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Abstract

We propose a visualization algorithm that, given a set ohfsoin high-dimensional space, will produce

an image projected on a 2-dimensional torus. The algorithenpush and pull oriented technique which
uses a sigmoid-like function to correct the pairwise distsn We describe how to make use of the torus
property and show that using a torus is a generalization @f@ing the standard closed unit square.
Experiments show the merits of the method.

1 Introduction

In many situations one wants to cluster and/or visualiza fit In this paper we will describe a method to
visualize a perhaps large set of data points on a 2-dimeaissomface: @orusU. So we start with a finite
set ofn data point(p1, p2, . . ., pn }. We use some given metritto compute the distaneg; = d(p;, p;)
betweerp; andp; (i,j € {1,2,...,n}), which yields a symmetric matrik’ = (d;;);;_,. This matrixD
will be the basis for our further actions. Its entries willteéerred to as thdesired distance®©ur goal is to

obtain points{p, ph, ..., p.} (the so-callecturrent point§ in U, in such a way that the distance between
Dl andp;- in U (the current distancgresembles!;;, the desired distance betwepnandp;, as much as
possible fori, j € {1,2,...,n}. The total sum of the absolute differences between the rudistance and

the desired distance is therefore minimised. Togetheguh®nt points constitute thmirrent configuration
Once this configuration is established, it can be used faoats of clustering purposes.

Our algorithm repeatedly takes two current points, and @sithem together or pulls them apart with a
correction factor depending on the relation between desired and currerindist We use aimflation fac-

tor and acorrection multiplierto improve the current configuration. Note that the distariod/ do not
change when one rotates, mirrors or translates all poilrise®ur method makes use of random elements,
visualizations might be the same under rotation, mirrodntgranslation, but it is also possible that they are
actually different.

There are many methods that perform a dimension reductiem®&htion Multi Dimensional Scaling (MDS,
see [1, 4]) and Principal Component Analysis (PCA, see [dj well-known statistical methods. Other
methods include several types of (competitive) neural agke; such as Kohonen’s Self Organizing Maps
(SOMs, see [4]) and vector quantization (again, see [4])ofparison of all these methods is beyond the
scope of this paper (e.g., see [2]), we just mention two &skiest, our method is intuitive, very fast and
requires no complicated mathematical operations, suchaasxninversion; it is suited for large datasets.
Second, it is possible to add, remove or alter data pointswthe algorithm is running, and even trace
individual points. It is even possible to visually inspdu tturrent configuration in each iteration. Finally,
the use of the torus appears to be both natural and easy tatde#tcalso performs better than the previously
used closed unit square (with boundary, cf. [6]), but s&l fall its merits. Notice that when using & x 0.5
sub-square of/, one has this situation as a special case.

In Section 2 we define the torus, and mention some alternaippelogies. The method is described in
Section 3. Section 4 has experiments, and we conclude iflD8éct



2 The torus

In this section we mention some issues concerning our siurfde first give the proper definitions, and also
point out a few difficulties that might arise, and some othesgibilities.

The surface is basically the unit squdrein R?, with sides identified in such a way that it topologically
is atorus left and right boundary are identified, and so are top antbboboundary, see Figure 1 below.
The resulting surface has no boundaries. As distance betivae pointsa andb in U we just take the
minimum of the ordinary Euclidean distances betweand any point fron{b+ (k,¢) | k,£ € {—1,0,1}}.

This surface will be referred to as “the” torus. Note thatdistance inot the one that arises when a torus
is embedded iR? in the usual way (as a doughnut). In our case a visualizatoa @anit square is more
appropriate, remembering that left-hand and right-hadd are near to one another (and also top side and
bottom side).
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Figure 1: Unit square with sides identified: the totds

As specified above, the surface we use is not the standami@adional unit square in the Euclidean space
R2, but a 2-dimensional torus. The main advantage of using aunhnifold is that there are more degrees
of freedom in such a space.

