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Abstract

In this paper we describe the structural characteristics of prominent actors that reside within an online
social network. We will show how structural properties can be used in a classification algorithm based on
biased random walks for distinguishing between prominent and regular nodes in a social network. The
effectiveness of our approach is demonstrated on a large social network dataset with 8 million users and
almost 1 billion links, in which the prominent users are labeled. We show that we can efficiently identify
a large portion of the prominent individuals in the network using our algorithm, outperforming standard
web-inspired methods such as HITS and PageRank.

1 Introduction
Over the past decade online social networks (OSNs) such as Facebook, Twitter, Hyves and LinkedIn have
become extremely popular, with numbers as big as 500 million users and an estimated 50 billion friendship
links (Facebook1, 2010). The main concept of these social networks is simple: a user creates a profile with
some personal attributes and then links this profile to other users, the so-called friends, creating a very large
graph of befriended users: the friendship graph. In order to better understand the rich amount of information
that is contained in social networks, the friendship graph is extensively being measured, modeled and mined.

A quite natural query with respect to a social network, is to ask who the most prominent, or the most
important actors in the network are. Being able to identify such prominent actors has various useful ap-
plications. For example, companies nowadays frequently use social networks for their viral marketing [11]
campaigns, in which they want to deliver a message to as many people as possible through the social net-
work’s linking structure. Prominent nodes may just be the places where such a campaign should start in
order to reach a large number of people as quickly as possible.

The research question that we posed in the previous section immediately raises the issue of how promi-
nence or importance of a node within a network should actually be defined. While various definitions may
be correct, we will assume that someone is prominent, or important, or influential, if he or she has some
celebrity status (famous politicians, soccer players, artists, movie actors, etc.) in the real world. Though this
definition of prominence can be argued, we believe it can be justified based on the fact that both online and
in the real world, celebrities have a certain status, or reputation. It is well-known that if a celebrity promotes
a certain brand, people are far more likely to identify with that brand, compared to when a regular person
would promote the brand. Within the online social network Twitter, tweets originating from people like pres-
ident Obama are far more likely to be “retweeted” than when they would come from a regular person in the
network. Thus, Obama could in essence be seen as more prominent than a regular person.

In this paper we first study the difference in characteristics between regular and prominent nodes within
the network. We will then consider various existing methods of determining the importance of nodes in the
friendship graph of an online social network, and introduce a new method which is based on the character-
istics that we obtained. We will test the discussed approaches empirically on a large full crawl of an online
social network of 8 million users and almost 1 billion links. For this network, we know exactly which users
are considered to be prominent, allowing us to verify the obtained results against this community defined
ground truth.

1See https://www.facebook.com/press/info.php?statistics (accessed June 20, 2011)
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Figure 1: A graph with 18 nodes of which 2 nodes (G and L) are considered to be “prominent”.

The rest of this paper is structured as follows. In Section 2 we formally define our problem, after which
we discuss related and previous work in Section 3. We specifically pay attention to existing methodologies
for determining the importance of a node. In Section 4 we discuss the characteristic properties of prominent
nodes, and how these properties can be incorporated in a random walk algorithm. In Section 5 we will
compare the performance of the discussed methods. Section 6 concludes.

2 Preliminaries
In this section we will discuss some basis concepts and formulate our problem statement.

2.1 Definitions
We are given a friendship graph G(V,E), where V is the set of n = |V | nodes (individuals) and E ⊆
V × V is the set of m = |E| edges (connections). The graph is undirected, meaning that the set of edges
is symmetric, so if (u, v) ∈ E then also (v, u) ∈ E. A path or walk from u to v is a sequence of edges,
starting with an edge containing u and ending with an edge containing v. The distance d(u, v) between two
nodes u and v is defined as the length of a shortest possible path between these nodes. Because our graph
is undirected, d(u, v) = d(v, u) for all u, v ∈ V . As we will only consider the largest connected component
of the graph, d(u, v) is finite for all u, v ∈ V . We define the neighborhood N(v) of a node v as the set of
nodes at distance 1 of v, more specifically: N(v) = {u ∈ V | (u, v) ∈ E}. We can now define the degree of
a node v, indicating the number of edges starting (or ending) at some node v as the size of its neighborhood:
deg(v) = |N(v)|.

