internal structure of many differéypes of objects and materials. Probably the most
recognized application is the X-ray CT scanner, for diagjngmirposes, as is found in many hospitals. The
main idea of tomography is to be able to visualize and analyénternal structure of an object.

The object is examined in various orientations leading tealtedprojections and when put together,
a reconstruction is made. Typically, there is a need for gelavumber of projections (more than 100) to
reconstruct, with adequate quality, an object. This apgrphowever, has many drawbacks. In areas where
a high throughput is required the time needed to generagrtfection data is limited, and when examining
organic tissue only a limited dose of radiation might be adstéred without the risk of affecting the tissue.
Therefore, we notice a need of good quality reconstructi@s®d on a limited set of projections.

Figure 1: Examples of tomographic reconstructions. Frdintderight: original 128 x 128 image, filtered
back projection reconstruction, linear perceptron, anttiayer reconstruction with 8 projection angles.

Traditional reconstruction methods tend to generate bgttelity reconstructions when increasing the
number of projections. Furthermore, they are static aneéiggn.e., they cannot be adapted to a specific ap-
plication domain. Here, we propose a different strategyayfdy Neural Networks, an Artificial Intelligence



method [12, 5], for generating reconstructions. In Figusafe examples of tomographic reconstructions
are shown. Neural Networks must be trained (which implies@atone increase in effort), but carry the ad-
vantage of being capable of reconstructing specific imagesimproving themselves. In this paper we show
the potential of single-pixel networks for this purposeparticular for situations with very few projection
angles, also reducing image artifacts.

The paper is organized as follows. Section 2 contains eelatek. In Section 3 we introduce the theory
of (discrete) tomography. Section 4 describes the variceisr&l Network topologies and approaches. We
present the experiments in Section 5 and the conclusiometsttidy in Section 6.

2 Related Work

Computed tomography is a well studied field, and there arg/mablications describing many of its aspects.
In[8, 9, 4, 7] the fundamentals of computed tomography, dsagemany technical aspects are covered.

The application of Neural Networks is a relatively new agato In literature they are introduced as
a reconstruction technique in [10, 11]. In general, Neuratwdrks seem an uninteresting strategy for
the general problem of tomography due to their nature ofiigatith large numbers of projections, and
consequently the large number of variables. It seems gaité to outperform traditional reconstruction
techniques. However, we will here focus on tomography mwisl consisting of a small set of projections
resulting in an underdetermined problem. Neural Networksagell-known for their successful application
to underdetermined problems.

In [2, 3, 1] the authors introduce Neural Networks succeélysfar reconstruction binary images (i.e.,
black and white). Two different network topologies are stigated: a full-image network, and a single-pixel
network. The first variant tries to reconstruct a completagmat once from all projection data. The second
variant reconstructs one pixel from a selection of the mtiga data. Based on their conclusions we will
here focus on the single-pixel network topology. The neksarsed in [3] are quite large, consisting of 50—
200 hidden nodes. Here, we will use much smaller networks. diadvantage of applying a single-pixel
network is its reduced ability to be trained for specific imadasses. This property is, to a much greater
extend, available in full-image networks at the expensaaf@ased computational complexity.

3 Tomography

In tomography we try to reconstruct an object from a numbempodjectionsin multiple directions. Here,
we will focus on projections obtained by parallel beamsttigioa finite object. We assume that this object
is contained in the disc

A={(z,y) eR*: 2 +y* < R*} (1)

with radiusR > 0, see Figure 2. The object is an image described by the réadd/grayscale mapping
f: A —[0,1] where0 is black andl is white; intermediate values can be interpreted as shddgay

The attenuations of the beams are measured on an infieieztor
Different projections are generated by rotating the deteatound the
object. The construction of the projections is performedhgyso-called
Radon transformwhich is the integral transform of the functighover
straight linesL:

Ry (L) = /L £ (o) de. @)

