
Solving SameGame and its Chessboard Variant

Frank W. Takes Walter A. Kosters

Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands

Abstract

We introduce a new solving method for SameGame puzzles based on Monte-Carlo simulation, that im-
proves the previous best known method. We also cover the chessboard variant, a subclass of the SameGame
puzzle for which we can exactly define which puzzles are solvable and which ones are not. Next to this
we present a quantitative approach to classify the difficulty of a given puzzle, as well as an indication of
whether or not a given puzzle is solvable.

1 Introduction

This paper is about the puzzle (or game)SameGame, also known as Clickomania or Jawbreaker. For com-
puter scientists in the field of Artificial Intelligence [7] and Combinatorial Game Theory [3], games that
have associated NP-complete decision problems [6], like SameGame, remain an interesting field of study.
The search space is way too large and too dynamic for traditional search methods, making the search for an
optimal solution an extremely hard task. Compared to games such as Tetris and even Sokoban, SameGame
has not been studied much, and there are still many open questions. We will attempt to shed some light on
this subject, answer several questions, and present some interesting facts about SameGame. We also give an
outline of possible search methods that could be applied, aswell as a new algorithm for solving SameGame
puzzles that improves the algorithm presented in [8].

The paper is organized as follows. In Section 2 we explain SameGame, and describe some properties.
We pay special attention to “chessboard” like variants in Section 3. In Section 4 we describe our algorithm,
and we mention results in Section 5. Section 6 concludes.

2 SameGame

SameGame is a single player game (or puzzle) that has seen a big increase in popularity over the past few
years. It has actually been around since 1985, when it was invented in Japan by Kuniaki Moribe. It was first
released in the western world under the name Chain Shot, but has been redistributed (often with slightly
different rules) under, amongst others, the names Clickomania, HMaki, Samegame, Jawbreaker, Bubblets,
and Bubble Breaker. We will refer to it asSameGame.

2.1 Rules

The game is played on a two-dimensionalboard (or grid) withN tiles (or fields, squares, stones or blocks).
The tiles of a puzzle each have one out ofC differentcolors. Figure 1 shows two puzzles withN = 225 (the
board is of size15 × 15) andC = 5 (red, green, blue, purple and yellow). If we talk about a certain tile on
some board with heighth and widthw, we denote its position by(i, j), with 1 ≤ i ≤ h and1 ≤ j ≤ w. To
clarify, tile (1, 1) is situated in the top left corner. Initially, the board is usually filled with randomly colored
tiles. Two tiles are directlyadjacentif they are horizontal or vertical direct “neighbors”. A tile (i, j) not on
the edge of the board has neighbors(i − 1, j), (i + 1, j), (i, j − 1) and(i, j + 1), while a tile on the edge
has only three of these neighbors, and a corner tile only two.A group is defined as a set oftwo or more
tiles of the same color, where it is possible to go from any of its tiles to any other by repeatedly visiting
adjacent tiles; or briefly: a group is connected. A tile at theboard that does not belong to any group is called

Figure 1: Two puzzles, no. 1 (left) and no. 9 (right) from the benchmark set at [5]. Solution for puzzle 9:
12,6 - 5,11 - 12,5 - 14,6 - 12,11 - 8,12 - 10,2 - 6,1 - 12,14 - 8,1 - 6,12 - 9,14 - 9,6* - 7,4 - 5,13 - 7,3 - 11,7 -
13,14* - 14,2 - 14,3 - 14,14 - 12,5 - 10,11 - 9,12 - 8,3 - 15,7* - 13,13 - 15,8* - 6,8 - 15,10 - 14,13 - 13,10 -
12,2* - 12,9* - 11,1 - 13,4 - 15,1** - 15,3 - 15,1 - 15,7 - 15,5 - 15,2* - 13,1 - 14,2 - 15,2 - 14,1 - 15,1 (the
bottom leftmost tile of a group is chosen, a * denotes a big group, ** denotes the biggest group)

a singleton. A moveconsists of deleting a group, after which several things canhappen, depending on the
type of puzzle:

• Vertical gravity and column shifting: tiles that are above the deleted tiles fall down. As soon as an
entire column is empty, the columns to the right of the empty column(s) shift to the left.