2.2 Problem Statement
Amongst the nodes in the network, there is an initially unknown set W ⊆ V , of size k = |W |, which
contains the nodes that are considered to be “prominent”. Logically, k ≤ n, but in practice, k is a lot smaller
than n, as only a small portion of the nodes is typically considered to be prominent. Our main goal is to find,
given only the graph G(V,E), an as small as possible subset I ⊆ V such that |I ∩W | is maximal, i.e., we
are trying to find as many prominent nodes as possible.

In this paper we describe various existing, derived, and new methods for determining node importance.
For each of these methods M we assign a normalized value fM (v) ∈ [0, 1] to each node v ∈ V which
determines its importance. We will assume that higher values indicate a higher level of importance. In order
to determine the performance of a method M , we sort the list of nodes by their importance value fM (v) in
descending order, and define I to be the top ` nodes of this sorted list. The precision and recall, |W ∩ I|/|I|
and |W ∩ I|/|W |, respectively, will ultimately determine the performance of a method M . More generally,
we can say that the F-measure, (2×precision×recall)/(precision+recall), measures the balance between
the two. Note that if ` = k, precision, recall and F-measure are equal.

An example with 18 nodes of which 2 nodes (G and L) are considered to be prominent, is given in
Figure 1. If some method M would determine that E and G are the prominent nodes, then W ∩ I =
{G,L} ∩ {E,G} = {G} and the performance of this method (in terms of both precision and recall) would
be 1

2 , so 50%.



2.3 Online Social Networks
Over the past decade, topological properties of online social networks have been studied in great detail [13].
Social networks are usually sparse and composed of a large connected component containing the major-
ity of the nodes. Often, there are a few smaller isolated communities, as well as various singletons [1].
Furthermore, it is well-known that online social networks greatly resemble the thoroughly studied real-life
social networks [16]. Another interesting fact is that social networks generally belong to the class of small
world networks [17]. Such networks are characterized by relatively small pairwise distances between nodes,
i.e., the average distance between two nodes behaves only logarithmically compared to the total number
of nodes. Online social networks are often also scale-free, meaning that the node degree distribution of a
small world network follows a power law: there are relatively few nodes with an exceptionally high degree,
and many nodes with a low(er) degree. The high degree nodes function as hubs, and are often grouped in a
densely connected core, realizing the short pairwise distances between the more “peripheral” nodes.

3 Related Work
Various studies have addressed the problem of identifying the prominent actors within large (social) net-
works. To further refine the context of our work, we will only discuss global importance: the entire graph
is ranked based on some measure or algorithm. Though beyond the scope of our work, a contrasting type
of query is that of relative importance [18], where the goal is to determine the importance of only a certain
node with respect to some root node. Other work deals with finding experts, or who can be trusted within
some semantic social network [5, 19]. We will clearly distinguish from these methods by not considering
semantics, but only structural properties of the nodes.

In that context, methods such as HITS [7] and PageRank [14] are known to be very successful in de-
termining the importance of web pages [10], citation networks [3] and Wikipedia topics [6]. Therefore, we
will also consider the undirected variants of these two approaches as methods for identifying the prominent
actors in a social network. In [15], the NODERANKING algorithm is proposed as a method based on random
walks for determining the importance of authors in a directed citation network. Random walk algorithms
generally traverse the graph, moving to a random neighbor with probability 1− p, and jumping to a random
node with probability p. The distinguishing property of the NODERANKING algorithm is that it jumps with a
probability depending on the current node’s degree, where a low degree indicates a high jumping probability.

