Lindstrom scanning and link inversion

Dick Bruin and Walter A. Kosters
Leiden University, Department of Computer Science
P.O. Box 9512, 2300 RA Leiden, The Netherlands
Email: kosters@Qwi.leidenuniv.nl

In this short note we present a derivation (with implicit correctness proof) of Lindstrom
scanning of binary trees, starting from simple specifications of tree traversals. In a similar
way the link inversion algorithm can and will be derived. As general references we mention

[1] and [2].
Binary trees are defined by
Tree ::= "nil" | "t(" Tree ",n(" Name "," Mark ")," Tree ")"

where Mark is an integer and Name represents the name of the node. A root-left-root-right-
root traversal of such a tree is generated by

Visit(nil) =[] ,

Visit(t(L,n(r,0),R)) = [r,0] + Visit(L) + [r,1]
+ Visit(R) + [r,2] ,

where —for the moment— we assume that initially all nodes contain 0. Here the symbol
+ denotes concatenation of lists.
For trees S and T, and lists v, we define

Lindstrom(S,T,v) = v + Visit(S) + Visit(T)
Notice that

Lindstrom(nil,nil,v) = v ,

Lindstrom(nil,T,v) = Lindstrom(T,nil,v)
Now we compute

Lindstrom(t(L,n(r,0),R),T,v)

v + [r,0] + Visit(L) + [r,1]
+ Visit(R) + [r,2] + Visit(T)

Lindstrom(L,t(R,n(r,1),T),v+[r,0]) ,

if we define

Visit(t(L,n(r,1),R)) = [r,1] + Visit(L) + [r,2] + Visit(R)

Notice that initially Visit was only defined for a tree with root containing 0. Proceeding
as above we get, for x in {0,1,2},

Lindstrom(t(L,n(r,x),R),T,v)
= Lindstrom(L,t(R,n(r,x+1),T),v+[r,x]) ,

where we defined

Visit(t(L,n(r,2),R))

[r,2] + Visit(L) + Visit(R) ,

Visit(t(L,n(r,3),R)) = Visit(L) + Visit(R)

Finally we have

Lindstrom(t(L,n(r,3),R),T,v) = v + Visit(L)
+ Visit(R) + Visit(T)

In order to clearify this “halting condition”, and also for showing similarity to the usual
Lindstrom scanning, we state

Theorem

Suppose that a tree S initially has only zeroes in its Mark fields. Let T be an arbi-
trary tree and v an arbitrary list. Then the computation of Lindstrom(S,T,v) reaches
Lindstrom(T,Three(S),v+Visit(S)), where Three is defined by

Three(nil) = nil ,

Three(t(L,n(r,0),R)) = t(Three(L),n(r,3),Three(R))

Proof

The proof of the theorem is by induction on S, the case S = nil being trivial. So we let
S = t(L,n(r,0),R), and assuming the truth of the theorem for L and R we get

Lindstrom(t(L,n(r,0),R),T,v)

Lindstrom(L,t(R,n(r,1),T),v+[r,0])

Lindstrom(t(R,n(r,1),T),Three(L),v+[r,0]+Visit(L))

Lindstrom(R,t(T,n(r,2),Three(L)),v+[r,0]+Visit(L)+[r,1])

Lindstrom(t(T,n(r,2),Three(L)),Three(R),
v+[r,0]+Visit(L)+[r,1]1+Visit(R))

Lindstrom(T,t(Three(L),n(r,3),Three(R)),
v+[r,0]+Visit(L)+[r,1]+Visit(R)+[r,2])

Lindstrom(T,Three(S),v+Visit(S))

As a consequence we have

Corollary

Suppose that a tree S initially has only zeroes in its Mark fields. Let T* be either nil or
t(nil,n(special,3),nil). Then the computation of Lindstrom(S,Tx,[]) reaches
Lindstrom(T*,Three(S),Visit(S)) and in this case the “halting condition” may
be replaced with

Lindstrom(t(L,n(r,3),R),T,v) = v

Notice that Lindstrom does not destroy the original tree structure; it only changes all
zeroes into threes (this follows from the Theorem). It is also possible to drop all marking,
introducing an explicit “halting condition” by means of T*. This leads to the following
more familiar self-explaining program:

if (Root <> NIL) then
New(Star) ;
Present, Previous := Root, Star;
while (Present <> Star) do
if (Present = NIL) then
Present, Previous := Previous, Present fi;
Present, Present->Left, Present->Right, Previous :=
Present->Left, Present->Right, Previous, Present;
od;
fi;
In a similar way one can produce the link inversion algorithm. The only difference is that,
instead of the original definition of Visit(t(L,n(r,1),R)), we start from

visit(t(L,n(r,1),R)) = [r,1] + Visit(R) + [r,2] + Visit(L)

In order to get the usual link inversion algorithm some computations are necessary, for
instance

LinkInversion(nil,t(L,n(r,1),R),v)
= LinkInversion(t(nil,n(r,1),R),L,v) ,

giving a link inversion analogue of one of the equations above, for this choice of the second
argument. It also appears that we now get

LinkInversion(t(L,n(r,x),R),T,v)
= LinkInversion(A,t(B,n(r,x+1),C),v+[r,x]) ,

where (A,B,C) is either (L,T,R), (R,L,T) or (L,R,T), corresponding with either x = 0,
x=1orx = 2.

So in this case the Mark fields are necessary. However, it appears that one bit per node is
sufficient (using one global variable).

References

[1] D. Gries, The science of programming, Springer-Verlag, New York, 1981.

[2] T.A. Standish, Data structure techniques, Addison-Wesley, Reading, 1980.

Leiden, November 1987.