A disadvantage of using a torus is that it is impossible taram every circle to a point, and thus there are
configurations possible where clusters are wrapped ardwntbtus and thus might get stuck in a “local
minimum?”. A solution to this is to use a sphere (where eacbtleican be contracted to a point), but the
projection of a globe onto a flat 2-dimensional space givestarded image (just like the map of the earth,
the polar regions usually appear much larger than they bctre).

Another way to prevent the potential wrapping around thegds to use a non-random initialization. If all
points are initialized in one (small) area, the process milist likely not result in a configuration where
wrapping is an issue. This can even be forced by placing amaxi distance (determined by the circum-
ference of the torus) on the correction part of the algorithm

There are more possibilities for such surfaces, like the oreentable Klein bottle (obtained when identify-
ing the dotted arrows from Figure 1 in opposite directionfharreal projective plane, but from all these, the
metric on a torus (as specified above) is most like the staridaclidean one, so it is natural to choose this
object.

3 Algorithm

The algorithm we use ispush and pulbriented one, where the correction factor depends on tferelifce
between the desired distandg.i.cq and the current distana&.....n;. This current distance, or rather its
square, between two poinis= (x1,y;) andb = (x2,y2) from U can be efficiently computed by:

dcurrent ((xlayl)a (an y2)) =
var rs <— I2;
var ys < y2;
if 1 — 22 > 0.5 then z3 «— x3 + 1.0;
if 1 — 22 < —0.5 then z3 «— x3 — 1.0;
if y3 —y2 > 0.5 then y3 «— y3 + 1.0;
if y1 —y2 < —0.5 then y; «— y3 — 1.0;
return (z; —23)% + (y1 — y3)?;

Quadratic distance between pointdin




The point’ = (z3,y3) is the (or more precisely, a) point frofd + (k,¢) | k,¢ € {—1,0,1}} that realizes
the shortest distance o This point will also be used later on. The maximal quadrditance between any
two points fromU equald).5. (We will omit the word “quadratic” in the sequel.)

Instead of a linear or a constant function (of the currertadise) to calculate the amount of correction, we
can and will use a sigmoid-like function, or rather a famifyfunctions. This function must adhere to some
simple constraints, enumerated below. So we want a fungtienf,, ..., whichis defined of0, 0.5], where
0.5 is the maximum distance between two points (on the torus)miyst have, with) < dgesirea < 0.5
fixed:

* f0)=p
.« 05) ==
* f(ddesired) =0

Herep € (0, 1] is the so-calleatorrection multiplier So when the current distance is as desiffeldas value
0 — and so has the correction. The resulting correction faetarfac equalsf (deurrent)- If ddesirea = 0,
we make it slightly larger; similarly, iflqesirea = 0.5, we make it slightly smaller.

We will use

p cos (mlog,(2z(t — 1)+ 1)) if dgesirea 7# 0.25

Jasecnea () = { p cos (w2z) if dgesired = 0.25

wheret = (1 — 1/(2dqesirea))?; this function satisfies all the constraints. Figure 2 despfg.; and fy o5,
with p = 1.

The reason we choose a function like this, is because theatan of a point will be large when the error
of that point is large. Only when the error is close to zere,dbrrection will be small. Other functions like
suitable sigmoids will have the same behaviour, and couslol la¢ employed.
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Figure 2:f4,.....s With dgesired = 0.1 anddgesirea = 0.25, p = 1.

Now suppose we want to “push and pull” two given poiats= (z1,y1) andb = (x2,y2) in U; we first
computeb’ = (x3,ys3) as in the distance calculation @f,,.ent @bove. Then the coordinates andy; of a
are updated through

T — 21+ COT”I"fCLC . |ddesired - dcurrent| : (xl - ‘T?)) / 2 (1)
Y1 — U1 + corrfac . |ddesired - dcurrent| . (yl - y3) / 2

A positive corrfac corresponds with pushing apart, a negative one with puttiggther. In a similar way,
the coordinatess; andys of b are updated in parallel. If a coordinate becomes smaller@have add 1, and
if it becomes larger than 1, we subtract 1. Together we willréo this as Equation (1).

