
MATHEMATICS Proceedings A 88 (2), June 17, 1985 

Eigenspaces of the Laplace-Beltrami-operator on 
SUn, [R)IS(GUl) x GUn- II). Part II 

by WA. Kosters 

Mathematical Institute, University of Leiden, P.O. Box 9512, 2300 RA Leiden, the Netherlands 

Communicated by Prof. W.T. van Est at the meeting of September 24, 1984 

5. THE POISSON-TRANSFORM 

In this chapter we shall define the Poisson-transform Ys from B(G/P;s) into 
B(G/H;M,). The main theorem of this paper states that for generic s, Ys is an 
isomorphism between these two spaces. This will be shown by exhibiting an 
explicit inverse, namely the boundary value map. 

Let dg be a Haarmeasure on G, and dx a G-invariant measure on X. Using 
these measures, continuous functions can be considered as distributions. 
Furthermore, right H-invariant distributions on G are identified with distri- 
butions on X. Let i E { 1,2}, 

LEMMA 5.1. The Poissonkernels P,’ and P,“, as defined in Chapter 2, are for 
Re s< n - 1 locally integrable on G and on X. They are meromorphically 
extended to C as distributions on G and X. The set of poles is contained in Z. 
The extensions satisfy (MS) on X, and their behaviour under left translation by 
elements of P is the same as that of the original functions. 

PROOF. Choosing suitable coordinates on X, one is led to integrals like 

S IxyIAff(wM(w) and S Ixl’fWx 
iR2 LQ 

for L E Cc and Cr-functions f (Cf. [Kosters, 91). These integrals can be handled 
as in [Gel’fand, Shilov, 41. Furthermore, for Re s sufficiently small, Pj satisfies 
(MS). This follows from Corollary 2.3.3 in [Kosters, 91, or from direct compu- 
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tation using Lemma 4.1. Uniqueness of analytic continuation yields the desired 
properties. The details are left to the reader. n 

Now we want to give a meaning to the integral 

; f(W:(k- ‘g)dk (g E G) 

for hyperfunctions f on K. In order to describe hyperfunctions on X, let 
{Q,),,, be an open cover of X such that every $2, has compact closure, which 
is contained in some coordinate patch on X. A hyperfunction h on X is given 
by elements 

hj E A’(i=&)/A’(m;2,) = B(Q). 

Here the primes denote topological duals, in the well-known sense. Now fix 
1 EL. Take PEA@,), so F is a real analytic function on some open neighbour- 
hood of fil. Let for kEK and XEX: 

&F)(x) = F(kx). 

Then IkFcA(k-1f251). Consider the integral 

k-la I 

Using coordinates as in the proof of Lemma 5.1.) this integral can be mero- 
morphically extended to C. Indeed, the problem reduces to the continuation of 
integrals like 

for suitable compact subsets Q of lR2. Note that the expression analytically 
depends on k. Using the fact that B(K) is the dual of A(K), Pifcan be defined 
by 

( @23 = (f(k,$, j ~~(x)(~,F)(x)dx) 
k- ‘0 / 

for f E B(K). This expression continuously depends on F. 
Now take the class of $“f in B(Q) and remark that on intersections Q, fl Qjl 

the definitions coincide. Therefore, we see that Y~~EB(X) for feB(K). 
If Jhappens to be in C(K), then 9$f is a function on X: 

(&f&H) = j’ P;(k- ‘g)f(k)dk (g E G). 
K 

This remark uses the embedding C(K)-+B(K), given by 

The next step is to show that $f satisfies (MS) on >)(( +. Therefore, we need 
to describe the action of •i on B(X). Take {Q,},,, as before and define for 
h E B(X) t 

( q h,F) = (h, q F) (FE/~@&)). 
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Note that for C2-functions this definition is compatible with the usual one. 
Indeed, if h E C(X), then 

(h,F) = j h(x)F(x)dx 
Q 

defines a hyperfunction on X. Now use the fact that 0 is self-adjoint with 
respect to dx, and note that all boundary value terms that occur are zero in 
B&4). 

An easy application of Lemma 5.1 shows that 

q Yif= (s2 - e2)f 

whence Y:~E B(G/H; M,). Now we can define the Poisson-transform YSf of 
an element f of B(G/P;s). Therefore, write f=fi +f2 with fjEBj(G/P;s) 
(j = 1,2), restrict fj to K, and define 

Combining all these remarks we get: 

LEMMA 5.2. Let SE c, se 77. Then .Ys maps B(G/P;s) into B(G/H;M,). q 

LEMMA 5.3. Let SEC=, s$& fEBi(G/P;S), gEG. Then Yi(%Jg)f)= 
= n,(g)Y,‘f : 9: is G-equivariant. 

