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Abstract. We propose a new measure of support (the number of oc-
currences of a pattern), in which instances are more important if they
occur with a certain frequency and close after each other in the stream
of records. We will explain this new consecutive support and show how
consecutiveness and the notion of hypercliques can be incorporated into
the Eclat algorithm.
Synthetic examples show how interesting phenomena can now be discov-
ered in the datasets. The new measure can be applied in many areas,
ranging from bio-informatics to trade, supermarkets, and even law en-
forcement. We will use it in genomic profiling, where it is important to
find patterns contained in many individuals: patterns close together in
one chromosome are more significant.

1 Introduction

In earlier research we explored the use of frequent itemsets to visualize deviations
in chromosome data concerning people with a certain illness, genomic profiling
[4]. During our exploration of this problem it became apparent that patterns
are more important when the areas (transactions) in which they occur are close
together. The consecutiveness of transactions containing the pattern plays an
important role in other applications too. Patterns are frequent sets of items,
where frequent means that their support, that can be defined in different ways,
is more than a pre-given threshold. In the biological problem the items are
individuals and the transactions are “clones”, pieces of the chromosome that
might occur more or less often than in a healthy individual. Patterns in close
transactions are better because they are close together in the chromosome and
are biologically more significant than patterns that are far apart and in different
chromosomes.

Consecutive support informally is the support or the number of occurrences
of patterns where we take into account the distance between transactions that
contain the pattern: the consecutive support should be higher when occurrences
are close together. Here distance is the number of in-between transactions that
do not contain the pattern. Of course, this only makes sense if the transactions
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are given in some logical order. We will use consecutive support for genomic
profiling, however this type of support can be applied in a number of other
domains:

– Supermarket. E.g., big supermarkets receive large quantities of goods every
day. Knowing which goods will be sold in large quantities close in time helps
the supermarket decide when to refill these goods.

– Trading. E.g., a combination of stock being sold once may lead to waves
of these stocks being sold close after each other while other combinations
might not.

– Law enforcement. E.g., when police investigates telephone calls, subjects
that are discussed during a longer period might be more interesting than
subjects (word combinations) that are mentioned often at separate moments.

In this paper we define consecutive support, having two parameters: the re-
ward factor ρ and the punishment factor σ. Existing pruning methods can be
easily incorporated. In particular h-confidence and hypercliques enable us to am-
plify consecutive behaviour. With our experimental results we show how consec-
utive support, compared to the results in [4], gives new and interesting patterns
when applied to the biological problem of finding patterns in chromosomes.

This research is related to work done on the (re)definition of support and
gap constraint. The notion of support was first introduced by Agrawal et al. in
[1] in 1993. Much later Steinbach et al. in [8] generalized the notion of support
providing a framework for different definitions of support in the future. Our
notion of consecutive support is not easily fitted in the eval-function provided
there. (Next to this framework Steinbach also provides a couple of example
functions.) Frequent itemset mining on similar data was done by Rouveirol et
al. in [7]. Our work is related to this work because of the minimal frequency
constraint also used in consecutive support.

If we take the database of clones as an example, we have a database where the
clones (or transactions) are itemsets of patients with gains or losses in the clones.
We could transpose this database so that transactions correspond to the patients,
and are itemsets of clones that showed gains or losses. Now we can search for
patterns and with techniques like the time window constraint as defined in [5]
or the gap constraint as defined in [2], we can search for clones that are close
together in the chromosomes. However, the combination of patients with equal
clones will be lost.

Finally this work is related to some of our earlier work. Primarily the work
done in [4] already stated that the biological problem could profit from incor-
porating consecutiveness into frequent itemset mining. Secondly in [3] it was
mentioned that support is just another measure of saying how good a pattern
fits with the data. There we defined different variations of this measure, and
consecutive support can been seen as such a variation.

The formal definitions concerning consecutive support are given in Section 2.
A particular pruning method is discussed in Section 3. In Section 4 we present
experimental results, and we conclude in Section 5.



2 Consecutive Support

2.1 Definition

The definition of association rules relies on that of support: the number of trans-
actions that contain a given itemset. In this paper we propose a more general
definition, that takes the consecutiveness of the transactions into account.

Suppose items are from the set I = {1, 2, . . . , n}, where n ≥ 1 is a fixed
integer constant. A transaction is an itemset, which is a subset of I. A database

is an ordered series of m transactions, where m ≥ 1 is a fixed integer constant. If
an itemset is an element of a database, it is usually referred to as a transaction.