The basic structure of the algorithm is as follows:



initialize all current points in a small region 6f
while not Ready do
update all pairs (in arbitrary order) with Equation (1)

The push and pull algorithm

The algorithm terminates when the mean error and the stdnlgaation no longer substantially change, or
are low enough. The error is defined in the usual way: we jusipede

I & v - -
m Z Z |ddesired (27 ]) - dcurrent (27 ])'

i=1 j=i+1

wheredgesired (%, j) anddeurrent (2, j) are the desired and current distance between data poirtsdp;,
respectively.

Of course, the algorithm might get stuck in a local optimumdAit is also possible that the final error
remains high or keeps fluctuating, especially if the datasgiuted in a complicated way. So far, we have
not experienced this in practical situations, where cageece was always achieved.

We now introduce the inflation factet, and secondly comment on the correction multiptier

3.1 Inflation factor

Theinflation factore > 0 can be used in the following way: Equation (1) is changed to
Tl — x1 + COT’?"fClC : |U * desired — dcurrentl : ($1 - ,Tg) / 2. (2)

This can be useful in several ways. If, for example, all dists are betweehand0.2, one might argue
that it is useful to multiply these distanceshy to get a better spreading. This argument is especially valid
if the resulting clustering cannot be realized in the pldng,can be embedded on a torus. Inflation with
the right factor can make the overall error drop to zero is tidase, while using the original distances will
always result in a non-zero overall error.

Even if all distances are betweérand0.5, inflation or deflation can still be beneficial. For example t
input data can be such that inflation or deflation will resnlthie correct clustering of a large part of the
input, while not using an inflation factor will result in a nmtubigher overall error. An example of such
input data would be a torus that is scaled betw@and0.2, with a few points outside this region. Normal
clustering would result in a flat image where the points agtsie torus region would have correct distances
to the torus region, but with the correct inflation factoe tbrus will be mapped on the entire space, and
the few points outside the region will be misclustered. Th®ults in a clustering where the overall error is
small.

In practice we often take = 1.

3.2 Correction multiplier

The correction multiplierp is a parameter which controls the aggressiveness of theatmmn function.
Initially this factor is set to 1, but for data that can not Imebedded in the plane, lowering this factor can be
beneficial.

If, for example, most of the distances are near the maximhengcorrection function will push them so far
apart, that they are pushed towards other points at he atteo§the torus. This can result in the rapid
fluctuation between two or more stable states. These steggsr@bably not the global minimum for the
clustering error, and therefore not the end result we desiceeasing the correction multiplier will counter
this effect.



4 Experiments

In this section we describe several experiments, both othetin and real data. The experiments are of an
exploratory nature. We try to give a good impression of theitsef the algorithm.

We start with a synthetic dataset. In the left-hand pictdrEigure 3 we see the original data points (in a
“flat” 2D plane), from which a distance matrix is derived tovaeas test data for the visualization algorithm.
In this picture we see seven spheres of which three are unigei¢opmost two and the one in the center.
The other four spheres are copies of one another. The totabauof points isr00 and all distances are
betweer).0 and0.5.
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Figure 3: Original data in the 2D plane (left) and visuali@aton the torus (right).

After only a few iterations of our algorithm, the right-hapitture of Figure 3 appears. Notice how it
resembles the input data, except for a mirroring and a oytafill distances are preserved almost perfectly.
Remember that only the pairwise distances were used by gogithim. The mean error in this picture is
0.00004 and the standard deviation(s00003. As a final remark, “flat data” will always cluster within a
sub-square of siz&.5 x 0.5.
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Figure 4: Visualization of flat data on the torus with an indahflation factor.

In Figure 4 we see the same test data, except that the distaaee been multiplied by a factoss in the left-
hand picture, and b®.6 in the right-hand one. This results in a non-correct embegidiince the maximum
distance in this space i55. The effects can be seen in Figure 4, in particular in thet+iigind picture. In
both pictures a translation has been applied in order teecembst points. Though the full0 x 1.0 square
has been used, most current points reside in the snailer0.5 square, as is clearly visible in the right-hand
picture.

