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Abstract

We introduce a new solving method for SameGame puzzles based on-Maritesimulation, that im-
proves the previous best known method. We also cover the chedslaoant, a subclass of the SameGame
puzzle for which we can exactly define which puzzles are solvable aithwines are not. Next to this
we present a quantitative approach to classify the difficulty of a givealppas well as an indication of
whether or not a given puzzle is solvable.

1 Introduction

This paper is about the puzzle (or gansgmeGamealso known as Clickomania or Jawbreaker. For com-
puter scientists in the field of Artificial Intelligence [7hd Combinatorial Game Theory [3], games that
have associated NP-complete decision problems [6], likeegzame, remain an interesting field of study.
The search space is way too large and too dynamic for traditeearch methods, making the search for an
optimal solution an extremely hard task. Compared to gamels as Tetris and even Sokoban, SameGame
has not been studied much, and there are still many openigugsiVe will attempt to shed some light on
this subject, answer several questions, and present soenedting facts about SameGame. We also give an
outline of possible search methods that could be appliededisas a new algorithm for solving SameGame
puzzles that improves the algorithm presented in [8].

The paper is organized as follows. In Section 2 we explainegzame, and describe some properties.
We pay special attention to “chessboard” like variants iati®a 3. In Section 4 we describe our algorithm,
and we mention results in Section 5. Section 6 concludes.

2 SameGame

SameGame is a single player game (or puzzle) that has segrirect@ase in popularity over the past few
years. It has actually been around since 1985, when it wasiad in Japan by Kuniaki Moribe. It was first
released in the western world under the name Chain Shot,asub&en redistributed (often with slightly
different rules) under, amongst others, the names Clickiem&iMaki, Samegame, Jawbreaker, Bubblets,
and Bubble Breaker. We will refer to it @&meGame

2.1 Rules

The game is played on a two-dimensiobahrd (or grid) with N tiles (or fields, squares, stones or blocks).
The tiles of a puzzle each have one outtdlifferentcolors Figure 1 shows two puzzles withi = 225 (the
board is of sizedl5 x 15) andC' = 5 (red, green, blue, purple and yellow). If we talk about aaiartile on
some board with heighit and widthw, we denote its position bf, j), with1 <i < handl < j < w. To
clarify, tile (1, 1) is situated in the top left corner. Initially, the board isiaBy filled with randomly colored
tiles. Two tiles are directladjacentif they are horizontal or vertical direct “neighbors”. Adi(s, j) not on
the edge of the board has neighb¢rs- 1, 5), (i + 1,34), (4,5 — 1) and(é,j + 1), while a tile on the edge
has only three of these neighbors, and a corner tile only Awgroup is defined as a set @ivo or more
tiles of the same color, where it is possible to go from anytetiles to any other by repeatedly visiting
adjacent tiles; or briefly: a group is connected. A tile atlibard that does not belong to any group is called



Figure 1. Two puzzles, no. 1 (left) and no. 9 (right) from trenbhmark set at [5]. Solution for puzzle 9:
12,6-5,11-125-146-12,11-8,12-10,2-6,1-12,14-8,1269,14-9,6*-7,4-5,13-7,3-11,7 -
13,14*-14,2-14,3-14,14-12,5-10,11-9,12 - 8,3 - 15,7* /1B3- 15,8*- 6,8 - 15,10 - 14,13 - 13,10 -
12,2*-12,9*-11,1-13,4-15,1*-15,3-15,1-15,7-155-25- 13,1 -14,2- 15,2 - 14,1 - 15,1 (the
bottom leftmost tile of a group is chosen, a * denotes a bigigré* denotes the biggest group)

asingleton A moveconsists of deleting a group, after which several thingstagpen, depending on the
type of puzzle:

e Vertical gravity and column shiftingiles that are above the deleted tiles fall down. As soonras a
entire column is empty, the columns to the right of the emptymn(s) shift to the left.

e Vertical and horizontal gravitytiles that are above the deleted tiles fall down. After thikgs that are
to the right of empty positions caused by the deletion or tiegipus falling down of tiles are shifted
to the left (they are drawn towards the left side of the baard)

When several groups have been removed, and either one ofdlaptions above has done its work, one
or more empty columns can arise on the rightmost side. Nowtivngs can happen:

e The empty columngemain empty

e The rightmost column is repeatedly filled with a fresh coluafimew random tilesthat then again
behaves in either of the two ways described above.