The traditional support of an itemset I with respect to a database D, denoted
by TradSupp(I,D), is the number of transactions from D that contain I. Clearly,
0 ≤ TradSupp(I,D) ≤ m.

An important property of the traditional support is the so-called Apriori

property [1] or anti-monotonicity constraint: if itemset I is contained in itemset
I ′, the support of I is larger than or equal to the support of I ′. We want the
new measure to satisfy this constraint also.

The support measure we propose is a generalization of the traditional sup-
port. In order to take into account the consecutiveness of a pattern we use two
real parameters ρ ≥ 0 and 0 ≤ σ ≤ 1. With ρ we reward the pattern if it occurs in
consecutive transactions, with σ we punish for the gaps between the consecutive
occurrences of the pattern in the database.

Suppose we have an itemset I and let Oj ∈ {0, 1} (j = 1, 2, . . . ,m) denote
whether or not the jth transaction in the database D contains I (Oj is 1 if
it does contain I, and 0 otherwise; the Oj ’s are referred to as the O-series).
The following algorithm computes a real value t in one linear sweep through
the database and the resulting t is defined as the consecutive support of I with
respect to D (denoted by Supp(I,D, ρ, σ)):

t := 0; j := 1; reward := 0;
while ( j ≤ m ) do

if ( Oj = 1 ) then

t := t + 1 + reward ; reward := reward + ρ;
else

reward := reward · σ;
fi

j := j + 1;
od

The consecutive support t can become very large, and one could for example use√
t instead. In our examples we will always employ just t.

Example 1. Assume the O-series of a certain pattern I equals 101101, ρ = 1 and
σ = 0.1. The consecutive support t will then be 5.41:

O 1 0 1 1 0 1
reward 0 1 0.1 1.1 2.1 0.21

t 1 1 2.1 4.2 4.2 5.41



2.2 Formal Discussion

During the loop the value of reward , which “rewards” the occurrence of a 1,
is always at least 0. If reward would never be adapted, i.e., it would remain
0 all the time, independent of the itemset I, the algorithm would compute
TradSupp(I,D). This is the case when ρ = 0: Supp(I,D, 0, σ) = TradSupp(I,D)
for any 0 ≤ σ ≤ 1. So the consecutive support is indeed a generalization of
the traditional support. Furthermore we have: for all ρ ≥ 0 and 0 ≤ σ ≤ 1,
Supp(I,D, ρ, σ) ≥ TradSupp(I,D).

It is clear that the Apriori property is satisfied: for all ρ ≥ 0 and 0 ≤ σ ≤ 1,
Supp(I,D, ρ, σ) ≥ Supp(I ′,D, ρ, σ) if the itemset I ′ contains the itemset I. This
follows from the observation that the reward -values in the I ′-case are never larger
than those in the I-case.

Finally, we easily see that 0 ≤ Supp(I,D, ρ, σ) ≤ m + m(m − 1)ρ/2. The
maximum value is obtained if and only if all transactions from the database D
contain I, i.e., an O-series entirely consisting of 1s. Only the all 0s series gives
the minimum value 0.

It is not hard to show that for the O-series 1a10b11a20b2 . . . 0bn−11an (a series
of a1 1s, b1 0s, a2 1s, b2 0s, . . . , bn−1 0s, an 1s) the consecutive support equals

n∑

i=1

ai + ρ

n∑

i=1

ai(ai − 1)/2 + ρ
∑

1≤i<j≤n

aiajσ
bi+bi+1+···+bj−1 =

(1 − ρ/2)S + ρS2/2 − ρ
∑

1≤i<j≤n

aiaj(1 − σbi+bi+1+···+bj−1),

where S =
∑n

i=1
ai (i.e., the traditional support); here 00 must be interpreted

as 1 (an exponent 0 can be avoided by demanding all bi’s to be non-zero; if we
also demand all ai’s to be > 0, both the number n and the numbers ai and bi

are unique, given an O-series). The formula follows from the fact that if reward

equals ε, then the series 1k0` changes this into (ε + kρ) · σ`, meanwhile giving a
contribution of k + kε + k(k − 1)ρ/2 to the consecutive support. An extra series
0` at the beginning or end has no influence on the consecutive support.

