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Abstract

Non-deterministic Constraint Logic is a family of graph gzsrintroduced by Demaine and Hearn
that facilitates the construction of complexity proofsidtconvenient for the analysis of games,
providing a uniform view. We focus on the acyclic versionplgthis to Klondike, Mahjong Solitaire
and Nonogram (that requires planarity), and discuss the roomplicated game of Dou Shou Qi.
While for the first three games we reobtain known charactéoizain a simple and uniform manner,
the result for Dou Shou Qi is new.

1. INTRODUCTION

Besides actually playing games, it is of great interest tovkhow hard these games are in the sense of com-
putational complexity, see Kendall, Parkes, and Spoef@8R The games are usually generalized to allow for
parameters that control board size, number of cards, etc.

In order to study the structural complexity of games, He@006) and Hearn and Demaine (2009) advocate the
use of the constraint logic framework. It consists of a aidite of abstract graph games. The games are played
on a so-callectonstraint graph A constraint graph is a weighted directed graph, where edgle has a weight

in {1, 2}. Theinflow of a vertex is defined to be the sum of all weights of the edgaisaie directed inward. A
configuration (i.e., direction of the edges) of a constrgmaiph is legal if and only if for each vertex it holds that
the inflow is at least its minimum inflow, usually 2. A move of Eyer is typically the reversal of one of the
edges; players are only allowed to do moves that result igal nfiguration.

A notable feature of the constraint logic framework is thet fhat constraint graphs can be reduced to equivalent
planar versions. Many real-life games are played on a 2+émeal board. In previous game complexity results
(e.g., Culberson (1999), Flake and Baum (2002)) crossa@gejs are necessary to overcome the limitations of
such a 2-dimensional game board. Crossover gadgets areénajeomplex and hard to construct. The generic
crossover gadget for constraint logic, as presented inr&igubelow, removes the need to devise a specific
crossover gadget for every single game.

Various games based on constraint graphs are defined in Hledidemaine (2009). These are categorized based
on the number of players and whether there is a bound on théewof moves. We will describe two of those:
Bounded Non-deterministic Constraint Logind Bounded Two-Player Constraint Logim particular we will

also pay attention to acyclic versions and planarity issues

The remainder of this paper is organized as follows. Firsewaain the different types of graph games. Next we
apply these to the games Klondike, Mahjong Solitaire, Noaogand Dou Shou Qi.
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1.1 Bounded Non-deterministic Constraint Logic

Bounded Non-deterministic Constraint Logic (Bounded N@&l & one-player game (i.e., a puzzle), played on a
constraint graph. A move is defined to be the reversal of orkeoédges, resulting in a legal configuration, i.e.,
meeting the inflow condition of the vertices. Each edge maselersed at most once. This puts an upper bound
on the number of moves in this game, i.e., the number of edgibeigraph. One of the edges is defined to be the
target edgethe player wins if and only if (s)he is able to reverse thgdéaedge.

FAY TR

(a) AND (b) OR (c) FANOUT (d) CHOICE (e) VARIABLE

Figure 1. Basic vertices, based on Figure 5.2 and Figure 6.2 frommHg2006). Edges with a weight @fuse
thick lines and have double arrows; edges with a weightusde thin lines and have a single arrow. Usually these
edges are referred to as “blue” and “red”, respectively.

Theorem 5.1 and Theorem 5.2 from Hearn and Demaine (2009} éhsing a reduction from the Boolean
satisfiability problem) that the game is NP-complete, evdremwthe initial constraint graph only consists of
AND, OR, FANOUT and CHOICE vertices as shown in Figure 1.

1.2 Bounded Two-Player Constraint Logic

Bounded Two-Player Constraint Logic (Bounded 2CL) is a player perfect-information game played on a
constraint graph, and a partitioning of the edges in dis@étsB andW. The players alternate turns. The white
player reverses edgesWi; the black player reverses edgesdnFor both players it holds that their move has to
result in a legal configuration. Each edge may only be redensee, which (as in Bounded NCL) puts an upper
bound on the number of moves in the game. One of the edgds imdefined to be the target edge. The white
player wins if (s)he is able to reverse this edge; if a plagemable to move, (s)he loses the game.

