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Abstract

We will discuss DF , the depth £rst implementation of
APRIORI as devised in 1999 (see [8]). Given a database,
this algorithm builds a trie in memory that contains all fre-
quent itemsets, i.e., all sets that are contained in at least
minsup transactions from the original database. Here min-
sup is a threshold value given in advance. In the trie, that
is constructed by adding one item at a time, every path cor-
responds to a unique frequent itemset. We describe the al-
gorithm in detail, derive theoretical formulas, and provide
experiments.

1 Introduction

In this paper we discuss the depth £rst (DF , see [8])
implementation of APRIORI (see [1]), one of the fastest
known data mining algorithms to £nd all frequent item-
sets in a large database, i.e., all sets that are contained in at
least minsup transactions from the original database. Here
minsup is a threshold value given in advance. There exist
many implementations of APRIORI (see, e.g., [6, 11]). We
would like to focus on algorithms that assume that the whole
database £ts in main memory, this often being the state of
affairs; among these, DF and FP (the FP-growth imple-
mentation of APRIORI, see [5]) are the fastest. In most pa-
pers so far little attention has been given to theoretical com-
plexity. In [3, 7] a theoretical basis for the analysis of these
two algorithms was presented.

The depth £rst algorithm is a simple algorithm that
proceeds as follows. After some preprocessing, which in-
volves reading the database and a sorting of the single items
with respect to their support, DF builds a trie in memory,
where every path from the root downwards corresponds to
a unique frequent itemset; in consecutive steps items are
added to this trie one at a time. Both the database and the trie

are kept in main memory, which might cause memory prob-
lems: both are usually very large, and in particular the trie
gets much larger as the support threshold decreases. Finally
the algorithm outputs all paths in the trie, i.e., all frequent
itemsets. Note that once completed, the trie allows for fast
itemset retrieval in the case of online processing.

We formerly had two implementations of the algorithm,
one being time ef£cient, the other being memory ef£cient
(called dftime.cc and dfmemory.cc, respectively),
where the time ef£cient version could not handle low sup-
port thresholds. The newest version (called dffast.cc)
combines them into one even faster implementation, and
runs for all support thresholds.

In this paper we £rst describe DF , we then give some
formal de£nitions and theoretical formulas, we discuss the
program, provide experimental results, and conclude with
some remarks.

2 The Algorithm

An appropriate data structure to store the frequent item-
sets of a given database is a trie. As a running example in
this section we use the dataset of Figure 1. Each line rep-
resents a transaction. The trie of frequent patterns is shown
in Figure 2. The entries (or cells) in a node of a trie are
usually called buckets, as is also the case for a hash-tree.
Each bucket can be identi£ed with its path to the root and
hence with a unique frequent itemset. The example trie has
9 nodes and 18 buckets, representing 18 frequent itemsets.
As an example, the frequent itemset {A,B,E, F} can be
seen as the leftmost path in the trie; and a set as {A,B,C}
is not present.

One of the oldest algorithms for £nding frequent patterns
is APRIORI, see [1]. This algorithm successively £nds all
frequent 1-itemsets, all frequent 2-itemsets, all frequent 3-
itemsets, and so on. (A k-itemset has k items.) The frequent
k-itemsets are used to generate candidate (k + 1)-itemsets,



Dataset

transaction items
number

1 B C D
2 A B E F
3 A B E F
4 A B C F
5 A B C E F
6 C D E F

Frequent itemsets when minsup = 3

support frequent itemsets
5 B, F
4 A, AB, AF, ABF, BF, C, E, EF
3 AE, ABE, ABEF, AEF, BC,

BE, BEF, CF

Figure 1. An example of a dataset along with
its frequent itemsets.
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Figure 2. An example of a trie (without sup-
port counts).

where the candidates are only known to have two frequent
subsets with k elements. After a pruning step, where can-
didates still having infrequent subsets are discarded, the
support of the candidates is determined. The way APRIORI

£nds the frequent patterns implies that the trie is built layer
by layer. First the nodes in the root (depth = 0) are con-
structed, next the trie nodes at depth 1 are constructed, and

so on. So, APRIORI can be thought of as an algorithm that
builds the pattern trie in a breadth £rst way. We propose an
algorithm that builds the trie in a depth £rst way. We will ex-
plain the depth £rst construction of the trie using the dataset
of Figure 1. Note that the trie grows from right to left.

