6.2.8

1 DrW.A. Kosters,
kosters@liacs.nl, Leiden University,
LIACS, Leiden, The Netherlands

NEURAL NETWORKS FOR DATA MINING

Walter Kosters”

In many application areas neural networks are known to be valuable tools. This
also holds for data mining. In this chapter we discuss the use of neural net-
works, we shall give an informal description of the way they work internally (just
for one distinctive member of the large family of neural networks), and we final-
ly focus on their usefulness for data mining. In particular we shall not deal with
biological or psychological backgrounds. We only notice that the idea of neural
networks originates from the physiology of the human brain.

GENERAL BACKGROUND

Neural networks are powerful general purpose learning devices. This sentence
shows the strength (the general purpose character), which is also its weakness:
its generality. Another weakness is the complex internal structure, which — if
one finally understands the algorithms involved — still shows black box behav-
jor: itis very hard to get an idea of the meaning of the internal computations.
Neural networks perform well in pattern recognition tasks, such as recognition
of handwritten characters or spoken text. It should be noted that the way these
networks learn (their ‘training’) is often supervised: the user should provide as
many positive examples as possible; negative examples are also helpful. So for
classification and clustering it is necessary to have classified or clustered input
available. Note, however, that special neural networks are available that can
cope with unsupervised situations.

Itis easy to build a neural network that tries to solve a given problem. In fact,
many software packages contain plug and play neural networks. But still many
parameters need to be set, the training stage may take a while, and the tuning
therefore can be awkward. State of the art hardware is a prerogative.

Another feature of neural networks is their random behavior. This does not
mean that they act or react randomly, but that their training process contains
random elements. For instance, in the beginning the network is carefully initial-
ized with random numbers. When this is repeated, the same input set may yield
very different networks. Sometimes they differ in performance, one showing
good behavior, while others behave badly. Note that it is perfectly possible for
a neural network to get stuck in some suboptimal situation; this unfortunate
situation can sometimes be avoided through sophisticated techniques.

Neural networks have many parameters, such as learning rate, number of lay-
ers, number of neurons, and so on. It always pays off to use different settings
for a given problem, thereby trying to find an — at least for the time being —
optimal setting in an empiric way. It is not necessarily true that larger networks
outperform smaller ones. Not only will the training process take longer, it might

641



Figure1

An example neural network with one
input neuron, two hidden neurons
and one output neuron. Note the two
special bias neurons. Every directed
connection has an associated
weight, denoted by a *.

also be the case that the smaller network is more capable of catching the prob-
lem at hand.

One difficult problem is to decide whether or not the training has finished. In
fact, training can go on as long as one likes, but this sometimes leads to a phe-
nomenon known as ‘overfitting’: the network gets better and better on the
examples it uses during training, but looses its generalizing power. Careful
schemata using independent validation sets can avoid these pitfalls. If done
carefully, neural networks are perfectly capable of dealing with noisy data, but
the danger of overfitting is always present.

WORKING PRINCIPLES

In this section we describe a simple neural network, officially called a multilayer
feed forward neural network. The presentation is kept simple in order to achieve
enough understanding of the matter. We focus on what is known as
Backpropagation, the most common neural network algorithm. In the next
section we shall discuss other ‘architectures’.

Network

In our simple network we have one real variable x which is our input. We try to
learn f(x), where the function fis unknown to us, but correct pairs (x,f(x)) are
available. This function (or the value f(x)) is called the target. Often x and f(x) are
normalized between o and 1. For instance, x may be a time variable and f(x) may
be the height of the water in a harbor, or x may indicate the distance from the
wall and f(x) may be the desired speed of a robot, or x is a zip code and f(x) is the
mean income in the corresponding area.

The network has to be trained in such a way that, given input x, it delivers out-
put O with the property that O and f(x) differ as little as possible. The difference
f(x)-0 between target and output is called the error. Note that the error
depends on the particular choice of x.

bias
bias
*
* hidden output
*
*
input
*
*
* hidden

642



The network itself consists of several so-called neurons. These can be consid-
ered as very simple input-output devices. A very simple neural network (see
Figure 1) may have one input neuron, one output neuron, and two other neu-
rons: the so-called hidden ones. The input neuron receives the input x and
hands it to the two hidden neurons. It does so by multiplying x by some
‘weight’, one for every connection. A weight can be viewed as being attached to
the directed connection between two neurons. A hidden neuron receives its
input, and delivers its output to the output neuron, again multiplying it by some
weight. The internal function of a neuron is usually very simple: if its input is
low, its output will be low (near zero), and if its input is high, its output will be
high (near one). This transfer function is governed by some parameters, one
being the ‘threshold’ or ‘bias’, which is often implemented by means of extra
neurons, one for every layer. Note that in this example network we have four
independent weights, or seven if the bias neurons are added. In Figure 1 they
are indicated by means of *’s.

Training

The purpose of the training stage is to update the weights in such a way that
errors approach, if possible. The change of weights is directed by the errors.
Larger errors will lead to larger changes, where the weights that contribute the
most are heavily adapted. The so-called learning rate determines the relative
change in this process. The algorithm that is used here is called
Backpropagation: it propagates the error back through the network, from out-
put to input.