• Vertical and horizontal gravity: tiles that are above the deleted tiles fall down. After that, tiles that are
to the right of empty positions caused by the deletion or the previous falling down of tiles are shifted
to the left (they are drawn towards the left side of the board).

When several groups have been removed, and either one of the two options above has done its work, one
or more empty columns can arise on the rightmost side. Now twothings can happen:

• The empty columnsremain empty.

• The rightmost column is repeatedly filled with a fresh columnof new random tiles, that then again
behaves in either of the two ways described above.

Clearly, the first version of the last two above allows us to doa full-knowledge deterministic examination,
while the second version can theoretically go on infinitely.

The game can have severalgoals. One obvious goal could be to empty the board, leaving no tiles. We
call a puzzlesolvableif the board can be emptied by doing a series of moves. Anothergoal is to get a score
as high as possible. In most scoring schemes the score depends on the size of the removed groups, where
it usually grows quadratically with the size of the removed group. Often bonus points are also awarded for
emptying the board, and points are subtracted for leaving tiles on the board. Bubble Breaker usesn(n − 1)
as reward, and other versions use(n − 2)2, wheren is for the number of blocks in a group that is removed.
The functions have the common property that removing one large group of sizer always gives a higher score
than removing two groups ofp andq blocks, wherep + q = r and1 ≤ p, q ≤ r − 1.

The gameendswhen the board is empty or no more groups can be removed. If newrandom columns are
added, the game ends when the entire board and especially theentire bottom row is filled with singletons.

From now on, we assume that we talk about the version of SameGame where there is vertical gravity
and column shifting, and no random tiles are added once a column has been emptied. So we are now talking
about a fully deterministic finite problem, with full information. We use the(n − 2)2 scoring function.

2.2 Complexity

In [1] it is proven that the problem of determining whether ornot an initially filled board can be emptied
is NP-complete. Obviously, finding the path with the maximumscore is just as hard, as remarked by [8].
A problem in SameGame is the large search space and a high and varying branching factor: the amount of
groups in a certain state. The puzzles in Figure 1 start with abranching factor of around 40. An average
solution takes about 45 moves, so one can easily infer that the number of possible states is immensely large.

Another problem is the complexity of the changes that can occur to the board. Removing a group in one
state can cause the total set of groups to drastically change. Groups can “suddenly” appear, merge, split or
even disappear completely. This makes it hard to predict howgood a certain move is, as doing a move can
change the entire layout of the board, perhaps making any scoring at all impossible, or present a move with
an extremely high score in the next state.

2.3 Solvability

It is interesting to see how many puzzles actuallyare solvable. For smaller board sizes and a small amount
of colors we can calculate this value by simply generating all possible puzzles, and determine brute-force
(for details on solving methods, see Section 4) if they are solvable or not. With two colors (C = 2), up to
N = 25 (boards of size around5 × 5), this is still doable with the brute-force method. For bigger board
sizes, we can no longer exactly determine this value. However, by samplingP random puzzles, we can still
get a good estimate of the solvability. Table 1 shows an overview of how many puzzles are actually solvable
for the two-color version of SameGame. Values initalics are sampled puzzles withP = 100,000 samples.
Obviously, the conclusion we can draw is that the bigger the board, the bigger the chance the puzzle is
actually solvable. This appears to apply forC = 3 as well, see [10]. Also, for puzzles of size15 × 15, with
C = 5, there appears to be a quite big chance that the puzzle is actually solvable — see Section 5.