The top-left sphere is forced closer to the bottom-left dramtis possible. This results in the flattening of
the spheres at the outermost edges. This effect can be maglay considering the overall error (which is
minimized). By a local deformation, the overall error is kemall. The effect can also be seen (to a lesser



extent) in the middle-left sphere. Notice that the effeetisent in the top-central sphere because of the void
at the bottom-center of the picture (there is nothing toidelith at the other side of the torus).
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Figure 5: Visualization of criminals, non flat case. Lefttlwtategories; right: without categories.

In Figure 5, left, we see a visualization of real data. We halen a database ®f000 criminal records and
divided the crimes into three categories (light, middlea\g: each record has three integers, describing
the number of crimes in the respective categories. Thentistmeasure we use is one defined on multisets
and is described in [5]. It basically averages the absolifterdnces between the numbers of crimes. We
mention that MDS gives a similar picture.

The resulting matrix cannot be embedded in the plane, blrhibst could, since the mean error is relatively
small0.00494 and so is the standard deviati®@00529. We refer to this type of situation as a “non flat case”.
An indication that the data is almost flat, is that the clustestays within theé).5 x 0.5 sub-square, and
inflation increases the error. There are four main clustetiis picture, where:

» The leftmost one consists of criminals that have commitédattively light crimes. They all fall into
the categories light and middle.

» The top one consists of all-rounders, they have all conaahittimes in all categories.

» The rightmost one consists of criminals that have only cattechlight and heavy crimes, nothing in
between.

» The bottom one consists of criminals that have only conaditight crimes, all of them fall into the
category light.

Then there is a very small cluster in the top-right cornehefpicture, this is a cluster of people who have
only committed heavy crimes. This is apparently non-stashtb@haviour for a criminal. There are a few
other isolated points in this picture, they all are peopléaaistrange criminal record.

In Figure 5, right, we see the clusteringl® criminals based upon the same distance measure as in Figure 5
but now we danot categorize the crimes; here the records have 80 attriblitesresult is a scattered image
(largely due to the lack of similarity), occupying a largetga the unit square, and only a few local clusters.
We make use of inflation facter = 2 and correction multipliep = 1/16 here, to produce the picture with

a mean error 00.02636 and a standard deviation 6f01786. All visualizations are obtained within a few
seconds.

Finally, we show an example from chemistry. The dataset wee the so-called069.n0_aro dataset, con-
tains 4,069 molecules (graphs); from this we extractedtadatontaining the 2,149 most frequent sub-
graphs. These are grouped into 298 structural relatedrpatbecurring in the same molecules using meth-
ods presented in [3], resulting in a 298 by 298 distance matre distance between graphs is based on the
number of co-occurrences.

Figure 6 shows two visualizations. The left-hand picture im@ar.03488 and standard deviatidn03117,

with parameterp = 0.048 ando = 1.1; the right-hand picture has me@r05029 and standard deviation
0.03200, with parameterp = 0.031 ando = 0.5. The latter picture is what we would have gotten when we
had used a bounded unit square. The first picture gives a leatiteedding, with a lower error. The groups
that pop up can be used by a biologist to investigate biokgictivity.
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Figure 6: Two visualization of a dataset with moleculeg; lgbod embedding; right: inferior embedding, in
fact the torus property is used but not exploited.

5 Conclusions and further research

We conclude that our algorithm is able of giving adequataaligations on the torus. Starting from a set of
data points and their pairwise distances, it quickly pregidn embedding on this surface. The algorithm is
fast, flexible and easy to use, for instance for clusterimppses.

The method was originally developed for the analysis of orahrecords (see Section 4), and performs
quite well in this case, but it also appears to be applicablether fields. We would like to compare its
performance with that of existing methods.

For further research, we would like to examine other topi@egsuch as a sphere. Yet another possibility is
to somehow fix current points, once they have reached a gositiggowith respect tananyother points.
And finally, the online addition of new points.
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