Centrality measures have been popularized by social scientists in the 1970’s as possible measures for the
importance, or “prestige” as they call it, of a person within a social network [16]. Such measures assume that
anyone who is central in the network, meaning that he or she is connected to a lot of other people via some
short path, is prominent. Degree centrality is by far the simplest and most common measure, and is in case
of an online social network simply equal to the number of friends that someone has. As we will see later on,
the number of friends is a good indication of a node’s prominence, but definitely not perfect. Unfortunately,
the complexity of calculating other centrality measures such as betweenness centrality, closeness centrality
and graph centrality is in the order of O(mn) or worse [2], and therefore not considered in this work.

4 Methodology
We will now outline our approach for determining the prominent actors in an online social network. First we
sketch the characteristic node properties of our target nodes. After that, we will describe an algorithm based
on random walks which uses these properties to guide the walk towards the prominent nodes. We believe
that a random walk algorithm is a valid choice, because such algorithms are, in case of massive graphs such
as social networks, more practical than standard decision tree algorithms which require flattened data.

4.1 Properties of Prominent Nodes
The simplest intuition that we have about prominent people, is that they have a large number of connections.
Therefore we expect the degree of a node to play a great role in determining the importance of a node. So
we could state that the degree centrality, determining the importance of a node v based on its number of
connections, could be a good first indication of importance, formally:

fdeg(v) = 1− 1

|N(v)|



However, there may be nodes in the graph with many connections, that are not prominent, or vice versa,
prominent people with a smaller number of connections. Let us recall several observations regarding social
networks in general, which have been described in literature. People tend to use social networks for two
reasons: social searching, and social browsing [9]. These two terms refer to reconfirming real-life friendships
online, and browsing for completely new relationships, respectively. Another common concept is that of
triadic closure: the vast majority of all friendships formed within a social network takes place between two
people who have at least one friend in common [8]. This probability has been shown to increase with the
number of common acquaintances [8] as well as with the degree of a node (a phenomenon called preferential
attachment). For example, in the graph in Figure 1, the connection (A,B) would be more likely to appear
than the connection (A,K), as A and B have node C as a common friend, and A and K have no common
friends. The connection (A,D) would in turn be more likely than (A,B), as D already has a higher degree.

Based on the above, we expect that a regular person adding someone like president Obama, is not within
the circle of friends of Obama, making this friendship more like a result of social browsing instead of
searching. More generally, we argue that the friends of prominent nodes have more connections in common
than regular nodes. This can also be formulated as a smaller number of closed triangles amongst friends of
prominent nodes. We call this concept a node’s neighborhood density (nd):

fnd(v) = 1−
∑

w∈N(v)

|N(w) ∩N(v)|
(|N(w)| − 1) ∗ |N(v)|

Here, the numerator defines the number of common connections, whereas the denominator normalizes the
result so that it is independent of the degree of v or the degree of w. If |N(v)| > 1, fnd(v) is minimal in case
N(v) is fully connected, and becomes larger as a smaller fraction of the neighborhood is interconnected.

We have verified the two intuitions mentioned above on our social network dataset (see Section 5.1 for
a description of the dataset). To do this, we took 1, 000 random regular nodes and 1, 000 random prominent
nodes, and compared their importance values. The degree centrality fdeg was on average equal to 8.9 · 10−3
for regular nodes, and 3.4 · 10−2 for prominent nodes. Indeed, prominent nodes appear to have on average
around 3 to 4 times as many friends as regular nodes. For the neighborhood density fnd , we found a value
of 9.1 · 10−1 for regular nodes, and 4.5 · 10−1 for prominent nodes, which is consistent with our intuition of
prominent nodes having fewer closed triangles within their neighborhood as compared to regular nodes.

We believe that a combination of the two measures analyzed above may be able to efficiently identify
the various prominent actors. Therefore we devised an algorithm based on random walks, which has a
parameterized bias towards each of these properties.