PROOF. We only consider i = 1. If g E G, define rc(g) E K/KnM and t(g) E R 
by gcrc(g)liia,(,$V (Cf. Theorem 2.9.). For @E C(K/Knii?) we have 

h @(k)dk = j @(K(gk))e-2ef(gk)dk (g E G) 
K 

([Varadarajan, 161, p. 294). By transposition, this formula is also valid for 
I$ E B(K/Knn;i). Let Q1 be as before. We get 

where gk = K(gk)ma,c,kj n with m E I@, n EN. From these equations the lemma 
easily follows. q 

Now we can state the main theorem of this paper: 

THEOREM 5.4. Let s E dZ, 2s $ Z. Then Ys is a G-equivariant isomorphism of 
B(G/P; s) onto B(G/H; AI,). 
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The proof of this theorem is based on two lemmas: 

LEMMA 5.5. Let s E C, 2s $ Z, i E { 1,2}. Then there exist nonzero complex 
numbers cj(s) such that for all f E Bi(G/P;s) : p, ~Y’f = ci($f. 

PROOF. This is given in Chapter 6. There the Ci(S) are explicitly computed. 
n 

LEMMA 5.6. Let SEC, 2seZ. Then /I, is injective. 

PROOF. This is given in Chapter 7. n 

Now we can give the 

PROOF OF THEOREM 5.4. We only need to show that Ys is injective and sur- 
jective. 

i) Ys is injective. Suppose that Ys’,f =0 for some f E B(G/P;s). Then 
Lemma 5.5 implies that 

O=Ps%f =Ps(%‘fi + Ti2f22) =c,(s)f, + Cz(S)fi 

whence fi = f2 = 0. 
ii) 9Js is surjective. Let u E B(G/H;M,). Define 

1 1 
u’= - 9y(/3su)l + - 

Cl (4 c2(4 
@W), . 

Then U’E B(G/H;M,), and &(u- u’) =O, which follows from Lemma 5.5. 
Applying Lemma 5.6 we see that u-u/=0, thereby showing that 

6.PROOFOFLEMMA5.5 

From now on i E ( 1,2}, s E C, 2s $ Z. In this chapter we compute &Pj, using 
the theory of Bruhat as it is presented in [Kashiwara et al., 71, Appendix. Note 
that for j= 1,2: 

(psPi)jE Bj(G/P;S). 

In order to compute &Pi, we derive some properties. The G-equivariance of 
p, implies that 

<PP,‘>j (mwg) = f++ Q)‘<PsP,‘>j (g) 

(PP,‘>j (ma& = xMOe(’ + @)‘W?)j (g) 
for m EM, t E R, n EN and g E G. It appears that these properties determine 
p,Pi uniquely. 
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Consider the following distributions on G: 

(d,‘,f> = j j j f(matn)e(S+e)‘dmdtdn 
l!z m N 

<a,“, f > = j j j f(ma,n)x(m)e(s+e)tdmdtdn 
R R N 

for f E D(G); here dm and dn are Haarmeasures on ii? and N, resp., and dt is 
the Lebesguemeasure on IR. Using the commutation rules for elements of iiZ, 
A and N, derived in Chapter 2, it is easily seen that Si has the same properties 
as (&P~)j. We shall prove: 

LEMMA 6.1. &Pi = ci(s)6L for certain complex numbers q(s). 

The proof of this lemma requires some preparations. Using the techniques 
of [Faraut, 21, it is easily proved that 

(&,f)= j fW+Odh 
KCl.47 

<4&f > = S f(k~)xWOd~ 
K0.U 

for f E D(K), where dvi? is the normalized Haarmeasure on KnM. 
Now we give the Bruhat-decomposition of G with respect to i? we want to 

describe the structure of P \ G/P. The Weylgroup W is by definition the 
quotient Mm*in/M,i,, where Main is the normalizer of Amin in K. It is well- 
known that W is isomorphic to S,, the group of permutations of { 1,2, . .., n). 
In the diagonal-form, W can be realized in G as the set of matrices with exactly 
one 1 in every row and column, and eventually a minus sign in the last column 
to insure determinant one. Define: 

w, = 

w7,= 

w4= 

-0 . . . 0 -i 
: 1. % 0 

/ 
1 7 w3= 

0% 1 . 
-lo... 0 

r I*- % 
‘1 

% 0 -1 
I 19 

il 

, w5= 

0 1 
1 0 % 

% 1 
- 

L 

boo -1 
1 0 0 0 
0 0 1. % * 
: : . . 
0 0 -8 ‘1 0 
0 1 0 0 I 

9 
1 J 
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0 1 
1 0 %- 

1 
- -1 

0 0 1 
1 0 

Of course, w, is only defined for n> 3. We have: 

LEMMA 6.2. 1) G = UE, P’w;P’, a diijoint union (n > 3) 
2) G= Uf=, P’wiP’, a disjoint union (n = 3). 

Here primes denote the diagonal-form. 

PROOF. [Warner, 181, 1.2.4. shows that there is a one-to-one correspondence 
between P\G/P and S~\S,/S~, where S:,={cr~S&(l)=l, a(n)=n}. For 
n=3, S;=(l). F or n > 3, one easily finds the representatives { wl, . . . , w7} for 
s;, \ s&s:, . 