C=2 W=1 W=2 W=3 W=4 W=5 W=6 W=7 W=8 W=9 W=10
H=1 0.0% 50.0% 25.0% 37.5% 37.5% 40.5% 45.3% 49.5% 54.4% 59.0%
H=2 50.0% 37.5% 59.3% 66.3% 71.5% 76.6% 81.9% 86.4% 89.3% 91.9%
H=3 25.0% 59.3% 77.3% 81.6% 85.4% 89.0% 91.8% 94.0% 95.4% 96.7%
H=4 37.5% 68.7% 82.1% 86.8% 90.6% 93.3% 94.8% 97.3% 97.5% 98.4%
H=5 37.5% 76.6% 88.0% 92.1% 94.8% 96.7% 97.6% 98.4% 98.9% 99.3%
H=6 40.5% 82.4% 92.5% 95.3% 97.2% 98.3% 98.9% 99.1% 99.6% 99.7%
H=7 45.3% 88.0% 95.5% 97.5% 98.5% 99.2% 99.5% 99.7% 99.8% 99.9%
H=8 49.5% 92.0% 97.0% 98.6% 99.2% 99.6% 99.8% 99.9% 99.9% 99.9%
H=9 54.4% 94.5% 98.3% 99.3% 99.6% 99.8% 99.9% 99.9% 99.9% 99.9%
H=10 59.0% 96.5% 99.0% 99.5% 99.8% 99.9% 99.9% 99.9% 99.9% 99.9%

Table 1: Percentage of puzzles of sizeH × W with two colors that is solvable.

2.4 Difficulty

It is hard to grasp the difficulty of a SameGame puzzle. Figure1 shows two puzzles of which the left puzzle
has an equally distributed amount of each color, where the right one has red dominating, and already some
bigger groups formed. Therefore, the right puzzle seems easier. We could get a more realistic estimate of the
difficulty by generatingP = 1,000,000 random samples, and determining how the scores are distributed.
We tested two types of solution methods, random and random with a bias towards forming a large group
of one color. The latter means that during the solution, the groups of the color of which there are the most
tiles left, are not touched until not possible otherwise. The results are shown in Figure 2. Regardless of the
method used, each puzzle shows a similar graph. The peak indicates the average score one would obtain
when playing the puzzle (either random, or with a bias towards one color). For puzzle 9, for both methods,
the peak clearly lies at a higher score than for puzzle 1; we can conclude that puzzle 9 is easier.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 500 1000 1500 2000 2500 3000

fr
eq

ue
nc

y

score

Figure 2: The frequency of scores obtained by doingP = 1,000,000 random simulations. First and second
peak: puzzle 1, random, resp. random with bias simulation; third and fourth peak: puzzle 9, idem.

3 Chessboard Variant

In this section we will discuss a subset of SameGame puzzles,the chessboard and its variations:

Definition 1 A chessboard variant of a SameGame puzzle, or briefly achessboard, has two colors (C = 2;
black and white) and each tile has a color different from thatof its neighbor, meaning that both horizontally
and vertically, colors interchange.

The chessboard itself is clearly not solvable, as we cannot perform any moves because there are no
groups to be removed. However, if we invert the bottom rightmost tile of the chessboard, the puzzle suddenly
becomes solvable, as shown in Figure 3.

Figure 3: A puzzle of size5 × 5 with (5, 5) inverted is solvable.

Theorem 1 Any chessboard variant of a SameGame puzzle of sizeh×w with h,w ≥ 4, and position(h,w)
inverted, is solvable.
Proof.We start by removing the only group thatcanbe removed, at position(h,w). We then keep removing
the group at the bottom rightmost position, which will first repeatedly be(h,w), after which it will be
(h,w − 1), (h,w − 2), etc., until we reach the point where we want to remove(h, 3). Now we first remove
(h − 1, 1), after which we remove(h, 3) and we are done, cf. Figure 3. 2

Even more interesting is the fact thatanychessboard of5×5 or bigger (in both dimensions) with exactly
one mistake in thelower half of the board (in case of an odd board height, the part of the board below and
including the middle row), is solvable, see [10]. We will concentrate on the complementary situation, which
happens to be a consequence of a more general theorem presented below:

Theorem 2 Any chessboard variant of a SameGame puzzle of sizeh × w with h,w ≥ 5, and exactly one
position(i, j) with 1 ≤ i ≤ ⌊h/2⌋ and1 ≤ j ≤ w inverted, is not solvable.

