Lindstrom scanning and link inversion

Dick Bruin and Walter A. Kosters
Leiden University, Department of Computer Science
P.O. Box 9512, 2300 RA Leiden, The Netherlands
Email: kosters@wi.leidenuniv.nl

In this short note we present a derivation (with implicit correctness proof) of Lindstrom scanning of binary trees, starting from simple specifications of tree traversals. In a similar way the link inversion algorithm can and will be derived. As general references we mention [1] and [2].

Binary trees are defined by

```
Tree ::= "nil" | "t(" Tree ",n(" Name "," Mark ")," Tree ")"
```

where Mark is an integer and Name represents the name of the node. A root-left-root-right-root traversal of such a tree is generated by

```
Visit( nil ) = [ ] , 

Visit( t(L,n(r,0),R) ) = [r,0] + Visit( L ) + [r,1] + Visit( R ) + [r,2] ,
```

where —for the moment— we assume that initially all nodes contain 0. Here the symbol + denotes concatenation of lists.

For trees S and T, and lists v, we define

```
Lindstrom(S,T,v) = v + Visit(S) + Visit(T).
```

Notice that

```
Lindstrom( nil,nil,v ) = v ,
Lindstrom( nil,T,v ) = Lindstrom( T,nil,v ) .
```

Now we compute

if we define

```
Visit(t(L,n(r,1),R)) = [r,1] + Visit(L) + [r,2] + Visit(R).
```

Notice that initially Visit was only defined for a tree with root containing 0. Proceeding as above we get, for x in $\{0,1,2\}$,

```
 \begin{array}{l} \mbox{Lindstrom(} \mbox{ } t(L,n(r,x),R),T,v \mbox{ }) \\ = \mbox{Lindstrom(} \mbox{ } L,t(R,n(r,x+1),T),v+[r,x] \mbox{ }) \mbox{ }, \\ \mbox{where we defined} \\ \mbox{Visit(} \mbox{ } t(L,n(r,2),R) \mbox{ }) = \mbox{ } [r,2] \mbox{ } + \mbox{ } Visit(\mbox{ } L \mbox{ }) \mbox{ } + \mbox{ } Visit(\mbox{ } R \mbox{ }) \mbox{ }, \\ \mbox{Visit(} \mbox{ } t(L,n(r,3),R) \mbox{ }) = \mbox{ } Visit(\mbox{ } L \mbox{ }) \mbox{ } + \mbox{ } Visit(\mbox{ } R \mbox{ }) \mbox{ }. \\ \mbox{Finally we have} \\ \end{array}
```

+ Visit(R) + Visit(T) .

Lindstrom(t(L,n(r,3),R),T,v) = v + Visit(L)

In order to clearify this "halting condition", and also for showing similarity to the usual Lindstrom scanning, we state

Theorem

Suppose that a tree S initially has only zeroes in its Mark fields. Let T be an arbitrary tree and v an arbitrary list. Then the computation of Lindstrom(S,T,v) reaches Lindstrom(T,Three(S),v+Visit(S)), where Three is defined by

Proof

The proof of the theorem is by induction on S, the case S = nil being trivial. So we let S = t(L,n(r,0),R), and assuming the truth of the theorem for L and R we get

As a consequence we have

Corollary

Suppose that a tree S initially has only zeroes in its Mark fields. Let T* be either nil or t(nil,n(special,3),nil). Then the computation of Lindstrom(S,T*,[]) reaches Lindstrom(T*,Three(S),Visit(S)) and in this case the "halting condition" may be replaced with

```
Lindstrom( t(L,n(r,3),R),T,v) = v.
```

Notice that Lindstrom does not destroy the original tree structure; it only changes all zeroes into threes (this follows from the Theorem). It is also possible to drop all marking, introducing an explicit "halting condition" by means of T*. This leads to the following more familiar self-explaining program:

```
if ( Root <> NIL ) then
   New(Star);
Present, Previous := Root, Star;
while ( Present <> Star ) do
   if ( Present = NIL ) then
        Present, Previous := Previous, Present fi;
   Present, Present->Left, Present->Right, Previous :=
        Present->Left, Present->Right, Previous, Present;
od;
fi;
```

In a similar way one can produce the link inversion algorithm. The only difference is that, instead of the original definition of Visit(t(L,n(r,1),R)), we start from

```
Visit(t(L,n(r,1),R)) = [r,1] + Visit(R) + [r,2] + Visit(L)
```

In order to get the usual link inversion algorithm some computations are necessary, for instance

```
LinkInversion( nil,t(L,n(r,1),R),v )
= LinkInversion( t(nil,n(r,1),R),L,v ) ,
```

giving a link inversion analogue of one of the equations above, for this choice of the second argument. It also appears that we now get

```
LinkInversion( t(L,n(r,x),R),T,v )
= LinkInversion( A,t(B,n(r,x+1),C),v+[r,x] ) ,
```

where (A,B,C) is either (L,T,R), (R,L,T) or (L,R,T), corresponding with either x = 0, x = 1 or x = 2.

So in this case the Mark fields are necessary. However, it appears that one bit per node is sufficient (using one global variable).

References

- [1] D. Gries, The science of programming, Springer-Verlag, New York, 1981.
- [2] T.A. Standish, Data structure techniques, Addison-Wesley, Reading, 1980.

Leiden, November 1987.