The second part of the equation, ρ
∑n

i=1
ai(ai−1)/2, consists of the ρs added

for a subset of consecutive 1s in the O-series. The last part of the equation is
the addition of the rewards from the previous consecutive 1s decreased by σ,
because of the number of 0s between the groups of consecutive 1s. Also note
that when we choose ρ = 2 we get S2 − ρ

∑
1≤i<j≤n aiaj(1 − σbi+bi+1+···+bj−1).

This shows that consecutive support is at most S2 if ρ = 2.

Example 2. Take ρ = 2. Then the O-series 150`14 has consecutive support 81 −
40(1−σ`). Note that this is the same for the reverse 140`15. As ` → ∞ this value
approaches 41 = 52 + 42, whereas for small ` and σ ≈ 1 it is near 81 = (5 + 4)2.

It can be observed that the consecutive support as defined above only depends
on the lengths of the “runs” and the lengths of the intermediate “non-runs”: the
ai’s and bi’s above. Here a run is defined as a maximal consecutive series of 1s in



a 0/1 sequence. Indeed, the sum
∑j−1

k=i bk equals the number of 0s between run
i and run j. This also implies that the definition is symmetric, in the sense that
the support is unchanged if the order of the O-series is reversed — a property
that is certainly required.

The reason why we add ρ and multiply by σ instead of, for example, add
ρ and subtract σ, lies in the observation that in the latter case the symmetry
property would not hold. Subtracting σ leads to different consecutive support
values for an O-series and its reverse. E.g., if ρ = 2 and σ = 0.5, 1503 would
give 25, whereas 0315 has 17.5 (the definition from Section 2.1 gives 25 in both
cases). One should also take care that the support remains positive in that case.

Instead of this way of calculating consecutive support it is also possible to
augment the O-series with time stamps. Then one is able to use the real time
between two transactions in calculating the consecutive support. In the previ-
ous definition each transaction was assumed to take the same amount of time.
Another improvement might be to reinitialize reward to 0 at suitable moments,
for instance at chromosome boundaries or at “closing hours”.

We consider algorithms that find all frequent itemsets, given a database. A
frequent itemset is an itemset with support at least equal to some pre-given
threshold, the so-called minsup. Thanks to the Apriori property many efficient
algorithms exist. However, the really fast ones rely upon the concept of FP-

tree or something similar, which does not keep track of consecutivity. This
makes these algorithms hard to adapt for consecutive support.

One fast algorithm that does not make use of FP-trees is called Eclat

[10]. Eclat grows patterns recursively while remembering which transactions
contained the pattern, making it very suitable for consecutive support. In the
next recursive step only these transactions are considered when counting the
occurrence of a pattern. All counting is done by using a matrix and patterns are
extended with new items using the order in the matrix. It is straightforward to
adapt Eclat to incorporate consecutiveness, the counting of traditional support
is simply replaced by the Supp(I,D, ρ, σ) function as proposed earlier. The over-
head of extra calculations is minimal and the runtime complexity is expected to
be equal to that of Eclat as described in [10].

3 Hyperclique Patterns and h-confidence

Many pruning principles used for traditional support calculation can still be
applied for consecutive support. We consider one method in particular. In the
case of our major example, the database of clones, we wanted to visualize pat-
terns with a certain minimal consecutive support. Unfortunately there are many
patterns with this support. In order to speed up the search and to filter out
uninteresting patterns we can search for hyperclique patterns as described in [9].
Because of space limitations we explain hyperclique patterns via an example:

Example 3. First a minimal confidence threshold hc is defined, say hc = 0.6.
We want to know if {A,B,C} is a hyperclique pattern. We calculate the con-
fidence of A → {B,C}, B → {A,C} and C → {A,B}. The lowest of these



confidences is the h-confidence, which must be higher then hc. Assume that
conf (A → B,C) = Supp({A,B,C},D, ρ, σ) / Supp({A},D, ρ, σ) = 0.58. Then
{A,B,C} is no hyperclique pattern.

When we combine the concept of consecutive support with hyperclique pat-
terns we get patterns that occur frequent but in the flow of transactions close
after each other and there is a strong affinity between items: the presence of
x ∈ P , where P is an itemset or clone, in a transaction strongly implies the
presence of the other items or patients in P .