For one-column SameGame, in [1] it is already proven that if apuzzle has a checkerboard (in this case
identical to a chessboard) longer than half the total numberof groups, then the puzzle is unsolvable. We prove
a similar property for two-dimensional chessboards with respect to the board size. We therefore generalize
our previous theorem and formulate the main result of this section, along with a crucial lemma:

Theorem 3 A two-color SameGame puzzle of sizeh × w with h,w ≥ 5 where the strict lower half (every
position(i, j) with i ≥ ⌈h/2⌉) consists of a chessboard, and the upper half of arbitrary tiles (perhaps even
with tiles omitted on top of some columns), is not solvable.

Lemma 1 If in two-color SameGame we remove a group which includes position (i, j), but which does not
include(i + 1, j), we know that position(i, j) will either remain empty, or will be filled with a tile of the
same color as(i + 1, j). 2

Proof of Theorem 3. We will give a sketch of the proof. We will show that it alwaysholds that in every
column, there are strictly more tiles that were part of the chessboard than tiles that were part of the “upper
half”. This property is referred to as thesize property. It certainly holds in the beginning, see Figure 4(a).
After a while, the border looks like that from Figure 4(b). Here a ’-’ denotes absence of a tile (also called
“empty”, the whole column above this tile also being empty),a ’W’ stands for empty or a white tile, and a
’B’ denotes empty or a black tile. A ’?’ will be used when we cannot infer anything yet. In the sequel we
will define three distinguished possible constituents of the border, already visible in Figure 4: theabyss, the
stairwayand theplateau.

We now first note that the removal of a group entirely contained in the “upper half” of course does
not violate the size property. Next we examine removal of tiles from the chessboard part. We distinguish

(a) (b)

Figure 4: (a) The original border between the black/white chessboard and the greyscale “arbitrary half” for
a9 × 9 puzzle. (b) The chessboard after performing several moves (for a somewhat larger board).

Figure 5: Removing tiles from the top row of the chessboard.

between tiles from its top row, and others. Indeed, thanks toLemma 1, we know that for the latter ones there
is a tile of the same color (or no tile at all) above; for tiles from the top row this does not necessarily hold.

The first tile that is removed from the chessboard is always removed from its top row, as displayed in
Figure 5(a). This does not hurt the size property. After thismove we know that the tile in the newly created
“hole” is filled with a white tile or remains empty because of Lemma 1. We know the same applies for the
two neighbors of the removed group. In Figure 5(b) they are indicated by a ’W’: they were either white
or empty in the first place, or they were black and removed in the previous step. In that latter case, again
because of Lemma 1, they are now white or empty.

Now for a next possible step, if the two neighbors were both actually white and removed, the situation is
now that of Figure 5(c). It could also have happened that one or both of the neighbors were empty. The case
where the left neighbor was empty is displayed in Figure 5(d). In every column of the part of the chessboard
that we removed, the size property is maintained. The ’?’ at the top left of Figure 5(d) is not a problem. If
we remove it from the top, it does not hurt our property. We will never remove it from the right side because
there is an abyss (see below) there, and if we remove it from the left side it will perform analogously to the
situation in Figure 5(a) and cause no problems either.

After some time the border of the chessboard looks like the one in Figure 4(b). Notice that because of
Lemma 1, we always exactly know what is on top of a tile at the border — except perhaps for some tiles
from the top row of the chessboard in a plateau. The border consists of three types of situations:

1. A horizontalplateau. We know how this behaves, as we know exactly what is on top of it, again with
the “harmless” special situation in the remainder of the toprow of the chessboard.

2. A stairway(stair-depth of at most 1). A stairway is either bounded by a plateau (top left of Figure 6(a),
or by an abyss. Observe that the stairway could have an arbitrary length between A and D, and that it
could also consist of just tile A with an abyss or horizontal line of the chessboard at its end.
Figure 6 shows that after removing the part of the stairway consisting of tiles A, B, C and D, the
positions A, B, C and D are always filled with either a white tile or nothing because of Lemma 1. So
we know that if we remove a stairway, either a stairway remains, or an abyss or plateau appears.