The algorithm proceeds as follows. In a preprocessing
step, the support of each single item is counted and the in-
frequent items are eliminated. Let the n frequent items be
denoted by i1, i2, . . . , in. Next, the code from Figure 3 is
executed.

(1) T := the trie including only bucket in;
(2) for m := n− 1 downto 1 do
(3) T ′ := T ;
(4) T := T ′ with im added to the left and

a copy of T ′ appended to im;
(5) S := T\T ′ (= the subtrie rooted in im);
(6) count(S, im);
(7) delete the infrequent itemsets from S;

(9) procedure count(S, im) ::
(10) for every transaction t including item im do
(11) for every itemset I in S do
(12) if t supports I then I .support++;

Figure 3. The algorithm.

The procedure count(S, im) determines the support of
each itemset (bucket) in the subtrie S. This is achieved by
a database pass, in which each transaction including item
im is considered. Any such transaction is one at a time
“pushed” through S, where it only traverses a subtrie if it
includes the root of this subtrie, meanwhile updating the
support £elds in the buckets. In the last paragraph from Sec-
tion 4 a re£nement of this part of the algorithm is presented.
On termination of the algorithm, T exactly contains the fre-
quent itemsets.

Figure 4 illustrates the consecutive steps of the algorithm
applied to our example. The single items surpassing the
minimum support threshold 3 are i1 = A, i2 = B, i3 =
C, i4 = E and i5 = F . In the £gure, the shape of T after
each iteration of the for loop is shown. Also the infrequent
itemsets to be deleted at the end of an iteration are men-
tioned. At the start of the iteration with index m, the root of
trie T consists of the 1-itemsets im+1, . . . , in. (We denote a
1-itemset by the name of its only item, omitting curly braces
and commas as in Figure 1 and Figure 4.) By the statement
in line (3) from Figure 3, this trie may also be referred to as
T ′. A new trie T is composed by adding bucket im to the
root and by appending a copy of T ′ (the former value of T )
to im. The newly added buckets are the new candidates and
they make up a subtrie S. In Figure 4, the candidate set S is
in the left part of each trie and is drawn in bold. Notice that
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Figure 4. Illustrating the algorithm.

the £nal trie (after deleting infrequent itemsets) is identical
to Figure 2.

The number of iterations in the for loop is one less
than the number of frequent 1-itemsets. Consequently, the

number of database passes is one less than the num-
ber of frequent 1-itemsets. This causes the algorithm to
be tractable only if the database under consideration is
memory-resident. Given the present-day memory sizes, this
is not a real constraint any more.

As stated above, our algorithm has a preprocessing step
which counts the support for each single item. After this
preprocessing step, the items may be re-ordered. The most
favorable execution time is achieved if we order the items
by increasing frequency (see Section 3 for a more formal
motivation). It is better to have low support at the top of the
deeper side (to the left bottom) of the trie and hence, high
support at the top of the shallow part (to the upper right) of
the trie.

We may distinguish between “dense” data sets and
“sparse” datasets. A dense dataset has many frequent pat-
terns of large size and high support, as is the case for
test sets such as chess and mushroom (see Section 5).
In those datasets, many transactions are similar to each
other. Datasets with mainly short patterns are called sparse.
Longer patterns may exist, but with relatively small sup-
port. Real-world transaction databases of supermarkets
mostly belong to this category. Also the synthetic datasets
from Section 5 have similar properties: interesting support
thresholds are much lower than in the dense case.