Clearly, the first version of the last two above allows us tadial-knowledge deterministic examination,
while the second version can theoretically go on infinitely.

The game can have sevegmals One obvious goal could be to empty the board, leaving ne.tilée
call a puzzlesolvableif the board can be emptied by doing a series of moves. Anafbalris to get a score
as high as possible. In most scoring schemes the score departtie size of the removed groups, where
it usually grows quadratically with the size of the removedup. Often bonus points are also awarded for
emptying the board, and points are subtracted for leavieg ¢in the board. Bubble Breaker usés — 1)
as reward, and other versions yse— 2)2, wheren is for the number of blocks in a group that is removed.
The functions have the common property that removing omelgroup of size always gives a higher score
than removing two groups gfandq blocks, where + ¢ = randl < p,q <r — 1.

The gameendswhen the board is empty or no more groups can be removed. Ifaredom columns are
added, the game ends when the entire board and especiadiptibe bottom row is filled with singletons.

From now on, we assume that we talk about the version of Same®dere there is vertical gravity
and column shifting, and no random tiles are added once awohas been emptied. So we are now talking
about a fully deterministic finite problem, with full inforation. We use thén — 2)? scoring function.

2.2 Complexity

In [1] it is proven that the problem of determining whethemat an initially filled board can be emptied
is NP-complete. Obviously, finding the path with the maximseore is just as hard, as remarked by [8].
A problem in SameGame is the large search space and a highagyidgsbranching factor: the amount of
groups in a certain state. The puzzles in Figure 1 start withaaching factor of around 40. An average
solution takes about 45 moves, so one can easily infer thatumber of possible states is immensely large.



Another problem is the complexity of the changes that camiocthe board. Removing a group in one
state can cause the total set of groups to drastically ch&@geips can “suddenly” appear, merge, split or
even disappear completely. This makes it hard to predictdmod a certain move is, as doing a move can
change the entire layout of the board, perhaps making amingcat all impossible, or present a move with
an extremely high score in the next state.

2.3 Solvability

It is interesting to see how many puzzles actuallg solvable. For smaller board sizes and a small amount
of colors we can calculate this value by simply generatimgagsible puzzles, and determine brute-force
(for details on solving methods, see Section 4) if they aheatdbe or not. With two colors@ = 2), up to

N = 25 (boards of size around x 5), this is still doable with the brute-force method. For k@gdpoard
sizes, we can no longer exactly determine this value. HowbyesamplingP random puzzles, we can still
get a good estimate of the solvability. Table 1 shows an deeref how many puzzles are actually solvable
for the two-color version of SameGame. Valuestatics are sampled puzzles with = 100,000 samples.
Obviously, the conclusion we can draw is that the bigger thardh, the bigger the chance the puzzle is
actually solvable. This appears to apply for= 3 as well, see [10]. Also, for puzzles of siz& x 15, with

C = 5, there appears to be a quite big chance that the puzzle &llgctolvable — see Section 5.

|
N

W=1 W=2 | W=3 | W=4 | W=5 | W=6 W=7 | W=8 | W=9 | W=10
0.0% | 50.0% | 25.0% | 37.5% | 37.5% | 40.5% | 45.3% | 49.5% | 54.4% | 59.0%
50.0% | 37.5% | 59.3% | 66.3% | 71.5% | 76.6% | 81.9% | 86.4% | 89.3% | 91.9%
25.0% | 59.3% | 77.3% | 81.6% | 85.4% | 89.0% | 91.8% | 94.0% | 95.4% | 96.7%
37.5% | 68.7% | 82.1% | 86.8% | 90.6% | 93.3% | 94.8% | 97.3% | 97.5% | 98.4%
37.5% | 76.6% | 88.0% | 92.1% | 94.8% | 96.7% | 97.6% | 98.4% | 98.9% | 99.3%
40.5% | 82.4% | 92.5% | 95.3% | 97.2% | 98.3% | 98.9% | 99.1% | 99.6% | 99.7%
45.3% | 88.0% | 95.5% | 97.5% | 98.5% | 99.2% | 99.5% | 99.7% | 99.8% | 99.9%
49.5% | 92.0% | 97.0% | 98.6% | 99.2% | 99.6% | 99.8% | 99.9% | 99.9% | 99.9%
54.4% | 94.5% | 98.3% | 99.3% | 99.6% | 99.8% | 99.9% | 99.9% | 99.9% | 99.9%
59.0% | 96.5% | 99.0% | 99.5% | 99.8% | 99.9% | 99.9% | 99.9% | 99.9% | 99.9%
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Table 1: Percentage of puzzles of siZex W with two colors that is solvable.