3. An abyss(stair-depth of 2 or more). This type of situation has a ’-’ inFigure 6(c): if this occurs, then
the bottom of the abyss is always empty. To make the abyss deeper, only the tile below the bottom of
the abyss can be removed, which will always have to happen from the side.

Figure 6: Characteristic positions of the chessboard: “plateau”, “stairway” and “abyss” (’-’ at the bottom).

Notice that at all times the boundary of the chessboard can easily be detected. We have shown that the
size property is always maintained, hence tiles from the bottom row can never be removed. This therefore
proves Theorem 3, and also Theorem 2. 2

We note that we can always only remove the topmost tile of a column of the chessboard part of the
puzzle. Furthermore, we can never create an abyss of depth≥ 2 and width 1 in the chessboard: an abyss of
depthk has at the bottom also widthk.

4 Solving Methods

A Brute Forceapproach is not an option for SameGame, concerning the huge search space size.Best-first
search methodssuch asgreedy searchwill do no good in SameGame either. Methods likeBranch and
Boundand(ID)A* as described in [7] require an admissible evaluation function. In order for the search to
be complete, they need a good over-estimator (upper bound) for the quality of a certain state.

A possible upper bound for the quality of a SameGame positioncould be the current score plus the
score gained pretending that all the remaining colors are connected. However, using this bound is not as
efficient as one may think. In a child node of some current node, the upper bound will be much lower than
that of all the nodes at the level of its parent, unless we previously removed a really big group, resulting in
something which will often closely resemble the undesirable Breadth First Search (BFS). The upper bound
can however still be used to prune our search tree. Other thanthat we can include the1, 000 bonus points in
our evaluation function, and omit them if there is a color of which there is only one tile left, because these
situations will, similar to the deadlocks in Sokoban from [9], never allow us to empty the board. Deriving a
better strict upper bound seems hard.

Beam searchkeeps a “beam” of candidates, all at the same level of the search tree. In each iteration the
bestB (whereB is the “beam size”) children are kept and form the new beam. Any time we reach a leaf,
we check if it is better than the current best solution. The advantage of this method is that the complexity is
at mostB ∗ d, whered is the maximum depth reached. Beam Search does not perform a complete search, so
we could also settle for a better estimator than an over-estimator. Though not perfect, we could for example
take our current score so far, perhaps incremented by the score obtained when removing all current groups.

The Banker’s Algorithmassigns a certain budget to each child of the root node with which that node
is “allowed” to explore the part of the tree below it. When the search reaches a depth where its budget has
been spent, a greedy simulation can be performed. A variant of the Banker’s algorithm is used by [2] in his
SameGame algorithm called Depth-Budgeted Search (DBS).

Monte Carlo (MC)tree search algorithms are a form of best-first search algorithms that do not evaluate
the quality of a node based on some evaluation function. Instead, Monte Carlo bases the quality of a node on
a number of random games, sayR, that are played for each of the nodes in the list of candidates. The “best”
node is then chosen as successor. The evaluation of which node is the best, depends on the type of problem
and the behavior of the search space. In [8] a Monte Carlo algorithm for SameGame called SP-MCTS is
implemented, which is based on Upper bound Confidence Trees (UCT) [4].

In SameGame we could maximize groups by not touching a certain color, e.g., the dominant one, hoping
to form a big group of the color that we are not touching. This approach has several disadvantages, such as
the fact that a lot of useless moves are performed before the one big group is removed, and that this method
will not consider forming several other larger groups.

We propose usingMonte Carlo with Roulette-Wheel Selection (MC-RWS), a method that not only tries
to maximize one group of a certain color, but also tries to create bigger groups of another color. The Monte

Carlo part of our algorithm is as follows: to evaluate which child we choose as successor of the current node,
we pick the node with the highest average ofR (e.g.,R = 1, 000) simulations. The strength lies in the way
in which we perform these random simulations.