Algorithms for £nding frequent patterns may be divided
into two types: algorithms respectively with and without
candidate generation Any APRIORI-like instance belongs to
the £rst type. Eclat (see [9]) may also be considered as an
instance of this type. The FP-growth algorithm FP from
[5] is the best-known instance of the second type (though
one can also defend the point of view that it does generate
candidates). For dense datasets, FP performs better than
candidate generating algorithms. FP stores the dataset in
a way that is very ef£cient especially when the dataset has
many similar transactions. In case of algorithms that do ap-
ply candidate generation, dense sets produce a large number
of candidates. Since each new candidate has to be related
to each transaction, the database passes take a lot of time.
However, for sparse datasets, candidate generation is a very
suitable method for £nding frequent patterns. To our expe-
rience, the instances of the APRIORI family are very useful
when searching transaction databases. According to the re-
sults in [7] the depth £rst algorithm DF outperforms FP-
growth FP in the synthetic transaction sets (see Section 5
for a description of these sets).

Finally, note that technically speaking DF is not a full
implementation of APRIORI, since every candidate itemset
is known to have only one frequent subset (resulting from
the part of the trie which has already been completed) in-
stead of two. Apart from this, its underlying candidate gen-
eration mechanism strongly resembles the one from APRI-
ORI.



3 Theoretical Complexity

Let m denote the number of transactions (also called
customers), and let n denote the number of products (also
called items). Usually m is much larger than n. For a non-
empty itemset A ⊆ {1, 2, . . . , n} we de£ne:

• supp(A) is the support of A: the number of customers
that buy all products from A (and possibly more), or
equivalently the number of transactions that contain A;

• sm(A) is the smallest number in A;

• la(A) is the largest number in A.

In line with this we let supp(∅) = m. We also put la(∅) = 0
and sm(∅) = n + 1. A set A ⊆ {1, 2, . . . , n} is called fre-
quent if supp(A) ≥ minsup, where the so-called support
threshold minsup is a £xed number given in advance.

We assume every 1-itemset to be frequent; this can be
effected by the £rst step of the algorithms we are looking
at, which might be considered as preprocessing.

A “database query” is de£ned as a question of the form
“Does customer C buy product P ?” (or “Does transaction
T has item I?”), posed to the original database. Note that
we have mn database queries in the “preprocessing” phase
in which the supports of the 1-itemsets are computed and
ordered: every £eld of the database is inspected once. (By
the way, the sorting, in which the items are assigned the
numbers 1, 2, . . . , n, takes O(n log n) time.) The number
of database queries for DF equals:

m(n−1)+
∑

A6=∅
A frequent

sm(A)−1∑

j=1

supp({j}∪A\{la(A)}) . (1)

For a proof, see [3]. It relies on the fact that in order for a
node to occur in the trie the path to it (except for the root)
should be frequent, and on the observation that this partic-
ular node is “questioned” every time a transaction follows
this same path. In [3] a simple version of FP is described
in a similar style, leading to

∑

A6=∅
A frequent

n∑

j=la(A)+1
{j}∪A\{la(A)} frequent

supp(A) (2)

database queries in “local databases” (FP-trees), except for
the preprocessing phase. Note the extra condition on the in-
ner summation (which is “good” forFP: we have less sum-
mands there), while on the other hand the summands are
larger (which is “good” for DF : we have a smaller contri-
bution there).

It makes also sense to look at the total number of nodes
of the trie during its construction, which is connected to the

effort of maintaining and using the datastructures. Counting
each trie-node with the number of buckets it contains, the
total is computed to be:

n +
∑

A6=∅
A frequent

sm(A)−1∑

j=1

1 =
∑

A frequent

[sm(A)− 1] . (3)

When the trie is £nally ready the number of remaining buck-
ets equals the number of frequent sets, each item in a node
being the end of the path that represents the corresponding
itemset.