Theorem 6.2 from Hearn and Demaine (2009) shows that the g@P8PACE-complete, even when the con-
straint graph only consists of the five vertices as shownguifé 1, where the edges from AND, OR, FANOUT
and CHOICE vertices are all in the dét. Note that the black player can only play bottom edges in VIMRIE
gadgets. In order to avoid clear loss for black an ample atmafuadditional black edges is supplied.

1.3 Acyclic graphs and crossover gadgets

In order to planarize constraint graphs, the constructtmws in Figure 2(a) can be used. A pair of crossing
edges can be replaced by this gadget. To obtain basic \ved&@ Figure 1, each vertex with four red edges
can be replaced by the so-called half-crossover gadgethwhishown in Figure 2(b). Additionally, we need to

perform red-blue edge conversions, see Hearn (2006).

EdgesA and B are called thevertical external edges€dgesC and D are called thénorizontal external edgest

can be verified that each vertical external edge can pointardtif and only if the other vertical external edge
points inward. A similar property holds for the horizontaternal edges. The action of reversing both vertical ex-
ternal edges is callegkrtical propagationthe action of reversing both horizontal external edgealisedhorizon-

tal propagation For example, when the edgdsand B are pointing up, and the edgé€sand D are pointing left,
the direction of all other edges follows from the inflow coastits. A sequence of, e.dA, F, H,G, M, O, N, B)
would then perform a vertical propagation; a sequence of, €, K,I, L, J, E, P, R, @, S, D) would perform

a horizontal propagation.
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(a) Crossover (b) Half-crossover

Figure 2: Planar crossover gadgets, as presented in Hearn and De(2800).

Although this gadget indeed simulates all the behavior efgames introduced in, e.g., Hearn and Demaine
(2005) (where the same edge can be reversed multiple tilmnies} thot the case for the constraint graphs used in
Bounded NCL and Bounded 2CL. After performing a verticalgagation, due to the restriction that each edge
may be reversed at most once, the gadget is in such a stateishiatpossible to perform horizontal propagation,
and vice versa. Although the construction in Figure 2(apifdy after integrating the construction of Figure 2(b)
for all the vertices with four red edges (in order to restoigtselves to the gadgets in Figure 1) it becomes clear
that this is no longer the case. After, e.g., edfeand H (corresponding ta andb, respectively) are reversed,

it can be verified that due to the internal state of the haissover, edge& and ! (corresponding te andd,
respectively) cannot be reversed anymore. The only way tioime both a horizontal and vertical propagation
over the same crossover gadget is when both a horizontaheketlge and vertical external edge can be reversed
inward at the same moment: a typical example @ condition An extensive analysis of the properties of the
crossover and half-crossover gadgets as well as red-blyee@ahverters can be found in Hearn (2006) and van
Rijn (2012).

Itis clear that not all constraint graphs can be reduced tarsap equivalent using solely the gadgets presented in
Figure 2. In some configurations, in particular in (inityaltyclic graphs, it is impossible to obey the additional
constraint imposed by the crossover gadget that the préipagaf both directions has to happen at the same
moment. However, for acyclic graphs, this is never a probledges can be topologically sorted, and reversed
in this order. The complexity proofs of both Bounded NCL ar@uBded 2CL (see Hearn and Demaine (2009))
use graphs corresponding to logical formulas, which indeedire only acyclic graphs; hence Planar Bounded
NCL is NP-complete and Planar Bounded 2CL is PSPACE-comphdte that all graphs under consideration
are acyclic in their initial configuration.

Theorem 5.4 from Hearn and Demaine (2009) states that tatedeproblem Constraint Graph Satisfiability is
also NP-complete: does a given planar constraint graphgusily (initially undirected) AND and OR vertices,
have a legal configuration? Note that this strictly speaksngot a game in the above sense: we only ask for a
legal “final” configuration, not the sequence of moves thatlva used to obtain it.

2. KLONDIKE

Klondike also known as Patience or Solitaire, is a well-known cardeygpopularized by Microsoft Windows.
The normal version of the game is played with a standard fread deck, without jokers. Yaat al.(2004) have
given a formal definition of the game and provided an algarithat plays Klondike games with a high success
rate; in their version of the game, often referred to as thtfuf Solitaire, the identity of all cards is known
from the beginning. Several other approaches have beemgrddo deal with Klondike, see, e.g., Bjarnason,
Tadepalli, and Fern (2007) and Bjarnason, Fern, and Taldépz09).