It is clear that hyperclique patterns possess the cross-support property. This
means that we will not get cross-support patterns. These are patterns containing
items of substantially different support levels. If one item has a high support and
another item has a low support, then h-confidence will be low if the denominator
is the item with the high support.

Example 4. Say A is an item with a consecutive support of 200 and B has a
consecutive support of 50. The support of {A,B,C} will at most be 50 because
of the Apriori property. So conf (A → B,C) can at most be 50/200 = 0.25.
As a consequence the h-confidence of {A,B,C} will also be at most 0.25. So
if hc = 0.6, then {A,B,C} and all the patterns that are grown from it can be
pruned.

The combination of hyperclique patterns and consecutive support allows us
to find patterns that occur in clones (transactions) that follow each other close,
yet minimal support can be relatively low. This property is especially handy
for our motivating example, because a low minimal consecutive support will
generate many cross-support patterns, which are pruned if we search only for
hyperclique patterns. Hyperclique patterns also posses the anti-monotonicity
property, because as patterns grow the numerator of the confidence calculation
stays the same or declines. The denominator stays fixed and so h-confidence will
decrease or stay the same:

Example 5. Say conf (A → B,C) = 0.58. The superset {A,B,C,D} will at
most have the same consecutive support as {A,B,C}. Also the denominator
Supp({A},D, ρ, σ) stays the same, so the h-confidence of {A,B,C,D} can at
most be 0.58.

4 Results and Performance

The experiments were done for three main reasons. First of all we want to show
that consecutive support can enable one to find new patterns that one does
not find with the traditional support. Secondly we want to show how using the
principle of h-confidence one can filter the data. Finally we want to give an
indication how the reward factor ρ and punishment factor σ should be chosen.

All experiments were done on a Pentium 4 2.8 GHz with 512MB RAM. For
our experiments we used five datasets. One biological dataset, referred to as the



Nakao dataset, was also used in [4]. This data set originates from Nakao et al.
who used the dataset in [6]. This publicly available dataset contains normalized
log2-ratios for 2124 clones, located on chromosomes 1–22 and the X-chromosome.
Each clone is a transaction with 2 to 1020 real numbers corresponding to pa-
tients. We can look at gains and/or losses. If we consider gains, a patient is
present in a transaction (clone) if his value is at least 0.225 higher than that of a
healthy person (for losses at least 0.225 lower). The work in this paper reported
losses and gains in chromosomes 1, 8, 17, 18 and 20. Two datasets are synthetic
databases, but structured like the dataset of clones. One of these datasets, the
noisy dataset, contains more noise then the other, the ideal dataset. The pre-
cise structure of these datasets is described in [4]. The remaining datasets are
synthetic datasets made to show how consecutive support can be used to find
patterns that could not be found before. The third synthetic data set, referred
to as the food+drink dataset, describes a cafe-restaurant where in the middle
of a day a lot of people buy bread and orange juice; it has 1000 transactions
(customers) and 100 items (products). The fourth synthetic data set will be
explained later.
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4.1 Consecutive Support

Figure 1 and Figure 2 show how the number of patterns increases with ρ and σ.
Each setting therefore requires another minsup. In some cases it is best to select
the minsup such that one gets a fixed number of patterns, e.g., 1000, in order to
compare the results.

In the experiments of Figure 3–6 we tried to find approximately 1000 patterns
with the highest traditional or consecutive support. After this we count for each
transaction how many patterns it contains, allowing us to see how active areas
are. For the Nakao dataset more active means that many clones (gains) in the
same area are present in many groups of patients.

Figure 3 and Figure 5 show where patterns occur when we use traditional
support, giving results similar to those in [4]. For each transaction the number
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Fig. 6. Occurrence graph of Nakao using
consecutive support (gains, minsup = 827,
ρ = 1.0 and σ = 0.5)

of patterns that it occurs in is plotted in a so-called occurrence graph. In each
of these graphs we will indicate chromosome borders when the Nakao dataset is
visualized. In the food+drink dataset it is very clear that consecutive support
enables us to see new patterns. Figure 4 shows that in certain areas patterns
are more consecutive. Figure 6 shows that certain areas are less active if we use
consecutive support instead of traditional support (chromosomes 7 and 8) and
some areas contain more patterns (chromosome 9), hence providing patterns
that occur together in one part of the chromosome instead of far apart. This
shows additional activity compared to results reported by Nakao et al. in [6].