Notice that the complexity heavily depends on the sort-
ing order of the items at the top level. It turns out that an in-
creasing order of items is bene£cial here. This is suggested
by the contribution of the 1-itemsets in Equation (1):

n∑

i=1

(n− i) supp({i}) , (4)

which happens to be minimal in that case. This 1-itemset
contribution turns out to be the same for both DF and FP:
see [3, 7], where also results for FP are presented in more
detail.

4 Implementation Issues

In this section we discuss some implementation details
of our program. As mentioned in Section 2, the database
is traversed many times. It is therefore necessary that the
database is memory-resident. Fortunately, only the occur-
rences of frequent items need to be stored. The database
is represented by a two-dimensional boolean array. For ef£-
ciency reasons, one array entry corresponds to one bit. Since
the function count in the algorithm considers the database
transaction by transaction, a horizontal layout is chosen,
cf. [4].

We have four preprocessing steps before the algorithm
of Section 2 actually starts.

1 The range of the item values is determined. This is nec-
essary, because some test sets, e.g., the BMS-WebView
sets, have only values > 10, 000.

2 This is an essential initial step. First, for each item the
support is counted. Next, the frequent items are se-
lected and sorted by frequency. This process is rele-
vant, since the frequency order also prescribes the or-
der in the root of the trie, as stated before. The sorted
frequent items along with their supports are retained in
an array.

3 If a transaction has zero or one frequent item, it needs
not to be stored into the memory-resident representa-
tion of the database. The root of the trie is constructed



according to the information gathered in step 2. For
constructing the other buckets, only transactions with
at least two frequent items are relevant. In this step, we
count the relevant transactions.

4 During this step the databases is stored into a two-
dimensional array with horizontal layout. Each item is
given a new number, according to its rank in the fre-
quency order. The length of the array equals the result
of step 3; the width is determined by the number of
frequent items.

After this preparatory work, which in practice usually takes
a few seconds, the code as described in Section 2 is exe-
cuted. The cells of the root are constructed using the result
of initial step 2.

In line (12) from Figure 3 in Section 2, backtracking is
applied to inspect each path P of S. Inspecting a path P is
aborted as soon as an item i with i outside the current trans-
action t is found. Obviously, processing one transaction dur-
ing the count procedure is a relatively expensive task, which
is unfortunately inevitable, whichever version of APRIORI

is used.

As mentioned in the introduction, we used to have two
implementations, one being time ef£cient, the other being
memory ef£cient. These two have been used in the overall
FIMI’03 comparisons. The newest implementation (called
dffast.cc) combines these versions by using the follow-
ing re£nement. Instead of appending a copy T ′ of T to im
(see Figure 3 in Section 2), £rst the counting is done in aux-
iliary £elds in the original T , after which only the frequent
buckets are copied underneath im. This makes the dele-
tion of infrequent itemsets (line (7) from Figure 3) unnec-
essary and leads to better memory management. Another
improvement might be achieved by using more auxiliary
£elds while adding two root items simultaneously in each
iteration, thereby halving the number of database passes at
the cost of more bookkeeping.

5 Experiments

Using the relatively small database chess (342 kB, with
3,196 transactions; available from the FIMI’03 website at
http://fimi.cs.helsinki.fi/testdata.html), the
database mushroom (570 kB, with 8,124 transactions; also
available from the FIMI’03 website) and the well-known
IBM-Almaden synthetic databases (see [2]) we shall exam-
ine the complexity of the algorithm. These databases have
either few, but coherent records (chess and mushroom),
or many records (the synthetic databases). The parameters
for generating a synthetic database are the number of trans-
actions D (in thousands), the average transaction size T and
the average length I of so-called maximal potentially large

itemsets. The number of items was set to N = 1,000, fol-
lowing the design in [2]. We use T10I4D100K (4.0 MB)
and T40I10D100K (15.5 MB), both also available from
the FIMI’03 website mentioned above; they both contain
100,000 transactions.
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Figure 5. Experimental results for database
chess.
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Figure 6. Experimental results for database
mushroom.

