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In this short note we present a derivation (with implicit correctness proof) of Lindstrom
scanning of binary trees, starting from simple specifications of tree traversals. In a similar
way the link inversion algorithm can and will be derived. As general references we mention

[1] and [2].
Binary trees are defined by
Tree ::= "nil" | "t(" Tree ",n(" Name "," Mark ")," Tree ")"

where Mark is an integer and Name represents the name of the node. A root-left-root-right-
root traversal of such a tree is generated by

Visit( nil ) =[] ,

Visit( t(L,n(r,0),R) ) = [r,0] + Visit( L ) + [r,1]
+ Visit( R ) + [r,2] ,

where —for the moment— we assume that initially all nodes contain 0. Here the symbol
+ denotes concatenation of lists.
For trees S and T, and lists v, we define

Lindstrom( S,T,v ) = v + Visit( S ) + Visit( T )
Notice that

Lindstrom( nil,nil,v ) = v ,

Lindstrom( nil,T,v ) = Lindstrom( T,nil,v )
Now we compute

Lindstrom( t(L,n(r,0),R),T,v )

v + [r,0] + Visit( L ) + [r,1]
+ Visit( R ) + [r,2] + Visit( T )

Lindstrom( L,t(R,n(r,1),T),v+[r,0] ) ,

if we define



Visit( t(L,n(r,1),R) ) = [r,1] + Visit( L ) + [r,2] + Visit( R )

Notice that initially Visit was only defined for a tree with root containing 0. Proceeding
as above we get, for x in {0,1,2},

Lindstrom( t(L,n(r,x),R),T,v )
= Lindstrom( L,t(R,n(r,x+1),T),v+[r,x] ) ,

where we defined

Visit( t(L,n(r,2),R) )

[r,2] + Visit( L ) + Visit( R ) ,

Visit( t(L,n(r,3),R) ) = Visit( L ) + Visit( R )

Finally we have

Lindstrom( t(L,n(r,3),R),T,v ) = v + Visit( L )
+ Visit( R ) + Visit( T )

In order to clearify this “halting condition”, and also for showing similarity to the usual
Lindstrom scanning, we state

Theorem

Suppose that a tree S initially has only zeroes in its Mark fields. Let T be an arbi-
trary tree and v an arbitrary list. Then the computation of Lindstrom( S,T,v ) reaches
Lindstrom( T,Three(S),v+Visit(S) ), where Three is defined by

Three( nil ) = nil ,

Three( t(L,n(r,0),R) ) = t(Three(L),n(r,3),Three(R))

Proof

The proof of the theorem is by induction on S, the case S = nil being trivial. So we let
S = t(L,n(r,0),R), and assuming the truth of the theorem for L and R we get

Lindstrom( t(L,n(r,0),R),T,v )

Lindstrom( L,t(R,n(r,1),T),v+[r,0] )

Lindstrom( t(R,n(r,1),T),Three( L ),v+[r,0]+Visit( L ) )

Lindstrom( R,t(T,n(r,2),Three( L )),v+[r,0]+Visit( L )+[r,1] )

Lindstrom( t(T,n(r,2),Three( L )),Three( R ),
v+[r,0]+Visit( L )+[r,1]1+Visit( R ) )

Lindstrom( T,t(Three( L ),n(r,3),Three( R )),
v+[r,0]+Visit( L )+[r,1]+Visit( R )+[r,2] )

Lindstrom( T,Three( S ),v+Visit( S ) )



As a consequence we have

Corollary

Suppose that a tree S initially has only zeroes in its Mark fields. Let T* be either nil or
t(nil,n(special,3),nil). Then the computation of Lindstrom( S,Tx,[ ] ) reaches
Lindstrom( T*,Three( S ),Visit( S ) ) and in this case the “halting condition” may
be replaced with

Lindstrom( t(L,n(r,3),R),T,v ) = v

Notice that Lindstrom does not destroy the original tree structure; it only changes all
zeroes into threes (this follows from the Theorem). It is also possible to drop all marking,
introducing an explicit “halting condition” by means of T*. This leads to the following
more familiar self-explaining program:

if ( Root <> NIL ) then
New(Star) ;
Present, Previous := Root, Star;
while ( Present <> Star ) do
if ( Present = NIL ) then
Present, Previous := Previous, Present fi;
Present, Present->Left, Present->Right, Previous :=
Present->Left, Present->Right, Previous, Present;
od;
fi;
In a similar way one can produce the link inversion algorithm. The only difference is that,
instead of the original definition of Visit( t(L,n(r,1),R) ), we start from

visit( t(L,n(r,1),R) ) = [r,1] + Visit( R ) + [r,2] + Visit( L )

In order to get the usual link inversion algorithm some computations are necessary, for
instance

LinkInversion( nil,t(L,n(r,1),R),v )
= LinkInversion( t(nil,n(r,1),R),L,v ) ,

giving a link inversion analogue of one of the equations above, for this choice of the second
argument. It also appears that we now get

LinkInversion( t(L,n(r,x),R),T,v )
= LinkInversion( A,t(B,n(r,x+1),C),v+[r,x] ) ,

where (A,B,C) is either (L,T,R), (R,L,T) or (L,R,T), corresponding with either x = 0,
x=1orx = 2.

So in this case the Mark fields are necessary. However, it appears that one bit per node is
sufficient (using one global variable).
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