For angled we define:Lg ., = {(z,y) € A: 7 =t}, witht = zcosf +
ysin @. The Radon transforn®; of the functionf is defined as:

Pr(8,71) = fz,y) ds for6 € [0,7),7 € R. (3)
LG‘T
Figure 2: The basic principle of
The reconstruction of the original image from its projestids ob- tomography. The hatched area

tained from applying théwverse Radon transforf@]: only defines the outline of the
object, and not its internal struc-

f(zy) = /9_0/__ h(r—1t)Ps(0,7) drdf, (4) ture.



whereh is a suitable weight dkernelfunction acting as a filter. Several kernel functions canderuOften
the so-calledRam-Lakkernel, only defined in the integer domain,rampfilter is applied:

T if c =0,
h(oc) =1« — 7'r210'2 if o is odd, (5)
0 otherwise,

whereo € Z. Note that the kernel is symmetric aroubicas expected, see Figure 7(b) in Section 5.

Discrete tomographyocuses on the reconstruction of images, which are reagtett using a small,
discrete set of pixel values, e.g., a binary image.

To find a discrete approximation, we substitute the intagiad summations. First, we choose a fixed
number of angle& (equally dividing the) to = semicircle). And secondly, we approximate the remaining
integral by choosing a finite detector siZe, soh (') = 0 when|7’| > D, wherer’ = 7 — ¢:

k

D
fley)= > h()> P67 +1). (6)

T'=—D d=1

In tomography the calculation of Equation (6) is usuallyfpened by thefiltered back projectioral-
gorithm. In practical applications, filtered back projeatis implemented by calculation via tfiequency
domain or more especially thBourier domain In the Fourier domain, the convolution operator translate
to a much simpler multiplication, and therefore reducesctiraputational complexity.

Here, we will not use the Fourier domain, but rather caleutae convolution of the kernel with the
projection data in thepatial domain As is suggested in Equation (6) we choose the kernel to liie,sta
and consequently shift the projection data relative to thear of the kernel. Therefore we introducsteft
operatorwhich aligns the projection data for a certain image pixeJ with corresponding’, and a certain
anglef,. The shift amount is denoted by This implies, on a finite detector, that some projectioradeitl
be shifted outside the detector range, and some “new” giojedata is shifted onto the detector. We will
deal with this phenomenon as follows: the data shifted outiefie is discarded, and the new data is treated
as being), as it would be on an infinite detector.

Some difficulties arise in applying the discrete versionhaf Radon transform. In general, a pixel will
not be mapped to a single pixel on the detector, it will indtiea mapped between two pixels. Now, we have
to decide how the image pixel will contribute to the possiibeels on the detector. Several strategies can
be applied. Roughly, they can be divided into two categof@st, a single pixel on the detector receives
the full contribution of an image pixel, for example, thearest neighboapproximation. Secondly, we can
distribute the contribution of an image pixel over the detepixels, as is, for instance, done bgear
interpolation

In order to increase the accuracy of the projections furtad, ultimately, the quality of the reconstruc-
tion, we apply asubsamplingechnique. This strategy is especially beneficial for insagesmall dimen-
sionality. Each pixel is divided inte: x m subpixels wherem is thesampling rate with integerm > 1.
Typically, m = 2 orm = 3. Each subpixel is then projected onto the detector.

4 Neural Networks

An (Artificial) Neural Networkis a computational model that is inspired by the structura bfological
neural network such as the human brain [12, 5]. It consistatefconnected neurons passing information
to each other. The structure is often adaptive based omadter external data. This concept is referred to
aslearning Many different forms exist today. Here, we will first focus a simple form of a feedforward
network called aerceptron

4.1 Topologies

The computational properties of a linear perceptron, sgeri3(a), show a remarkable similarity with the
computations in Equation (6). We expect a linear percepvdre able to simulate these computations. The



a=XPr a=XPr

(a) Linear perceptron withv input nodes, and (b) Multilayer perceptron withV input nodes,
one output node. The total number of weights h hidden nodes, and one output node. The total
is N 4+ 1. The bias node and weight are not number of weights i% (N + 1) + h + 1 (in-
depicted, but assumed to be present within the cluding weights for the bias nodes). The bias
output node. nodes and weight are assumed to be present in

each hidden and output node.