2.4 Difficulty

Itis hard to grasp the difficulty of a SameGame puzzle. Figushows two puzzles of which the left puzzle
has an equally distributed amount of each color, where tite dne has red dominating, and already some
bigger groups formed. Therefore, the right puzzle seenistedige could get a more realistic estimate of the
difficulty by generatingP = 1,000,000 random samples, and determining how the scores are digttibu
We tested two types of solution methods, random and randdmanbias towards forming a large group
of one color. The latter means that during the solution, tloengs of the color of which there are the most
tiles left, are not touched until not possible otherwisee Tésults are shown in Figure 2. Regardless of the
method used, each puzzle shows a similar graph. The peatatedithe average score one would obtain
when playing the puzzle (either random, or with a bias towanke color). For puzzle 9, for both methods,
the peak clearly lies at a higher score than for puzzle 1; wecoaclude that puzzle 9 is easier.
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Figure 2: The frequency of scores obtained by dathg: 1,000,000 random simulations. First and second
peak: puzzle 1, random, resp. random with bias simulathorg and fourth peak: puzzle 9, idem.



3 Chessboard Variant

In this section we will discuss a subset of SameGame puzhleshessboard and its variations:

Definition 1 A chesshoard variant of a SameGame puzzle, or brieflgteessboard, has two colors = 2;
black and white) and each tile has a color different from thisits neighbor, meaning that both horizontally
and vertically, colors interchange.

The chessboard itself is clearly not solvable, as we canedbpn any moves because there are no
groups to be removed. However, if we invert the bottom rigigitile of the chessboard, the puzzle suddenly
becomes solvable, as shown in Figure 3.

-
-

Figure 3: A puzzle of sizé x 5 with (5, 5) inverted is solvable.

Theorem 1 Any chessboard variant of a SameGame puzzle ofisize with h, w > 4, and position(h, w)
inverted, is solvable.
Proof. We start by removing the only group thz@nbe removed, at positiofh, w). We then keep removing
the group at the bottom rightmost position, which will firgpeatedly beh, w), after which it will be
(h,w — 1), (h,w — 2), etc., until we reach the point where we want to remgvg3). Now we first remove
(h — 1, 1), after which we removéh, 3) and we are done, cf. Figure 3. |
Even more interesting is the fact thatychessboard df x 5 or bigger (in both dimensions) with exactly
one mistake in théower half of the board (in case of an odd board height, the part of theddeglow and
including the middle row), is solvable, see [10]. We will cemtrate on the complementary situation, which
happens to be a consequence of a more general theorem prebeluw:

Theorem 2 Any chessboard variant of a SameGame puzzle ofisizev with h,w > 5, and exactly one
position(i, 7) with1 < i < |h/2] and1 < j < w inverted, is not solvable.

For one-column SameGame, in [1] it is already proven thafpifizzle has a checkerboard (in this case
identical to a chessboard) longer than half the total nurabgroups, then the puzzle is unsolvable. We prove
a similar property for two-dimensional chessboards wipeet to the board size. We therefore generalize
our previous theorem and formulate the main result of thiti@e, along with a crucial lemma:

Theorem 3 A two-color SameGame puzzle of stzg w with h,w > 5 where the strict lower half (every
position(i, ) with ¢« > [h/2]) consists of a chessboard, and the upper half of arbitrdest{perhaps even
with tiles omitted on top of some columns), is not solvable.