The training usually takes place in the following way. The network is presented
with a (random) series of correct input-output pairs. For every pair
Backpropagation is used to update (and improve) the weights. After some fixed
period, or if the errors are small enough, the training is stopped. The network
found can be judged by giving it fresh input-output pairs: the so-called test set.
It should come as no surprise that on these pairs the performance of the net-
work will be inferior to that on the training examples. Nevertheless, it gives a
good measure of the quality of the network. The performance on a special vali-
dation set may be used for the decision to stop training or not: if the error on the
validation set starts to increase, this may indicate over fitting.

Many variations are possible. Let us briefly describe some possibilities:

— Training and testing requires a large quantity of examples. In some cases,
not enough examples are available. Methods like bootstrapping can be used
to artificially increase the number of input-output pairs.

— The behavior of the network is that of a black box. In some cases it is possi-
ble to manipulate the internal structure to match the problem at hand. In par-
ticular cases this might be extremely difficult, and it is sometimes preferable

643



to restrict oneself to more complex and hard to interpret networks that give
adequate output.

— Inline with Occam’s razor, which says that in case of several acceptable solu-
tions the simplest one should be preferred, neural network researchers
developed all sorts of schemata to decrease network complexity. This results
in more complex learning rules, that for instance cause weights to be zero
(corresponding to the elimination of weights).

— It might be useful to train several networks at the same time, giving an
ensemble of networks. Their independent results can then be combined to
obtain a better joined output. In this case statistical techniques can improve
the outcome.

— The training can be adapted in many ways. It can or cannot keep track of
infeasible solutions. The price paid is that it can become harder to find the
proper training algorithm and the proper parameters. But there are many
other possibilities. For instance, instead of just using the current input-out-
put pair one can also use information on the previous pair(s) in the form of
‘momentum’. Instead of separate incremental training for every example, it
is also possible to combine several examples in so-called batch mode. The
learning rate can also be adapted during the training process.

In our example we dealt with a situation in which there was only one input vari-
able and one output variable. By adding adequate neurons it is easy to general-
ize to more complex situations. It is easy to add hidden neurons, which can also
be ‘layered’. The ‘layered’ neurons sum all their incoming signals. In this more
general setting the error measure is a sum of the squares error. Note that this
generalization makes the network much more complex. It is even possible to let
the number of neurons grow or shrink during training.

A small problem occurs if one or more variables are not real-valued. As an exam-
ple, think of a situation where an output variable should contain the day of the
week in the form of an integer between 1and 7. The network may provide 0.314
as output, which can be interpreted as day 3. Itis also possible to represent the
output by means of seven neurons, each one corresponding to a certain day of
the week. Hopefully the network will produce situations where only one of the
seven outputs has a value near one, indicating that this day is the proper out-
put.

DATA MINING WITH NEURAL NETWORKS

In this section we briefly describe some other ‘architectures’, especially suited
to data mining purposes. For more details and yet even more possibilities the
interested reader is referred to texts like [Bishop, 1995] and [Silipo, 1999]. These
works cover Hopfield nets, Boltzmann machines, specialized networks for time
series analysis, and so on.

644



The Radial Basis Function

The Radial Basis Function (RBF) architecture is especially suited for clustering.
Special units try to catch prototypes for each cluster. Variants like probabilistic
neural networks are meant for classification tasks. For all these nets a training
set of labeled data is necessary. If not, other methods are needed.

Unsupervised learning
In unsupervised learning the network itself tries to find patterns in the data.

Competitive learning

In competitive learning, the neurons compete for an unclassified input example;
during the training process their weights gradually converge to some sort of
equilibrium, providing an adequate description of the clustering that is hopeful-
ly learned.

Self-Organizing Map

One particular successful technique is Kohonen’s Self-Organizing Map (SOM,
see Section 6.3.2), which can be viewed as a non-linear projection: the number
of dimensions of the data diminishes, showing underlying structure. This so-
called feature map has the property that inputs which are close together acti-
vate neurons that are close together in the network. Other variants pursue
Principal Components Analysis (see Section 6.2.4).

Rule extraction

There are several ways to extract rules from neural networks. In a local
approach one tries to understand the local behavior of (part of) the network, in
a global approach the overall behavior is examined. As an example of the latter,
in sensitivity analysis the effect of changes in one variable are studied: how
does the output vary?

CoNcLusION

We may conclude that the family of neural network techniques contains a large
number of data mining tools, especially suited for clustering, classification and
prediction. See also the CD-rom: tutorial [Andina, 2001]

LITERATURE

— Andina de la Fuente, D. (2001). Artificial Neural Networks. Universidad
Politecnica de Madrid, Spain

— Bishop, C.M. (1995). Neural Networks for Pattern Recognition. Oxford
University Press

— Silipo, R. (1999). Neural Networks. In: M. Berthold, D.J. Hand. (eds.).
Intelligent Data Analysis. Chapter 7. Springer Verlag

645