Figure 3: Two Neural Network topologies. Left: a linear psptron and right: a multilayer perceptron.

weights should form the kernel function, and, for many pcb@ns, we expect the weight vector to be very
similar to the Ram-Lak kernel.

The first topology consists of only one output hode capableadnstructing one pixel of the image. In
order to reconstruct the complete image we apply the pexmept? times. The input for reconstructing a
single pixel is heavily dependent on that pixel. Therefare preprocess the Radon projection data depend-
ing on a certain pixel. The projection data is “shifted” sticat the projection is centered aroundvissing
values are replaced by zeros (as it would be on an infinitectigde The input vector i§ = XPr, the sym-
bolic notation for the precomputed summation for all praget anglesd according to Equation (6). Note
that the emphasis on the single pixel topology and the agtjcggof the projection data partly eliminates
the expected benefits of the classification power of the N&igavork. The input vector for a certain pixel
carries little information about other pixels in the imatiesreby increasing the difficulty of learning image
class specific features.

A multilayer perceptroris a feedforward network organized in multiple layers (gouinand an output
layer, as well as (several) hidden layers), see Figure Béwmh layer is fully connected to the next. In contrast
to the perceptron model each node has a nonlinear activiaitation. In this case we will use the logistics
function¢ (z) = 1/ (14 e~#*), with 8 = 1. It can be shown that each multilayer perceptron using only
linear activation functions has an equivalent perceptrodeh

4.2 |Initialization

The initialization is not trivial and may have a huge imparcthe convergence of the Neural Network. For
linear perceptrons this effect is, generally, not too sewarthe magnitude of the adjustment of the weights
is always the same. A wrongly initialized network is likely ¢donverge eventually. Note that initialization
outside the interval—1, 1] may result in divergent behavior. In all cases, a suitabdéribution must be
chosen. Two distributions are commonly used; the uniforstrithution, and the normal distribution. We will
use the normal distribution. For a linear perceptron we:fix 0.5, ando = 0.25, wherep is the aimed for
mean, and the standard deviation.

For nonlinear perceptrons, and consequently, multilagecgptrons the initialization problem is harder.
The introduction of nonlinearity is the main culprit. Forremonly used activation functions (hyperbolic
tangent and logistics) the behavior is similar. The use efitist derivative in updating the weights results in
a very small update when the input of a node is very large or serall. Only in a small interval, controlled
by the parametef, the weight adjustments are similar to the linear case.dg@ssthe danger of divergent
behavior we face an additional hazard: being trapped in @scepable region of the activation function. A
good strategy is to assure that we start (from initializgtio the region where we have a linear-like behavior.
We must be careful with adjusting paramefess we might end up with a completely linear perceptron, and
thereby reducing the additional capabilities of a nonlimEceptron. We again fix = 0 ando = 0.25 for
nonlinear perceptrons.



5 Experiments

In this section we describe several experiments, higlitightome examples. For a more comprehensive
set of experiments see [13]. The first experiment aims tatilliie the statement that a linear perceptron is
capable of simulating Equation (6). The second experimestiibes a real-life case study. In all cases we
use a custom developed-€ framework.

An incremental trainingapproach is used. A single image of a particular image ctagernerated from
which a number of pixels are selected randomly. Each pixaltiaining instance. The weights are updated
after each training instance. We call the usage of an imaggach In each epoch a number of pixels are
selected as training instance. We refer to the number ofteelgixels asterations Here, the number of
epochs is fixed td 0,000, and the number of iterations is fixed 3000 (largely avoiding the problem of
overfitting). A set of50 predetermined images (for each image class) serveal@sation set The reported
errors are measured on the validation set. The averageusdsoior is calculated as the absolute difference
between each pixel in the original image with its correspogdeconstructed pixel, and averaged over the
total number of pixels within disél. Furthermore, the errors are averaged over the number gisia the
validation set.