Lemma 1 If in two-color SameGame we remove a group which includegipog:, j), but which does not
include (¢ + 1, j), we know that positiofi, j) will either remain empty, or will be filled with a tile of the
same color agi + 1, 7). O
Proof of Theorem 3We will give a sketch of the proof. We will show that it alwalgelds that in every
column, there are strictly more tiles that were part of thesshoard than tiles that were part of the “upper
half”. This property is referred to as tiséze propertylt certainly holds in the beginning, see Figure 4(a).
After a while, the border looks like that from Figure 4(b).rde -’ denotes absence of a tile (also called
“empty”, the whole column above this tile also being emp&y)V’ stands for empty or a white tile, and a
'B’ denotes empty or a black tile. A '?’ will be used when we nahinfer anything yet. In the sequel we
will define three distinguished possible constituents eflibrder, already visible in Figure 4: tabyss the
stairwayand theplateau

We now first note that the removal of a group entirely contdimethe “upper half” of course does
not violate the size property. Next we examine removal efstirom the chessboard part. We distinguish
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Figure 4: (a) The original border between the black/whitessiboard and the greyscale “arbitrary half” for
a9 x 9 puzzle. (b) The chessboard after performing several mdoes omewhat larger board).
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Figure 5: Removing tiles from the top row of the chessboard.

between tiles from its top row, and others. Indeed, thanketoma 1, we know that for the latter ones there
is a tile of the same color (or no tile at all) above; for tilesri the top row this does not necessarily hold.

The first tile that is removed from the chessboard is alwagsked from its top row, as displayed in
Figure 5(a). This does not hurt the size property. After thas/e we know that the tile in the newly created
“hole” is filled with a white tile or remains empty because @mhma 1. We know the same applies for the
two neighbors of the removed group. In Figure 5(b) they adicated by a 'W'’: they were either white
or empty in the first place, or they were black and removed énpitevious step. In that latter case, again
because of Lemma 1, they are now white or empty.

Now for a next possible step, if the two neighbors were bothally white and removed, the situation is
now that of Figure 5(c). It could also have happened that ot®th of the neighbors were empty. The case
where the left neighbor was empty is displayed in Figure.3(d@very column of the part of the chessboard
that we removed, the size property is maintained. The "hatop left of Figure 5(d) is not a problem. If
we remove it from the top, it does not hurt our property. Wd mélver remove it from the right side because
there is an abyss (see below) there, and if we remove it frenteft side it will perform analogously to the
situation in Figure 5(a) and cause no problems either.

After some time the border of the chessboard looks like treeinrFigure 4(b). Notice that because of
Lemma 1, we always exactly know what is on top of a tile at thedleo— except perhaps for some tiles
from the top row of the chessboard in a plateau. The bordesistsof three types of situations:

1. A horizontalplateau We know how this behaves, as we know exactly what is on top afjain with
the “harmless” special situation in the remainder of thertap of the chessboard.

2. Astairway(stair-depth of at most 1). A stairway is either bounded biateau (top left of Figure 6(a),
or by an abyss. Observe that the stairway could have anamplength between A and D, and that it
could also consist of just tile A with an abyss or horizonita¢ lof the chessboard at its end.

Figure 6 shows that after removing the part of the stairwaysisting of tiles A, B, C and D, the
positions A, B, C and D are always filled with either a white tilr nothing because of Lemma 1. So
we know that if we remove a stairway, either a stairway resyadn an abyss or plateau appears.

3. Anabysg(stair-depth of 2 or more). This type of situation has a ’-Figure 6(c): if this occurs, then
the bottom of the abyss is always empty. To make the abyssdemapy the tile below the bottom of
the abyss can be removed, which will always have to happen tine side.
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Figure 6: Characteristic positions of the chessboardtégla’, “stairway” and “abyss” (-’ at the bottom).

Notice that at all times the boundary of the chessboard csilydse detected. We have shown that the
size property is always maintained, hence tiles from théoborow can never be removed. This therefore
proves Theorem 3, and also Theorem 2. |

We note that we can always only remove the topmost tile of amnlof the chessboard part of the
puzzle. Furthermore, we can never create an abyss of depthnd width 1 in the chessboard: an abyss of
depthk has at the bottom also width

4  Solving Methods

A Brute Forceapproach is not an option for SameGame, concerning the reagelsspace siz&est-first
search methodsuch asgreedy searctwill do no good in SameGame either. Methods IReanch and
Boundand(ID)A* as described in [7] require an admissible evaluation faenctin order for the search to
be complete, they need a good over-estimator (upper boonthd quality of a certain state.