Let us assume we have a set of colors{c1, c2, . . . , cC} and a functionf(c) that returns the amount of
tiles that are left of colorc. Let α define how big our focus on larger groups is; largeα values favor removal
of groups of non dominating colors. During a simulation in MC-RWS, the chanceP (ci) of selecting a group
of color ci (1 ≤ i ≤ C) to be removed next is equal to:

P (ci) =
1

C − 1

(

1 −
(f(ci) − θ)α

∑C

k=1
(f(ck) − θ)α

)

Inspired by the cooling schemes used in Simulated Annealing[7], the results turned out best when using
a linear scheme, whereα depends on the amount of tiles left:α = 1 + (β/N) ∗

∑C

k=1
ck (N is the total

amount of initial tiles). Hereβ defines how big our focus on bigger groups actually is. A valueof 4 for β
turned out to work fine for puzzles of sizeN = 15 × 15 = 225. Thresholdθ is used to prevent problems
with large values, and could for example be set to the size of the smallest group divided by2.

Because forming the largest group is still very important, at first the most prominent color will barely be
played. As the puzzle evolves, the focus on forming groups ofother colors becomes larger as well, resulting
in multiple bigger groups, meanwhile still building one large group. An example of a solution with multiple
big(ger) groups is the one of puzzle 9 in Figure 1.

5 Results

We have tested the different methods on the standardized test set available at [5]. The set consists of 20
15 × 15 puzzles with 5 colors. Games 1–10 are randomly distributed,11–15 have 45 fields per color and
games 16–20 have one dominating color. The maximum computation time used for the algorithms is 2 hours
on a 3,2 GHz Quad-Core machine with 6 GB memory (though memoryusage is extremely limited).

Puzzle Random MC-Biggest MC-Avg MC-Avg-Bias DBS SP-MCTS MC-RWS

1 443 723 1,771 2,145 2,061 2,557 2,633
2 831 1,369 2,585 3,545 3,513 3,749 3,755
3 641 1,497 2,481 2,681 3,151 3,085 3,167
4 709 1,521 3,247 3,749 3,653 3,641 3,795
5 533 1,601 2,641 3,687 3,093 3,653 3,943
6 903 2,393 3,013 3,917 4,101 3,971 4,179
7 487 947 2,271 2,731 2,507 2,797 2,971
8 1,347 2,291 3,433 3,847 3,819 3,715 3,935
9 1,385 2,731 4,189 4,421 4,649 4,603 4,707
10 459 1,335 2,585 3,097 3,199 3,213 3,239
11 491 1,219 2,167 2,667 2,911 3,047 3,327
12 689 1,607 2,535 2,977 2,979 3,131 3,281
13 613 1,165 2,283 2,917 3,209 3,097 3,379
14 575 1,209 2,401 2,597 2,685 2,859 2,697
15 839 1,567 2,831 3,199 3,259 3,183 3,399
16 2,267 3,509 4,533 4,613 4,765 4,879 4,935
17 817 2,837 3,355 4,643 4,447 4,609 4,737
18 1,167 3,239 4,497 4,855 5,099 4,853 5,133
19 1,471 2,041 3,323 4,565 4,865 4,503 4,903
20 943 2,855 2,811 4,469 4,851 4,853 4,649

Total 17,610 37,656 58,952 71,322 72,816 73,998 76,764

Table 2: Comparing scores on the benchmark set at [5].

The table above shows how the different search methods scoreon the test set, where the first column
corresponds to the number of the puzzle. The second column isthe best score acquired by playing one
million random games. The total score acquired is only17, 610 in total. The third column, MC-Biggest, is a
Monte Carlo method that evaluates the children of the current node in the search tree by sendingR = 1,000
random probes down to the leaf nodes, and then picks the childwith the highest score to again perform
the same process, until a leaf node is reached. Instead of taking the child with the best random probe as a
successor, we can also choose to take the node of which theR = 1,000 random probes produce the highest
averagescore, displayed in column MC-Avg. This improvement gets usroughly another21, 000 points,
partly thanks to the1, 000 bonus points awarded for emptying the board on all 20 puzzles.