It is also possible to proceed more directly, without the use of the general 
theory from [Warner, 181. Then we use the Bruhat-decomposition with respect 
to Pmi” and arguments like those in the proof of Lemma 2.4. n 

Notice, that this proves Theorem 2.8. 1). 

LEMMA 6.3. Let u E B(G). Suppose that for all t,xe IR, n, n’E N, ge G: 

u(a,nga,n’) = e (S+eP+(S-e)Xu(g) 

1) If u(mgm’) = u(g) for all m, m’E i@, g E G, then u = CC?,’ for some c E 6. 
2) If u(mgm’) =x(mm’)u(g) for all m, m’Eli;i, g E G, then u = c&? for some 

CEC. 
3) If u(mgm’) = x(m)u(g) for all m, m’ E I@, g E G, then u = 0. 
4) If u(mgm’) = x(m’)u(g) for all m, m’ E ii?, g E G, then u = 0. 

PROOF. The proof of this lemma is a copy of the proof of the proposition on 
p. 33 in [Kahiwara et al., 71. Let us consider case 1). Define 

E a’ 

and 

xl(ma,n,m,a,nl)=e(sf@)‘-(s-@)~ (m,m,EAT;t,x6iR,n,nlEN’). 

Here the primes refer to the diagonal-form. x1 is a character of the group 
P'xP'. Note that HI acts on 

a,,,= g&t’+ a’+ n”+Ad (w-‘)(m’+ a’+n’)) 
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for WE W. In particular, we are interested in the eigenvalues of ad Hi on gW 
and in the numbers dXi(Ad (w)H,, Hi), for w E { wl, . . . , w7}. All these facts are 
given in Table 6.1. Instead of giving the whole proof, the reader is asked to fit 
in the details. Here, we shall sketch the main ideas. In [Kashiwara et al., 71 a 
sufficient condition is given for the (non-)existence of hyperfunctions on a 
manifold, which have certain transformation properties under the action of a 
Lie group. This condition is an integrality condition on certain eigenvalues. An 
application in our case yields that a hyperfunction u on G, with the properties 
mentioned above, has its support in P’, and is unique up to a complex constant, 
under the condition that s $ Z. In fact, one uses the previous lemma and a case 
by case examination of the subsets P’w,P’ (i = 1, . . . ,7). For example, for w7 we 
get the integrality condition se {n - 4, n - 5, . . . >. For w5 and wg we get the 
condition 3s${n-3,n-5,... }. In order to handle the case 3s E Z, se Z, Hi 
can be replaced by 

H,= 

1 
1 0 

0. 

0 
0 -2 

Then the condition becomes se ( - 1, - 2, - 3, . . . ). The only set that possibly 
carries a hyperfunction with the properties mentioned above is P’; furthermore 
there is - up to a scalar - at most one such hyperfunction. The fact that S,’ 
satisfies the same properties as U, and is nonzero, now gives the lemma. The 
proof even works for 2.sc~Z, s@Z. 

Case 2) is handled in a similar way. Now let us consider case 3). 
Arguing as before, we come to the conclusion that u is a distribution on G, 

with support contained in r”, of the form 

<u,.f = j 1 j f(ma,n)H(m, t, n)dmdtdn CUED) 
H R N 

where H is a real analytic function on Mx Rx N. The fact that u is a distri- 
bution also comes from the theory of Kashiwara et al. The right N-invariance 
shows that H(m,t,n) does not depend on n. It is easy to prove that 
H(mmlm2, t,e)=X(m)H(ml, t,e) for all m,ml,m2Ei@, TV R. Some special 
choices for m,m, and m2, using the element 

1 
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of i@, easily imply that H(m, t, n) = 0 for all m EM, t E IR, n EN. Whence u = 0. 
Case 4) is handled in the same way. We finish the proof by giving the table 
which was used in case 1). 

Table 6.1. 

W SW eigenvalues of ad H1 on g,,, &lW(w)HllHd 

Wl 

0 
* -8 ;‘I: II *. . . * 0 

- 1 (2n - 4 times) 
- 2 (once) 2e 

W2 none -2S 

w3 {[*.Y.* o)] - 1 (n - 2 times) 
- 2 (once) 

-s+3&J 
2 

W4 
- 1 (n-2 times) 
- 2 (once) 

-s+3e 
2 

-8 -3s+&y 
W R 0 II *o... 0 

- 1 once 2 

W6 - 1 (once) -3s+&J 
2 

0 

Wl 1: II 0 -e - I (twice) -s+Q 
* 
0 * 0.. .o 

Now it is easy to give the proof of Lemma 6.1, because this is a direct conse- 
quence of the previous lemma and the transformation properties of the hyper- 
functions involved. 
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Take f tz&(G/P;s). Then: 

Psv?s’f)=Ps( s fwYk-@,‘d~)= s fw~k-w%9d~= 
K K 

= ~f(k)f&P:)ldk= j f(k)cl,-d,'dk=cf 
K 

where c = cl(s) EC, and &P,‘(X) = P,‘(kx) (XE G/H, k EK). Here we used the 
G-equivariance of &, Lemma 6.3, and the argument of [Kashiwara et al., 71, 
p. 22, which enables one to take p, under the integral. So we have 

Ps%‘f=q(df C,f~B,(G/&N. 
In the same way it can be proved that: 

P,@f=c#)f df~&(G/Rs)). 
In order to complete the proof, we have to show that ci(s) # 0. Therefore these 
numbers are explicitly computed. 