A possible upper bound for the quality of a SameGame posimrd be the current score plus the
score gained pretending that all the remaining colors anmetted. However, using this bound is not as
efficient as one may think. In a child node of some current nteeupper bound will be much lower than
that of all the nodes at the level of its parent, unless weipusly removed a really big group, resulting in
something which will often closely resemble the undesedbieadth First Search (BFS). The upper bound
can however still be used to prune our search tree. Othettliaamve can include thi 000 bonus points in
our evaluation function, and omit them if there is a color dfigh there is only one tile left, because these
situations will, similar to the deadlocks in Sokoban frorh f8ver allow us to empty the board. Deriving a
better strict upper bound seems hard.

Beam searclkeeps a “beam” of candidates, all at the same level of thekdgre. In each iteration the
bestB (whereB is the “beam size”) children are kept and form the new beany. thne we reach a leaf,
we check if it is better than the current best solution. Theaathge of this method is that the complexity is
at mostB * d, whered is the maximum depth reached. Beam Search does not perfammpaete search, so
we could also settle for a better estimator than an ovemestir. Though not perfect, we could for example
take our current score so far, perhaps incremented by the sbtained when removing all current groups.

The Banker’s Algorithmassigns a certain budget to each child of the root node witlischwinat node
is “allowed” to explore the part of the tree below it. When tleaish reaches a depth where its budget has
been spent, a greedy simulation can be performed. A varfahedBanker's algorithm is used by [2] in his
SameGame algorithm called Depth-Budgeted Search (DBS).

Monte Carlo (MC)tree search algorithms are a form of best-first search akgosi that do not evaluate
the quality of a node based on some evaluation functione&astMonte Carlo bases the quality of a node on
a number of random games, sBRythat are played for each of the nodes in the list of cand&ddtiee “best”
node is then chosen as successor. The evaluation of whichiadige best, depends on the type of problem
and the behavior of the search space. In [8] a Monte Carlaritigo for SameGame called SP-MCTS is
implemented, which is based on Upper bound Confidence TtHEF)([4].

In SameGame we could maximize groups by not touching a certdér, e.g., the dominant one, hoping
to form a big group of the color that we are not touching. Tlgraach has several disadvantages, such as
the fact that a lot of useless moves are performed beforertadig group is removed, and that this method
will not consider forming several other larger groups.

We propose usinilonte Carlo with Roulette-Wheel Selection (MC-RWWSnethod that not only tries
to maximize one group of a certain color, but also tries tadigger groups of another color. The Monte



Carlo part of our algorithm is as follows: to evaluate whitlild we choose as successor of the current node,
we pick the node with the highest averagefbfe.g.,R = 1, 000) simulations. The strength lies in the way
in which we perform these random simulations.

Let us assume we have a set of colfes, o, . .., cc } and a functionf(c) that returns the amount of
tiles that are left of coloe. Let « define how big our focus on larger groups is; largealues favor removal
of groups of non dominating colors. During a simulation in NR®/S, the chanc@(c;) of selecting a group
of color¢; (1 < i < C)to be removed next is equal to:

Pl - ! (1 U =0) )
Co1\ Y (fle) —0)e

Inspired by the cooling schemes used in Simulated Anneflinghe results turned out best when using
a linear scheme, where depends on the amount of tiles left:= 1 + (5/N) chzl ¢, (N is the total
amount of initial tiles). Here3 defines how big our focus on bigger groups actually is. A val¢ for 3
turned out to work fine for puzzles of si2é = 15 x 15 = 225. Threshold is used to prevent problems
with large values, and could for example be set to the sizbeo§mallest group divided

Because forming the largest group is still very importabfirat the most prominent color will barely be
played. As the puzzle evolves, the focus on forming groupsiugr colors becomes larger as well, resulting
in multiple bigger groups, meanwhile still building onegargroup. An example of a solution with multiple
big(ger) groups is the one of puzzle 9 in Figure 1.

5 Results

We have tested the different methods on the standardizeddesavailable at [5]. The set consists of 20
15 x 15 puzzles with 5 colors. Games 1-10 are randomly distributéd15 have 45 fields per color and
games 16—-20 have one dominating color. The maximum comut#ie used for the algorithms is 2 hours
on a 3,2 GHz Quad-Core machine with 6 GB memory (though memsage is extremely limited).