Algorithm 1 BIASEDRANDOMWALK

1: Input: Graph G(V,E), N, p, α
2: Output: f [ ], containing the importance value f [v] for each node v ∈ V

3: for v ∈ V do
4: f [v]← 0
5: end for
6: i← 0

7: v ← RANDOMNODEFROM(V )
8: while (i < N) do
9: f [v]← f [v] + 1

N
10: if (rand(0, 1) > p) then
11: v ← BIASSELECTFROM(N(v), α)
12: else
13: v ← RANDOMNODEFROM(V )
14: end if
15: i← i+ 1
16: end while

17: return f [ ]



4.2 BiasedRandomWalk
Our algorithm, called BIASEDRANDOMWALK (BRW), takes as input an unweighted graph G(V,E) and
parametersN , p andα, and outputs a function value fBRW (v) for each node v ∈ V in the graph, determining
its importance. Here N is the number of steps in the random walk algorithm, p is the jumping probability,
and α is used to define the focus on either one of the two measures that we discussed.

The procedure is outlined in Algorithm 1, and works as follows. After setting some initialization values
in lines 3–6, the algorithm starts by selecting a random node from V (line 7). After that, for N iterations,
the algorithm repeatedly increases the function value (line 9) of the current node v by 1/N (to keep the
function value within [0; 1]). Then, the algorithm either selects a new node from the neighborhood N(v) of
v using the function BIASSELECTFROM() with probability 1−p (line 11), or jumps to a completely random
node with probability p (line 13). If in BIASSELECTFROM() a random neighbor is selected, the algorithm
would be a plain random walk algorithm. However, in our case, the function BIASSELECTFROM() selects
a node with a probability dependent on different function values of our prominence measures, as we know
that each of these function values tells us something about the probability of that node being prominent. So
given current node v, the probability P (w) of selecting a node w ∈ N(v) is equal to:

P (w) =
αfdeg(w) + (1− α)fnd(w)∑

u∈N(v)(αfdeg(u) + (1− α)fnd(u))

Setting the value of α to 1 logically resulted in roughly the same result as degree centrality, whereas
a value of 0 turned out to give 0% success. We believe that this is due to the fact that even though fnd
is normalized, the degree plays a significant role in identifying a node’s prominence, and very low degree
nodes can still get a high neighborhood density score. It turned out that any value between 0.2 and 0.8 gave
decent results and therefore we fixed the parameter to 0.5 to give equal focus to both measures. As for p, we
fixed this value to 0.15 as suggested in literature [12]. Finally, N , the number of iterations, should be set to
a value significantly larger than the number of nodes n.

5 Experiments
In this section we will compare our algorithm with various existing approaches for determining node impor-
tance in networks. Our algorithm as well as other discussed measures have been implemented in C++ and
tested on a 3.2GHz machine with 10GB memory, allowing us to keep the large network dataset in memory.

5.1 Dataset
We will verify the various methods on an anonymized large full crawl of the local Dutch online social
network HYVES. This network consists of an undirected friendship graph, of which some statistics are
given in Table 1. The power law node degree distribution of this dataset in Figure 2 as well as the distance
distribution (sampled over 1, 000 nodes) in Figure 3 demonstrate how the network adheres to the small-
world property (see Section 2.3). Note that the network had some predefined maximum number of friends
at 1, 000, 1, 500 and 2, 000, causing some slight noise in the tail of the degree distribution. Next to the
friendship graph, we also have a set of nodes W of size |W | = 4, 867 (0.06%) which is considered to
be “prominent”. This subset consists of various Dutch politicians, artists, athletes and actors and could be
considered as a ground truth, allowing us to verify the results from each of the methods.

Property Value
Nodes 8,113,017

“Prominent” Nodes 4,867 (0.06%)
Edges 912,120,070

Average Degree 112
Average Distance 4.75

Diameter 25
Connected Components 9,926

Nodes in Largest Component 8,083,964 (99.6%)

Table 1: Dataset statistics.
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Figure 2: Dataset degree distribution (power law).
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Figure 3: Dataset distance distribution.