LEMMA 6.4. If 2sgZ, then 

c (s)= (n-W 2-s 
1 -.-----2 r(s)r(-s-~+3)‘cos~cos’~(-s-n+3) 

7T2 

cz(s)= -rg’: (-s-n+3)*c,(s). 

In particular cl(s) #O and c2(s) #O. 

PROOF. First we compute the Poisson-transform of the element of B, (G/P; s) 
which is equal to 1 on K; this element is unique and will be denoted by 1. We 
have: 

(%‘,‘l)(g)= j CfW-‘gW (gEG) 
K 

In [Kosters, 91, p. 106 ff, we find, with krzK, tcs R, h EH: 

(e’ l)(ka,h) = 

2pl @+s e+s. g. - - 
4’ 4’2’ 

th2 2t 
> 

. 

To prove this formula, note that Ytl is left K- and right H-invariant, and use 
the fact that Y”,‘l satisfies the equation (M,). This leads to a hypergeometric 
differential equation on A, which has a unique analytic solution. That 9: 1 is 
analytic will be shown in the proof of Lemma 7.1. Moreover, 

(9: l)(e) = j P,‘(k)dk 
K 
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can be computed directly. Note that y.!,l = d(s).~~‘l , for some d(s) E 6. Since 
p, 9: 1 = ci (s) . 1 and p-, $I 1 = c;(s) -1, for certain complex numbers cl(s) and 
c;(s), ys’,‘l has analytic boundary values, and therefore y:l is a so-called 
ideally analytic solution of (M,) (cf. [Oshima, Sekiguchi, 131, p. 25, 26 and 
59). This implies that it is possible to compute fl,(yi l)(e) by taking a limit: 

p,( 9: l)(e) = l$r t(S-e)‘2( 9: l)@(t)) = 

according to some well-known properties of the hypergeometric function (cf. 
[Sekiguchi, 151, p. 180 or [Erdelyi, 11, Chapter 2). Using the formula 

(cf. [Erdelyi, I], Chapter 1) and the fact that 

PA %’ 1 )(e) = cl (4 l(e) = cl 6) 

the first part of the lemma is easily proved. However, the limiting process used 
above is only justified for Re s>O. Meromorphic continuation extends the 
result to C - +Z. Note that the meromorphic continuation of cl(s) has zeroes 
containedin {1,3,5,7 ,... }U(-n+l,-n-3, -n-7,...) andpolescontained 
in (0, -2, -4 ,... }U{-n+3, -n+7, -n+ll,... }, perhaps cancelling one 
another. In particular, cl(s) # 0 if 2st$ Z. 

It is also possible to compute cl(s) using the methods of [Sekiguchi, 151, 0 7. 
Now we compute c2(s). Therefore we consider the function Y in B,(G/P;s) 
defined by 

This function plays an important role in [Kosters, 91 and will also be of great 
importance in Chapter 7. A computation, similar to that of 9’1, yields: 

( 9’s’ mm = 2(-s-e)n4re) rr”-:+4~ th, 2t (ch 2t)(-s-e),2 
7?(n - 1) -s+ 1 r- 

( > 2 
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for TV IR, ~EH (cf. [Kosters, 91, 4.6). Again, @Y is an ideally analytic solu- 
tion of (M,), so we can take a suitable limit, and derive: 

- 2c,(s) = lu$ t(S-Q)‘z( p;Y)(a(t)) = 

(n-2)! 
= 712 23-T(s)r 

(-s-:+3> 
cos~cos’~(-s-n+l)(Res>O) 

from which the lemma easily follows. n 

7. PROOF OF LEMMA 5.6 

In this chapter we prove that for complex s with 2s$Z, b, is injective. Note 
that it is sufficient to show that if u E&G/MM,) satisfies &u = 0, then 
/X+=0. This is a consequence of Proposition 2.15 in [Oshima, Sekiguchi, 
131, where it is proved that X ’ has an open neighbourhood I/ in X with the 
following property: if u E B(G/H;M,) satisfies /3,u =/Xsu = 0, then 
uIVo x + = 0. Now the G-equivariance of & implies Lemma 5.6. Throughout 
this chapter s E C, 2s $ Z. 

Let us give a brief outline of the contents of this chapter. Take 
u EB(G/H;M,) with p,u = 0. Then Lemma 7.1 shows that (p-&r =O. 
However, it is more difficult to prove that (p-su)2 = 0. Therefore, we consider 
a certain representation of G and some of its matrix coefficients. These are used 
to construct a cyclic vector for a certain principal series representation of G. 
The argument is completed by some careful integral manipulations. 