[ Puzzle [[ Random| MC-Biggest [ MC-Avg [ MC-Avg-Bias | DBS | SP-MCTS| MC-RWS |

1 443 723 1771 2,145 2,061 | 2,557 2,633
2 831 1,369 2,585 3,545 3513 | 3,749 3,755
3 641 1,497 2,481 2,681 3,151 | 3,085 3,167
4 709 1,521 3,247 3,749 3653 | 3,641 3,795
5 533 1,601 2,641 3,687 3,003 | 3,653 3,943
6 903 2,393 3,013 3,917 4101 | 3971 4,179
7 487 947 2,271 2,731 2,507 | 2,797 2,971
8 1,347 2,291 3,433 3,847 3819 | 3,715 3,935
9 1,385 2,731 4,189 4,421 4,649 | 4,603 4,707
10 459 1,335 2,585 3,097 3199 | 3,213 3,239
11 491 1,219 2,167 2,667 2,911 | 3,047 3,327
12 689 1,607 2,535 2,977 2979 | 3,131 3,281
13 613 1,165 2,283 2,917 3,209 | 3,097 3,379
14 575 1,209 2,401 2,597 2,685 | 2,859 2,697
15 839 1,567 2,831 3,199 3259 | 3,183 3,399
16 2,267 3,509 4,533 4,613 4,765 | 4,879 4,935
17 817 2,837 3,355 4,643 4,447 | 4,609 4,737
18 1,167 3,239 4,497 4,855 5099 | 4,853 5,133
19 1,471 2,041 3,323 4,565 4,865 | 4503 4,903
20 943 2,855 2,811 4,469 4,851 | 4,853 4,649
[ Total || 17,610 | 37,656 | 58,952 | 71,322 | 72,816] 73,998 | 176,764 |

Table 2: Comparing scores on the benchmark set at [5].

The table above shows how the different search methods scotiee test set, where the first column
corresponds to the number of the puzzle. The second colurtire ibest score acquired by playing one
million random games. The total score acquired is dmly610 in total. The third column, MC-Biggest, is a
Monte Carlo method that evaluates the children of the ctirrede in the search tree by sendiRg= 1,000
random probes down to the leaf nodes, and then picks the wftitdthe highest score to again perform
the same process, until a leaf node is reached. Insteadinfjttie child with the best random probe as a
successor, we can also choose to take the node of which the ,000 random probes produce the highest
averagescore, displayed in column MC-Avg. This improvement getsaigghly anothe21, 000 points,
partly thanks to thé&, 000 bonus points awarded for emptying the board on all 20 puzzles



The methods discussed so far use no domain-knowledge velvatsiVe know that in SameGame, larger
groups give considerably higher scores. If we incorponai® htias into our MC-Avg algorithm, the total
score again increases by aba@t 000 points (column MC-Avg-Bias) to a score comparable to SP-BCT
the algorithm described in [8]. The limitation of the latter techniques is that the focus is on one group,
and that color is not played unless absolutely impossitteratise. This does not directly maximize the
score of the groups of the four other colors that are remol@tyahe way. To more or less enforce this,
we have presented MC-RWS in Section 4. This method outpesf@mMCTS on 18 out of 20 puzzles by
a total of2, 766 points, obtaining a total score @6, 764. The actual solutions can be found in [10].

The column titled “DBS” presents the score of the variatibthe Banker’s Algorithm implemented by
[2] which was the leading algorithm before SP-MCTS. MC-RWS batperformed this algorithm on 18 out
of 20 puzzles. An anonymous competitor known as “sputiaiti®ias achieved a total score&i, 604 on the
test set by means of an algorithm; however, not much is kndvawitathis algorithm other than that it uses
some kind of Beam Search, employs many GBs of memory, andiéxpl multi-processor architecture.

6 Conclusions and Future Work

We have outlined some quantitative and qualitative prageedf SameGame puzzles. We presented a quan-
titative approach to classifying the solvability and difliiy of a SameGame puzzle and examined the chess-
board and its variants, for which we can exactly determinettr or not they are solvable. We also devel-
oped a promising method called Monte Carlo with Roulette WBetection (MC-RWS) that not only tries
to maximize one group of a certain dominant color, but al&s tto form large groups of the other colors.
Future work could include attempting to apply MC-RWS to otkenilar games, as well as finding
additional features characterizing always (un)solvappes$ of puzzles such as the chessboard. Another
interesting question could be to approximate the amounbhftisns that a certain puzzle has. A further
examination of the initial moves might also be of interegtaliy, the question of whether or not for example
two-color SameGame is NP-complete still remains an opestique
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