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1 Introduction
A multiset (also referred to as a bag) is a set (collection of elements where the order is of no importance),
where the elements do not need to be unique. A vase withn blue andm red marbles is a multiset for example.

We propose a new class of distance measures (metrics) designed for multisets, both of which are a
recurrent theme in manydata mining [2] applications. One particular instance of this class originated from
the necessity for a clustering of criminal behaviours. Herethe multisets are the crimes committed in one
year. This metric generalises well-known distance measures like the Jaccard and the Canberra distance.

These distance measures are parameterised by a functionf which, given a few simple restrictions, will
always produce a valid metric. This flexibility allows thesemeasures to be tailored for many domain-specific
applications. The metrics in this class can be efficiently calculated. In the full paper, all proofs are given and
various applications are shown.

2 The Metric
In order to produce a decent distance measuredf , we carefully choose a functionf(x, y) that denotes the
difference between the number of elementsx andy of a specific type. This can not be any function; it has
to have a finite supremumM andf(x, 0) must be larger than or equal toM/2 (for x > 0) in order for
the triangle inequality to hold. The function should also besymmetric andf(x, x) should be zero. Also,
the triangle inequality must hold forf itself as well. With thisf we can now define a metric for multisets.
We consider multisetsX, Y over{1, 2, . . . , n}, and letxi ∈ Z≥0 (resp.yi) be the number of times thati
(i = 1, 2, . . . , n) occurs inX (resp.Y ). For a multisetX , let S(X) denote its underlying set. We define
df (∅, ∅) = 0 and for multisetsX, Y :

df (X, Y ) =
∑n

i=1 f(xi, yi)
|S(X) ∪ S(Y )|

if X or Y is non-empty.
The application of weights for certain elements can be done by multiplying the appropriate number of

elements by the weight. An important characteristic of these metrics is that the distance increases signifi-
cantly when we add an extra dimension. This is not the case in other well-known metrics like the standard
Euclidean distance.

3 Example
We use the following function to give an impression of the measure. As the expert defined function, we take
f(x, y) = |x− y|/(x + 1)(y + 1).

As a test case, we made the following synthetic dataset with fictional crimesA, B, C andD of increasing
severity, and criminals ranging from 1 to 10 as seen in Table 1. For each criminal the number of crimes in
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each category is given. For instance, 1 is innocent, 2 is an incidental small criminal, 6 is a one-time offender
of a serious crime, and 10 is a severe criminal.

1 2 3 4 5 6 7 8 9 10
A 0 2 10 0 0 0 0 2 0 2
B 0 0 0 2 0 0 2 4 0 2
C 0 0 0 0 1 0 2 0 3 2
D 0 0 0 0 0 1 1 0 5 2

Table 1: Ten criminals (1, 2, . . . , 10), four crimes (A,B, C,D)

We use a distance preserving dimension reduction algorithmdescribed in [1] to obtain the visualisations
in Figure 1. When we choose the same weights for all categories, we obtain the picture on the left. Number
2 and 3 are close together, and 8 is near there too. This is whatwe would expect. Number 9, 7 and 5 are
close together too, as could be expected; 1, 4 and 6 however are close to each other because they have a large
distance to all others.

Figure 1: Two different clusterings for ten criminals

If we apply weights (1, 10, 100, 1000 for A,B, C,D respectively) to accentuate the severity of a crime,
we obtain the picture on the right. This gives more insight into the nature of the criminal, 10 and 7 are close
together for example (both heavy criminals), while 2, 3 and 1are close to each other because they have
committed no or relatively light crimes.

4 Conclusions and Further Research
We have proposed a flexible distance measure, that is suitable in many fields of interest. It can be fine tuned
to a large extent. This may result in different visualisations, illustrating different aspects of the data (see
Figure 1).

We can use this measure as a basis for further analysis, like the analysis of criminal careers. In that case,
we suggest that the distance measure is used as a basis foralignment to make the best match between two
careers. By doing this, and by comparing sub-careers, we might be able to extrapolate criminal behaviour
based upon the criminal record through time.
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