LEMMA 7.1. Let u EB(G/H;M,). If p,u =0, then (p-su)l =O. 

PROOF. (Cf. [Sekiguchi, 151, Lemma 8.3.) 
Take an arbitrary u in &G/H; M,); g E G. Define the hyperfunction Vg by 

v&9= S u(gkW WE@. 
K 

Then Vg is a hyperfunction on X and satisfies (M,), because u E B(G/H;M,) 
and Cl is G-invariant. Note that Vg is left K-invariant and hence real analytic, 
because it can be considered as an eigenfunction of the Casimir-operator on 
K\ G, which is elliptic. It is easy to see that pillA and VglA satisfy the same 
differential equation (see p. 106 in [Kosters, 9]), which has only one real 
analytic solution. The fact that g”l/, is a nonzero solution shows that there 
is a complex number u(g) such that 

vg = u(g) .9; 1. 

Using Lemma 5.5 one derives 

&~,=a9c&)l. 

Furthermore, following [Schlichtkrull, 141, p. 75, it can be seen that 

A( s u(gk.)W= s PA&-W 
K K 
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and it follows that 

Now suppose that &u = 0. The fact that cl (s) # 0 implies that o(g) = 0, whence 
Vg=O. Thus 

S W,uUW~ = 0 (g E G). 
K 

Because of the transformation properties under right translation by W, it is 
easily seen that 

S (P-AAgWk=O kE’3 
K 

and therefore 

for all g E G. By Lemma 2.4, (p-+), E B(G/‘Pmin; A( - s)). Now Lemma 2.2 and 
Theorem 2.3 imply that (pPSu), =O. n 

REMARK. It is also possible to avoid the use of Theorem 2.3: one can use 
methods from the second part of this chapter; the details are left to the reader. 

Consider the representation rc of G on gc, defined by 

n(g)X=Ad (g)X=gXg-’ (gEG, XEgc). 

LEMMA 7.2. A) 71 is irreducible. 
B) ~1~ splits up into two irreducible components for n ~4: gC = E&p,. 

For n = 4, IC again splits up into two minimal invariant subspaces. 

PROOF. A) This is an easy consequence of the fact that sl(n,C) is simple. 
B) Of course, fc and pc are K-invariant. If n#4, so@, C) is simple, 

implying that fc is minimal invariant. For n = 4, 

are easily seen to generate irreducible subspaces of fc. Now consider pc. Note 
that H0 = E,,, + E,, is the unique vector X in gc - up to a scalar - with the 
following property: 

7c(k)X= x(k)X for all k E Knn;i 
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Suppose UCpc is an invariant subspace. Then there is a K-invariant subspace 
I/ of pC with pc= U@V. Using He, one easily shows that either Ha E U or 
He E V. Suppose Ho E U. It is well-known, that ;rr(K)H, spans p, completing the 
proof. m 

For matrices X, YE gc, define (X, Y) = trace (XP). Let 

and define YEA(K) by Y(k)=(rr(k)X,,X,) (cf. the proof of Lemma 6.4 and 
[Kosters, 91, p. 105 where 2Y is used). 

LEMMA 7.3. Let UEB(G/H;M,). Zf /$u= ), then for all ge G: 

I (P-,a?kk)wwk=O. 

PROOF. Take an arbitrary u in B(G/H;M,) and g E G. Define 

V,(g’) = j u(gk- *g’)Y(k)dk (g’e G). 
K 

As in the proof of Lemma 7.1, V,EB(G/H;M,). Let {X,,...,X,} be an 
orthonormal basis of f, with respect to the inner product - (1, a). Here 
m = dim 1. Then for k E K: 

I/,(kg’) = 1 u(gki ‘g’) Y(kk,)dk, = 
K 

= 2 CXj, xn(k-')X,) S u(gk,-'g')tntko>X,,Xj)dko 
j=l K 

showing that Vg is K-finite. From [Varadarajan, 161, p. 310 it follows that Vg 
is real analytic. Furthermore, for k E K and t E R: 

I/,(kat)= i <Xj, ntk-‘)X,) S Utgkt ‘at)tn(ko)X,,Xj)dk,* j=l K 

Note that V,(ka,) = V,(ka,m) = I/g(kma,) for k E K, t E R and m E KflM, and 
that if n#4, the space of vectors in f fixed under the action of KflM, is one 
dimensional and spanned by Xi. Therefore, integration over KnM, which is 
projection onto this space, shows that only j= 1 remains in the summation. 
Thus for n 24: 

V,(ka,) = Y(k)V&q) (ke K, t E R). 

Now remark that YEB~(K/KINII), and therefore it makes sense to compute 
@Y. The same arguments as above show that: s 

(.$Y)(ka,) = Y(k)( $ Y)(a,) (k E K, t E I?). 
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Furthermore, both V, and 9zY satisfy the differential equation (M,). From 
this, it follows that V,(a,) and @Y(a,) satisfy 

f”(t) + (2(n - 2)cth2t + 2th2t)f’(t) - 
( 

4z + s2- e2)fo = 0. 