In order to evaluate the effect of more or less noise on consecutive support we
used the ideal and noisy dataset. These datasets are generated with properties
similar to the Nakao dataset with real patient information (see [4] for details).
The results for the ideal dataset are plotted in Figure 7 and 8.

Figure 7 shows that some interesting areas are less clear when using tradi-
tional support. However they become more apparent when we apply consecutive
support. The results for the noisy dataset are displayed in Figure 9 and 10.
Because of the noise the middle peak becomes less clear. However overall the
results seem hardly to be affected by noise.
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dataset using traditional support (gains,
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dataset using consecutive support (gains,
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4.2 Selection of ρ and σ

The goal of the following experiments was to give some guidance in the selection
of reward factor ρ and punishment factor σ. The right parameters should result
in many patterns of which the O-series has large groups of consecutive 1s.

Figure 11 plots the average number of consecutive groups of 1s and 0s for all
patterns. The plot gives an indication of consecutiveness of patterns found using
different settings of ρ and σ (less groups indicate more consecutiveness). The plot
seems to stabilize around ρ = 2. Figure 12 and 13 show that only if we choose σ
very close to 1.0 we get results more like those for traditional support. However,
Figure 13 still shows some influence of ρ. For the Nakao dataset it seems that
if ρ ≈ 2, then the influence of σ is minimalized as long as σ is not too close
to 1.0. Also similar experiments showed significant changes in the occurrence
graph only if ρ was chosen very small. Different datasets might require different
settings depending on how much one wants to amplify consecutiveness. However
results in this section indicate that ρ = 2.0 and 0.2 ≤ σ ≤ 0.8 seem to be good
choices. However, a lot of experimental work is necessary to settle this issue.
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4.3 Combination with h-confidence

In the following experiments the goal was to show that combining hyperclique
patterns with consecutive support enables us to see patterns occurring in bursts.
In order to show this we created a new synthetic dataset, referred to as the
coffee+cookie dataset, where in the cafe-restaurant small bursts of people buy
coffee and a cookie, during the day in the coffee breaks.

Figure 14 does not show the small groups buying the same products: just
hyperclique patterns do not reveal the bursts. Figure 15 shows that with only
consecutive support we are also unable to discover these patterns. Figure 16
shows people buying the products in bursts. Consecutive support stresses pat-
terns that are consecutive and the principle of h-confidence filters out the noise
caused by cross-support patterns.

When we apply these techniques to the Nakao dataset (losses), in Figure 18,
we can see, e.g., on chromosomes 14 and 15 (near transaction 1600) that certain
areas become more active compared to not using h-confidence in Figure 17.
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5 Conclusions and Future Work

Consecutive support enables us to find new and useful patterns in the chromo-
somes compared to methods using only traditional support. Principles applicable
to traditional support can still be used with consecutive support. For instance
the combination of consecutive support and the h-confidence threshold enables
us to find small bursts of patterns. In this case h-confidence filters out noise and
consecutive support amplifies the bursts.

Using the distance between transactions like it is done in this paper is an
interesting area of research. In the future we want to examine if consecutive
support enables us to visualize even more types of pattern occurrence, perhaps
even detecting them automatically. Also we want to see if we can speed up the
search for consecutive patterns. Finally we want to extend consecutive support
by using distance between transactions in different ways, which might give us
even more biological relevant patterns.
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7. Rouveirol, C., Stransky, N., Hupé, Ph., La Rosa, Ph., Viara, E., Barillot, E., Rad-

vanyi, F.: Computation of Recurrent Minimal Genomic Alterations from Array-

CGH Data. Bioinformatics 22 (2006), pp. 849–856.
8. Steinbach, M., Tan, P., Xiong, H., Kumar, V.: Generalizing the Notion of Support.

In Proc. 10th Int. Conf. on Knowledge Discovery and Data Mining (KDD ’04),
pp. 689–694.

9. Xiong, H., Tan, P., Kumar, V.: Mining Strong Affinity Association Patterns in

Data Sets with Skewed Support Distribution. In Proc. Int. Conf. on Data Mining
(ICDM’03), pp. 387–394.

10. Zaki, M., Parthasarathy, S., Ogihara, M., Li, W.: New Algorithms for Fast Dis-

covery of Association Rules. In Proc. 3rd Int. Conf. on Knowledge Discovery and
Data Mining (KDD ’97), pp. 283–296.