The experiments were conducted at a Pentium-IV ma-
chine with 512 MB memory at 2.8 GHz, running Red Hat
Linux 7.3. The program was developed under the GNU C++

compiler, version 2.96.
The following statistics are plotted in the graphs: the ex-

ecution time in seconds of the algorithm (see Section 4),
and the total number of frequent itemsets: in all £gures the
corresponding axis is on the right hand side and scales 0–
5,500,000 (0–8,000,000 for T10I4D100K). The execution
time excludes preprocessing: in this phase the database is
read three times in order to detect the frequent items (see
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Figure 7. Experimental results for database
T10I4D100K.
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Figure 8. Experimental results for database
T40I10D100K.

before); also excluded is the time needed to print the re-
sulting itemsets. These actions together usually only take a
few seconds. The number of frequent 1-itemsets (n from
the previous sections, where we assumed all 1-itemsets
to be frequent) has range 31–39 for the experiments on
the database chess, 54–76 for mushroom, 844–869 for
T10I4D100K and 610–862 for T40I10D100K. Note the
very high support thresholds for mushroom (at least 5%)
and chess (at least 44%); for T10I4D100K a support
threshold as low as 0.003% was even feasible.

The largest output £les produced are of size 110.6 MB
(chess, minsup = 1,400, having 3,771,728 frequent sets
with 13 frequent 17-itemsets), 121.5 MB (mushroom, min-
sup = 400, having 3,457,747 frequent sets with 24 frequent
17-itemsets), 131.1 MB (T10I4D100K, minsup = 3, hav-
ing 6,169,854 frequent sets with 30 frequent 13-itemsets
and 1 frequent 14-itemset) and 195.9 MB (T40I10D100K,

minsup = 300, having 5,058,313 frequent sets, with 21 fre-
quent 19-itemsets and 1 frequent 20-itemset). The £nal trie
in the T40I10D100K case occupies approximately 65 MB
of memory — the output £le in this case being 3 times as
large.

Note that the 3,457,747 sets for the chess database
with minsup = 1,400 require 829 seconds to £nd, whereas
the 3,771,728 frequent itemsets for mushroom with min-
sup = 400 take 158 seconds — differing approximately
a factor 5 in time. This difference in runtime is probably
caused by the difference in the absolute minsup value. Each
cell corresponding to a frequent itemset is visited at least
1400 times in the former case against 400 times in the lat-
ter case. A similar phenomenon is observed when compar-
ing T40I10D100K with absolute minsup value 300 and
T10I4D100K with minsup = 3: this takes 378 versus 88
seconds. Although the outputs have the same orders of mag-
nitude, the runtimes differ substantially. We see that, besides
the number of frequent itemsets and the sizes of these sets,
the absolute minsup value is a major factor determining the
runtime.

6 Conclusions

In this paper, we addressed DF , a depth £rst implemen-
tation of APRIORI. To our experience, DF competes with
any other well-known algorithm, especially when applied to
large databases with transactions.

Storing the database in the primary memory is no longer
a problem. On the other hand, storing the candidates causes
trouble in situations, where a dense database is considered
with a small support threshold. This is the case for any al-
gorithm using candidates. Therefore, it would be desirable
to look for a method which stores candidates in secondary
memory. This is an obvious topic for future research. To
our knowledge, FP is the only algorithm that can cope
with memory limitations. However, for real world retail
databases this algorithm is surpassed by DF , as we showed
in [7]. Other optimizations might also be possible. Besides
improving the C++ code, ideas from, e.g., [10] on diffsets
with vertical layouts might be used.

Our conclusion is thatDF is a simple, practical, straight-
forward and fast algorithm for £nding all frequent itemsets.
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