It is well-known that this differential equation has a unique analytic solution 
- up to a scalar -, which is an odd function in t (cf. the proof of Lemma 7.5). 
Note that (@Y)(a,) and V&r,) are odd in t, which easily follows from 
wOatwo= a-,(t E R), where 

-1 
-1 -8- wo= I I 1 

EKr3I-l. 

+b - * -1 

Remark that (P:Y)(a,) is a nonzero function: otherwise @Y would be zero, 
which contradicts Lemma 5.5. 

Summarizing these facts: for some u(g) EC: 

vg = u(g) 9: Y. 

Now suppose that &u=O. Arguing as in the proof of Lemma 7.3, it follows 
that for all ge G: 

s (P-&)k~)W)~~ = 0. 
K 

Using the fact that 

S (P-,~h(g~)WW~=O (gEG) 
K 

for all u E @G/H; M,), the lemma follows for n # 4. Now let n = 4. Then the 
matrix 

is also fixed by KM4. Let Z(k) = (n(k)Xo,X,) (k E K). The same argument as 
above shows that 

V&ka,) = Z(/C)@~ (t) + Y(k)@,(t) (k E K, t E R) 

where @, and Q2 are real analytic solutions of the differential equation 
mentioned before. Let Y(t) be the nonzero real analytic solution of this 
equation. Then, for some I,, A2,pl,,f.f2 E C: 

t%wtw = (4 Yt~)+~2z(wm, 

(~2z)(w = (4 Y(k) +P2-wMth 
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for k E K and t E IR. According to Lemma 5.5, P’Y and P,“.Z are linearly 
independent in B(G/H;M,). Therefore, F’s is a linear combination of PS2Y and 
9’2, showing that 

PsVg= h(g)c2@)y+ 02(g)c2W 

for certain complex numbers ui(g) and 02(g). It follows that 

/4v,te> = - ul tghtd = S (PM&) Y(Wk 
K 

001 

PSV, :i 100 

0 

= 0 0 0 -1 u2tg>c2w 

010 

0 II 
0 

So, if p,u =0, then ul(g) = u2(g) =O, implying Vg= 0. The proof is easily 
completed now. q 

In the previous lemma we considered the restriction of n to K and in parti- 
cular the action on Ec. Now we look at pc. Let 

c l 
1 > x3=$ -1 

% 
1 

and 
-1 

/ 
n - 2 

2 
% 

-1 

-1 

ff n-2 

Then {X2,X,, X4) is an orthonormal basis of the set of vectors in p that are 
fixed under KflM. Note that’ 71(w)X2 = X2, n(w)X, = - Xs and 7t(w)Xq= X,; 
with w0 as in the proof of.Lemma 7.3, 7r(wc,)X2= -X2, n(w,)X, =X, and 
n(wo)X,=Xq. Define Fij(k)= (n(k)X;, Xj), for i,j~{2,3,4}. 

Then Fij~A(K). The crucial lemma in this chapter is: 

LEMMA 7.4. Let u E B(G/H;A4s). If&u = 0, then for all g E G: 

S (P-,M&)MWk = 0. 
K 

Copying the proof of Lemma 7.3 we note that 

(%‘(‘)Fjj>tkat)= ,=F3 4 F,,tk)@i/tt), Cj~{2,3,4} 
1 I 
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where ~(2)=&(4)= 1 and &(3)=2 and 

G;,(t) = S P,E(‘)(k- ‘U()Fi[(k)dk. 
K 

LEMMA 7.5. The functions @i,(t) (i, I = 2,3,4) satisfy the following differential 
equations: 

(1) Do, + 

(2) 
D@. _ 

r3 @;4=0 

(3) Ddj, - @i4+4jhi&Xj - 

Here D@i,= rP$+ (2(n - 2)cth2t + 2th2t)@;,. 

PROOF. Note that 0 @“FQ= (s2 -e2)Fjj (i,j = 2,3,4) and use [Kosters, 91, 
Lemma 2.4.2 and p. 109 to show that 

@‘-Q2) ,=g3 4 F,j(k)@i,(t)= 
9 I 

F2j(k)@i2(t) + F’j(k)D@iz(t) + 

t im Fqi(k) 

I 
- 

F3j (k) - iG(GZ!)E Fbj (k) 
I 

t  

+ 4 F,j(kk) ch2 2t @i3(t) +FJj(k)D@i3(t) + 

F3j(k)-im F,j(k) 
I 

- 

F3j(k)-fm Fdj(k) @id(t) + 

+ F4j(k)D@i4(t). 

Using the fact that {F2j,F3j,Fdj) is a linearly independent set in A(K), this 
equation implies the lemma. n 

LEMMA 7.6. Notation as in Lemma 7.5. 
i) Up to a scalar, equation (1) has a unique odd real analytic solution on IR. 