The methods discussed so far use no domain-knowledge whatsoever. We know that in SameGame, larger
groups give considerably higher scores. If we incorporate this bias into our MC-Avg algorithm, the total
score again increases by about12, 000 points (column MC-Avg-Bias) to a score comparable to SP-MCTS,
the algorithm described in [8]. The limitation of the lattertwo techniques is that the focus is on one group,
and that color is not played unless absolutely impossible otherwise. This does not directly maximize the
score of the groups of the four other colors that are removed along the way. To more or less enforce this,
we have presented MC-RWS in Section 4. This method outperforms SP-MCTS on 18 out of 20 puzzles by
a total of2, 766 points, obtaining a total score of76, 764. The actual solutions can be found in [10].

The column titled “DBS” presents the score of the variation of the Banker’s Algorithm implemented by
[2] which was the leading algorithm before SP-MCTS. MC-RWS has outperformed this algorithm on 18 out
of 20 puzzles. An anonymous competitor known as “spuriousai” has achieved a total score of82, 604 on the
test set by means of an algorithm; however, not much is known about this algorithm other than that it uses
some kind of Beam Search, employs many GBs of memory, and exploits a multi-processor architecture.

6 Conclusions and Future Work

We have outlined some quantitative and qualitative properties of SameGame puzzles. We presented a quan-
titative approach to classifying the solvability and difficulty of a SameGame puzzle and examined the chess-
board and its variants, for which we can exactly determine whether or not they are solvable. We also devel-
oped a promising method called Monte Carlo with Roulette Wheel Selection (MC-RWS) that not only tries
to maximize one group of a certain dominant color, but also tries to form large groups of the other colors.

Future work could include attempting to apply MC-RWS to othersimilar games, as well as finding
additional features characterizing always (un)solvable types of puzzles such as the chessboard. Another
interesting question could be to approximate the amount of solutions that a certain puzzle has. A further
examination of the initial moves might also be of interest. Finally, the question of whether or not for example
two-color SameGame is NP-complete still remains an open question.

References

[1] T. Biedl, E. Demaine, M. Demaine, R. Fleischer, L. Jacobsen and J. Ian Munro. The complexity of
Clickomania. InMore Games of No Chance, pages 389–404, Cambridge University Press, 2002.

[2] D. Billings. GAMES group, University of Alberta. E-mailconversation, October 2008.

[3] E.D. Demaine and R.A. Hearn. Playing games with algorithms: Algorithmic combinatorial game
theory. InGames of No Chance 3, pages 3–56, Mathematical Sciences Research Institute Publications,
volume 56, Cambridge University Press, 2009.

[4] L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo planning. InProceedings of the 17th Euro-
pean Conference on Machine Learning, pages 282-293, LNCS/LNAI 4212, Springer, 2006.

[5] S. Misch and A. Schulze. Website js-games.de [accessed June 11, 2009],
http://www.js-games.de/eng/games/samegame/lx/play .

[6] G. Kendall, A. Parkes and K. Spoerer. A survey of NP-complete puzzles.International Computer
Games Association Journal31(1): 13–34, 2008.

[7] S.J. Russell and P. Norvig.Artificial Intelligence, A Modern Approach. Second edition, Pearson Edu-
cation, 2003.

[8] M.P.D. Schadd, M.H.M. Winands, H.J. van den Herik and H. Aldewereld. Addressing NP-complete
puzzles with Monte-Carlo methods. InProceedings of the AISB 2008 Symposium on Logic and the
Simulation of Interaction and Reasoning, Volume 9, pages 55–61, The Society for the Study of Arti-
ficial Intelligence and Simulation of Behaviour, 2008.

[9] F.W. Takes. Sokoban: Reversed solving. InProceedings of the 2nd NSVKI Student Conference, pages
31–36, Utrecht, The Netherlands, 2008.

[10] F.W. Takes.Solving SameGame and its Chessboard Variant. Research thesis, Leiden University, The
Netherlands, 2009,http://www.liacs.nl/˜ftakes/samegame/ .