5.2 Results & Discussion
The results of applying the various algorithms are outlined in Table 2. Here we compare the results of each
of the methods based on k = `, meaning that we select exactly as many prominent people as there are in
the dataset. Recall from Section 2 that we thus select the top ` = k nodes from the list of nodes sorted
by their prominence function value. The Random Walk algorithm was executed with parameters p = 0.15
and N = 10 ∗ n = 80 million iterations. Results from the Random Walk and BIASEDRANDOMWALK
algorithm are averages of 10 runs in order to flatten the effect of outliers due to the inherent randomness of
the approaches.

Measure Recall
Degree Centrality 64.2%

Random Walk 63.9%
PageRank 56.4%

HITS 51.4%
BIASEDRANDOMWALK 70.1%

Table 2: Results of various importance measures with k = `.

As a baseline for comparison we could say that if we were to select ` random nodes to form the set
W , we would on average find 0.06% of the prominent nodes in the network. Degree centrality, by far
the simplest selection strategy, already greatly improves upon this by identifying 64.2% correctly. A plain
random Random Walk results in slightly lower (but roughly equal) performance, whereas both HITS and
PageRank perform significantly worse. Our method, BIASEDRANDOMWALK, improves another 9% upon
Degree centrality, demonstrating the use of looking at the percentage of closed triangles during the walk.
Unfortunately a comparison with NODERANKING (see Section 3) is not very interesting, as results produced
by that algorithm are virtually identical to the simple method of degree centrality, which we expect to be due
to the fact that our graph is undirected.

One may argue that the number of prominent actors in a network is not always known in advance.
Therefore we also did experiments in which we varied ` between 0.01∗k and 2∗k on a sample of our dataset,
allowing us to study the precision, recall and F-measure curves of each of the approaches. These three values
for the methods with the highest performance (cf. Table 2), Degree centrality and BIASEDRANDOMWALK,
are shown in Figures 4 and 5, respectively. The sample that we used to create these diagrams consisted of
500, 000 nodes (6% of the original dataset). The sample was created using random walk sampling, suggested
in [4] as a method for obtaining a representative sample of an online social network. Indeed, obtained
statistics for the sample deviated only slightly from the numbers in the entire dataset. Though the difference
between Figures 4 and 5 may appear small, improvements in terms of each of the three values can be
observed.

Assuming that we want to take a number of false positives for granted, we may choose to focus solely
on maximizing the recall value. Therefore we also present the recall value for each of the approaches as a
function of the fraction of k in Figure 6. In Figure 7 we furthermore present a comparison of the different
F-values. At 0.75 ∗ k, the F-value appears optimal for BIASEDRANDOMWALK, and we would have a good
balance between recall and precision. This optimum lies slightly lower around 0.70∗k for Degree centrality.
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Figure 4: Degree centrality.
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Figure 5: BiasedRandomWalk.
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Figure 6: Recall for each of the methods.
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Figure 7: F-value for each of the methods.

Finally, note that for small values of ` (up to 0.3 ∗ k), the obtained result is always perfect: apparently the
top of the list is the same for each of the measures. It turns out these nodes simply had an enormously high
degree (over 2, 000), and were therefore selected by each of the methods.

6 Conclusion
We have outlined various characteristic node properties of prominent actors in a social network, and used
these properties in creating an algorithm for identifying prominent actors. Our algorithm, called BIASED-
RANDOMWALK, combines the measures of degree centrality and neighborhood density in a random walk
algorithm by having a bias towards nodes of each of the two measures. Neighborhood density can be seen as
a measure of the percentage of triadic closure, which is significantly lower for prominent actors as compared
to regular nodes. Experiments show that our method works quite well, as standard methods such as degree
centrality, HITS and PageRank are clearly outperformed, regardless of which measure (precision, recall or
F-measure) is used to determine the method’s performance.

In future work we would like to address the issue of determining relative importance other than just
global importance. We also want to consider the temporal aspect of importance, and study how prominence
of nodes within a social network changes over time.
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