The only even analytic solution is 0. 
ii) The space of analytic functions cf g) on R, that are even and satisfy (2) and 

(3), is two dimensional. The only odd analytic solution is (0,O). 
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PROOF. We only prove ii), the proof of i) being easier. Suppose that f(t) = 
=ao+a2t2+ . . . andg(t)=b0+b2t2+... give an analytic solution of (2) and (3), 
for t sufficiently near 0. It is easily seen that the lowest degree term in (2) or 
(3) gives the equation 

- (n - 2)a,, + lln(n-2)bo = 0. 

Assuming that a0 = 0, we get b. = 0. Again we consider the lowest degree term 
in (2) and (3), which is the constant term now. This implies 

-fia2=mbz. 

Therefore, if a2 = 0 then bz = 0. 
Proceeding by induction, we suppose that a0 = a2 = . . . = azl- 2 = 0, b. = b2 = 

= . . . =b2,-2=0 for some I in {2,3 ,... }. The lowest degree term gives: 

I (21(2f- 1) + (n - 2)21- (n - 2))az1 + Iln(n-2)b2, = 0 

i 
(21(21- 1) + (n - 2)21- n)b2, + ima,, = 0. 

The determinant of this system is equal to 4f(Z- 1)(21+n - 3)(21+n - l), 
which is only zero for l=O,l,+(-n+3) and +(-n+l). Using 122, we have 
a21= by=O. 

Summarizing these facts a0 and a2 determine the pair df,g), so the solution 
space is at most two dimensional. The fact that there are two linearly inde- 
pendent solutions will be proved during the proof of Lemma 7.4. In order to 
prove the second statement of ii), suppose that f(t) = a, t + a3t3 + . . . and 
g(t)=blt+b3t3+... give a solution of (2) and (3), for t sufficiently near 0. The 
lowest degree term in (2) and (3) has to be zero, and therefore 

whence al = b, = 0. Now we assume that al = a3 = . . . = a2,-, = 0 and b, = b3 = 
= . . . = b2/-, = 0 for some I in ( 1,2,3, . . . }. Compute the coefficients of t2’- ’ in 
(2) and (3). This yields 

1 ((2t+1)21+(n-2)(21+1)-(n-2))a2,+,+~Y$iT)b2~+1=0 

i 
((21+ 1)2E+ (n - 2)(21+ 1) - n)b2,+ 1 +1/~a2,+, =O. 

The determinant of this system is equal to (2ff 1)(21- 1)(21+ n -2)(21+ n), 
which is nonzero because ~‘2 1. So a2/+ i = b2,+, =0, thereby showing that 
f=g=O. n 

REMARK. It is also possible to prove this lemma by using some standard 
techniques for the solution of these types of differential equations. These tech- 
niques can be found in most books on linear differential equations. 
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Now we can give the 

PROOF OF LEMMA 7.4. Take an arbitrary u E B(G/H;M,) and g E G. Consider 
for g’EG: 

gg’> = s NH- ‘g’)F33(W~. 
K 

As before, Vg is a real analytic element of B(G/H;M,) (cf. the proofs of 
Lemma 7.1 and Lemma 7.3). We have 

where 

u[(t) = j u(gK ‘at)Fy(k)dk (t E IR). 
K 

With notation as in Lemma 7.5 we see that Uz satisfies equation (l), and the 
pair (V,, U,) satisfies (2) and (3). Note that U, is odd whereas Us and U, are 
even. This follows from 

Vg(ka,wo) = l’-,(k~~a-~) = T/,(ka,) (k E K, t E fR) 

with w. as in the proof of Lemma 7.3. We remark that { .P’F&, $F3+ .@F,,} 
is a linearly independent set in A(X), which is an easy consequence of Lemma 
5.5. Now suppose that @ spans the space of odd analytic solutions of (1) and 
that {(U,, Y,), (Z1,Zz)} spans the space of even analytic pairs that satisfy (2) 
and (3). Consider the space V spanned by 

(F23(k)~(f),F33(k)Yl(f) +F43(k)y12(t),F33(k)~,(t) +FdWdt)} 

Of course, the dimension of V is at most three. The fact that, for i=2,3,4, 
,Y:(ifFi3E I/ shows that the dimension of I/ indeed is equal to three (cf. the 
proof of Lemma 7.3). It is easily seen that Vg is an element of V, and therefore 

&= ozW&F23+ ~3(gM~F33+~4&9%943 \ 

for certain complex numbers Ui(g) (i=2,3,4). So: 

P,v,@> = &)c2@) = S UO&WMW~. 
K 

If /3,u =O, then 03(g) =O. Using the matrix C, introduced in Chapter 2, we 
derive 

from which u2(g)=0 easily follows. Substitution of 

0 -1 43 
1 0 

1 

i+ ‘1 
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yields that uq(g) = 0. Therefore, Vg = 0, whence 

P-,~,(e)=O= S (P-,WgW33W~k. 
K 

This integral is equal to 

s L42(gW33W)~k 
K 

thereby completing the proof of the lemma. q 

Note that this also completes the proof of Lemma 7.6. Define for gEG: 