5.1 Artificial Image Classes

We construct a number of artificial image classes to experiroa. For all image classes we fix the di-
mensions td 28 x 128 pixels. The 2 ELIPSES(OVERLAY) image class consists of two ellipses of random
intensities (maybe with the same intensity) which may or maty(partially) overlap each other. The ellipses
are drawn in a nondeterministic order. The last drawn @ligistermines the ultimate intensity. In [13], other
artificial image classes are defined including random ndise features of these images are always cropped
to the discA. The first three classes resemble objects consisting afddmgmogeneous areas of constant
graylevel, while the random noise images are mainly usealidate results. Samples of the image classes
are presented in Figure 4.

Figure 4: Example images from five different image classesath(from left to right): 2 ELIPSES(OVER-
LAY ), 20 SVALL ELLIPSES (OVERLAY), 5 CONCENTRIC ELLIPSEJOVERLAY), RANDOM NOISE (1000),
and RANDOM NOISE (10000).

5.2 Simulating Filtered Back Projection

The first experiment aims to prove the statement: A lineacggron should be able to reconstruct an image
from its Radon projections (for a large number of angles)asias Equation (6).

As a training set we generate a sefl6f000 (the number of epochs) randai8 x 128 images from the
image class ZLLIPSES(OVERLAY). For each image we offer the Radon transform projections fe 32,
and3,000 randomly chosen pixels as target outputs for a tot&0od#00,000 training examples. In Figure 5,
the differences in the reconstructions between filtered pagjection and a linear perceptron are shown.

From Figure 5, some differences in the reconstruction irmdmween the filtered back projection and
the Neural Network approach can be observed. So-caéihede artifactsare present in the filtered back
projection reconstruction giving the objects in the imagexaured appearance, as well as “phantom” ob-
jects, see for example the second image from Figure 1. Thifsects are strongly oriented to the projection
angles. These can be hard to eliminate in an automated wayisTéspecially true fok < 32. In the Neural
Network generated reconstructions there are less imaifectstat the expense of softer boundaries of the
objects. In Figure 5, we also include the multilayer (witlothidden nodes) reconstructions. However, we
do not provide an extensive experimental comparison betwheetwo network topologies. The reconstruc-
tions are much sharper defined and yield a lower average @nopared to the linear perceptron case. The
next section provides some arguments to prefer the latiriain situations.



Figure 5: The original image (top row) and filtered back pectgn reconstruction (second row) versus a lin-
ear perceptron (third row) and a multilayer perceptron mstrmction (bottom row), all witl32 projections.

5.3 Real-life Case Study

The projection data for the real-life case study is not aitifiy created, but it is instead actual real-life
output of a CT scanner. In this case a homogeneous crystaltiject. The data set consists of 332 slices of
the homogeneous crystalline object, see Figure 6. The dilmes of the images are originally)24 x 1024
pixels. We reduced this dimensionality384 x 384 pixels for two reasons; first, the object is rather small
compared to the full image size, and secondly, it reducesdhgputation times significantly. Per slise0
projections are included (equally dividing theo 7= semicircle).

In contrast to the earlier experiments, we have no origimalge to train on. We used the filtered back
projection reconstruction using @00 projections as an approximation of the original image,dhgpro-
viding a ground truth. Then we were interested in the recangbn quality of a linear perceptron versus the
traditional filtered back projection approach, of coursegigmuch) fewer projections, e.g., 50.

We apply a linear perceptron for several reasons. Firg tité most simple topology having the fewest
number of weights which makes it easy and fast to train. Thialization is easier because of its linearity.
The second motivation regards the practical implememafldne weights resulting from a trained linear
perceptron are assumed to be easily embedded within existiplementations.