Then F(k) =Fs3(k) - Y(k) (k E K), because (n&)X,, X3) = 0 for all k E K. Note 
that X3 + Xr E g(2a0) and X3 -XI E g( - 2~). As a consequence of Lemma 7.3 
and Lemma 7.4 we have 

COROLLARY 7.7 Let u E B(G/H;M,). If&u = 0, then for all g E G: 

s (P-s~)2(gw(k)~k= 0. n 
K 

Using Lemma 2.5, it is easy to see that (P-sU)2E B(G/Pmi,;LA(_s,;x). Note 
that F is real analytic, F(e) = 2, and 

F(iigman) = X(m)ealfl(‘og @F(g) 

for all g E G, A E fimin = B(Nmi”), m E Mmin, a E Amin and n E Nmin. Therefore, 
using a well-known integration formula (cf. [Oshima, Sekiguchi, 131, p. 51), we 
have 

j (P-su)2(gk)F(k)dk= j (P_,u)2(k)F(g-‘k)e-(~(-S’2)ieo)(H(g-’k))dk 
K K 

where H(g-‘k)Ea, is such that g-‘kEK exp (H(g-‘k))N,i,. As in [Wallach, 
171, define: 

l,(g)=e-‘(H(g)) (gEG, ,I~ap*,c) 

and write (lg f )(x) = f (gx) for g,x E G and f E A(G). With these notations we 
have: 

((P-s~)2,I~(Fll(-s+2)+e,)) =O (*I 

for all g E G. We want to show that (/J-su)2 =O. Define 

Bx(K/A4min) = {f E B(K)1 f (km) = x(m)f (k) for all K E K, m E Mmin) 

Li(K/Mmi,) = {f E L”(K)1 f (km) = x(m)f (k) for (almost) all 
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Then Bx(K/M,in) is the topological dual of A,(K/M,i,) where the spaces are 
topologized in the familiar way. Note that L,2(K/M,i,) is a representation 
space for the principal series representation nXV* (A E a$& by 

(nXJ(g)f)(k) =f(q)(g-‘Q)e-m, (fwlW) 

for g E G, k E K and f EL$K/M,&; here we defined q,(g- ‘k) E K and 
H(g- ‘k) E ap by: 

g-‘kEKg(g-lk) exp (H(g-‘k))Nm,* 

In the same way, L2(K/A4mi,) becomes a representation space for the spherical 
principal series representation nA (cf. [Wallach, 171, Chapter 8). We need 

LEMMA 7.8. Let veazc and pEa* be such that: 
1) 1, is a cyclic vector for the representation rtv on L2(K/~~i,). 
2) Lz(K/Mmi,) contains a nonzero finite dimensional nxYp-invariant sub- 

space VP. 
Suppose that W is an I&,-invariant function in VP, WZO. Then 1, W is a 
cyclic vector for the representation x~,“‘~. 

PROOF. The lemma is a special case of Lemma 8.13.9 from [Wallach, 171. 
n 

In order to show that (*) implies (p-S~)2 = 0, it suffices to prove 

LEMMA 7.9. Let s E UZ, 2s $ Z. Then F1~C-,+2j+e, is a cyclic vector for the left 
regular representation on Ax(K/M,i,), i.e. its left translates span a dense sub- 
space of A,(K/M,iJ. 

PROOF. We use the previous lemma, with ,U = - aln and v = A( -s + 2) + Q,, . 
We have to show that 1, is a cyclic vector for the representation rc”. This 
follows from [Helgason, 51, p. 114 and [Helgason, 61, p. 198, where it is proved 
that 1, is cyclic if and only if e(v - Q,) # 0. Here e(v - Q,) = e(A( - s + 2)), which 
is nonzero because of Lemma 2.2. and the fact that 2s$Z. Now Lemma 7.8 
implies that Fllc++2j+e is a cyclic vector for the representation nx*A(-s)‘eu. 
Note that F satisfies the’properties mentioned in Lemma 7.8. Therefore, the 
left translates of Fl, span a dense subspace, say V, of Li(K/Mmi,). Write 
L = L;(K/Mmi,) and B = A,(K/Mmin). We have to prove that V is dense in B. 
Note that the K-finite vectors in L and B constitute dense subspaces in these 
spaces. 

First we remark that the K-finite vectors in L are automatically real analytic 
functions, because they are linear combinations of matrix coefficients of 
irreducible unitary representations of K. Finally we show that V contains the 
K-finite vectors of L. Therefore, let Ps be the projection of L onto the space 
L, of K-finite vectors of type 6, for fixed 6 EK. Ps is continuous. L6 is finite 
dimensional, for example because of Frobenius reciprocity. Then 
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whence L, = P,(V) = V,, the set of vectors of type 6 in V. 
Combining these facts, we see that V contains a dense subspace of B. n 

Therefore, if u E B(G/H;M,) satisfies &u = 0, then (p-S~)2 = 0. Together 
with Lemma 7.1. this implies that peSu = 0, thereby proving Lemma 5.6. This 
completes the proof of Theorem 5.4. 
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