For this experiment we randomly selgg000 slices, and from each selected slice we randomly select
10,000 pixels as training example resulting in a totall®f000,000 training instances. The perceptron was
trained usingb0 projections equally dividing the total )0 projections. The resulting reconstructions, as
are shown in Figure 6, are softer, as is the case for the @tifinage classes. In Figure 7(a) the resulting
weight vector is shown. The symmetry can be clearly observed features are much less “sharp” as
compared to for instance the Ram-Lak kernel in Figure 7(hg rfesulting reconstructions, as are shown in
Figure 6, are softer as well.

Table 1: Real-life average absolute errors.
Average error Standard deviation

Filtered back projectioni(= 50) | 0.1198 0.1262
Linear perceptron 0.0548 0.0632
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Figure 6: Top row: example images from the real-life data slétes 50, 145, and 20 reconstructed using
filtered back projection with00 projections. Bottom row: Reconstructed image by a lineacqygtron. Here
50 projection angles were used (equally dividing the semejr@and the perceptron was offered a total of
10,000,000 training instances. Note that only the pixels containedse d are reconstructed.

In Table 1 the average absolute errors are presented. Téer lxerceptron trained on the real-life data
set performs best as can be expected. We observe about teelgtarence in reconstruction quality with
regard to the filtered back projection algorithm as is obsgan our artificial image classes reconstructions.
We might conclude that a linear perceptron can be appliethéoreconstruction of real-life objects.
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(a) Weight vector of a linear perceptron aft€y,000,000 train- (b) Ram-Lak kernel of sizé4.

ing instances.

Figure 7: Weight vector of a linear perceptron aftér000,000 training instances. The discrete weights are
connected by linear interpolation for better readability.

6 Conclusions and Further Research

We applied various Neural Networks to the problem of digctemography, where we focused on obtaining
good quality reconstructions from a limited set of projent. Here, we present a summary of the conclu-
sions from the experiments in Section 5. As a general ruley&léNetworks are capable of reconstructing

very good quality images, especially when the image refsolus low, and there are only a few projections.

They lose their advantage over the traditional filtered h@diection technique when there are many (over
100) projections available. In theory, a linear percepisable to simulate the filtered back projection strat-
egy, i.e., we can choose the weight vector to be identicahedkernel used. Training a network does not
guarantee convergence to this kernel. In fact, it is quitd t@train a Neural Network (using the aggregation



approach) when many projections are used. The (aggregafad)vector shows little variation hampering
its training abilities, and making the network very sersitdl its initialization values.

Clearly, different network topologies are capable of redgithe average absolute error compared to the
filtered back projection technique. From Figure 5, we carenlesseveral differences of the approach of
both techniques. While filtered back projection tends togat sharply defined boundaries around objects,
the Neural Networks, especially the linear perceptron, enthkese edges softer. The reconstructions from
filtered back projection suffer from many image artifacthjlesithey are almost absent in the reconstructions
from the linear perceptron. It seems that the lower erroneslare mostly achieved by eliminating these
artifacts, while losing some on the sharpness of the objé&his observation is supported by the, on average,
higher error for the 20 BALL ELLIPSES (OVERLAY) image class compared to other image classes with less
ellipses, i.e., less boundaries.

The results from the real-life data set case study presént&gction 5.3 are encouraging. A linear
perceptron is capable of generating high quality reconstms of real-life data. It is very beneficial to train
on the same class as the objects that will be ultimately ococted, however, due to the limited size of
our real-life data set no hard conclusions can be drawn. @sd@ting weight vector from the trained linear
perceptron can be easily transferred to existing praditicplementations, and therefore, instantly improve
reconstruction quality.

Many areas of future research remain. As we explored thevimhaf simple Neural Networks (i.e.,
perceptrons) other topologies could be investigated,asiberegarding the elimination of the aggregation
operator.
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