Longpte and McKenzie (2009) have shown, amongst other complessiylts, that Klondike is NP-complete even
when played with two red suits and one black suit: red diaradq, red hearts®) and black spadea). We
will give a formal definition of the necessary subset of Klikedand confirm the NP-completeness of Klondike
by a reduction from Acyclic Bounded NCL, using an argumerprioved upon the one from van Rijn (2012).
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2.1 Definition

Generalized Klondike is played with a card deck containmguits, each suit containing cards ranked from

1 to n. A card with rankl is also referred to as afice a card with rankn is also referred to as King. The
functionsrank(c) andsuit(c) return the rank and the suit of cagdrespectively. Each suit is colored either red
or black. The functiorvolor(s) returns the color of sui.

A Klondike game consists ofi suit stacksone or moréuild stacksapile stackand atalon. In the sequel we do
not need pile stack and talon, so these will be omitted froendiscription. A stack is defined to be an ordered
list of cards. Aconfigurationdescribes for each card in which stack it is and on which fwosiEor every card in

a build stack it also describes whether the cardig-upor face-down The subset of cards that are face-up on
a certain build stack constitutecard block and will always consist of topmost cards. In an initial cgafation

all cards are face-down in the build stacks (that can be & rdifit lengths), and the suit stacks are empty.

We will define the notion oficceptancewhich determines which moves the player can make. Eactstadk
that is empty can only accept an Ace. Every suit stack thavissmpty, containing cartlon top, accepts card

c if and only if suit(c) = suit(t), andrank(c) = rank(t) + 1. Therefore, suit stacks accept cards of the same
suit in ascending order. Each card block that is not emptytaining cardt on top, accepts cardif and only if
color(suit(t)) # color(suit(c)) andrank(c) = rank(t) — 1. Therefore, build stacks accept cards in descending
order, of alternating colors. We will not employ the usuabgmerty that an empty build stack (only) accepts a
King.

On each turn, the player can play cards in the following manne

1. If all cards on a build stack are face-down, the card on tp loe turned face-up, thereby creating a
singleton card block.

2. A whole card block can be moved to the top of another card blgckrovided thaty accepts the card at
the bottom ofp. (In some versions of the game a partial card block can alsodwed in this manner.)

3. The top card: of a card block can be moved to a suit stack, provided thatuhetck accepts.

The goal is to move all cards to the suit stacks, and whenslgshieved the player has won.

2.2 NP-completeness

In order to prove NP-completeness, we will show that everychic Bounded NCL graph can be transformed to
a Klondike configuration, in such a way that the Klondike garae be won if and only if the target edge of the
Acyclic Bounded NCL graph can be flipped. So we study the spwading decision problemlONDIKE: given

a Klondike configuration, can the player win?

We will use the four gadgets from Figure 3. The gadgets cboisne, two or three build stacks, with all cards
initially face-down. Each gadget gets a range of unique sassigned to it; for simplicity, in the figure we use
the range 5-8 for all gadgets.léck cardrepresents the tail of an edge adjacent to the correspohdhgvertex;

a lock icon is displayed on these cardskdy cardrepresents the head of an edge adjacent to the corresponding
NCL vertex; a key icon is displayed on these cards. The rardach key card is within the range of another
gadget. The suit and rank of a key card is chosen such thattanued face-up, it accepts a lock card of the
gadget from which the corresponding NCL edge is pointingkdamust be moved to their keys). The gadgets are
constructed in such a way that the key card can be turnediiadfeand only if the corresponding NCL edge can

be flipped. Note that in the AND gadgeb is also a lock card (without having a lock image).

For each lock cardit is easy to see which card should be turned face-up in oocd@ioive it. If color(rank(£)) is

red, this card i#(rank(¢) + 1), and otherwise it i€ (rank(¢) + 1) (the cark>(rank(¢) + 1) will be only made
available during the end play, or in the case of the OR gadgwisitioned deeper within the gadget). These cards
serve as key cards in other gadgets.

Now we note that the four gadgets indeed act as intendednBtarice, consider the OR gadget. In order to turn
the key card face-up, either the lock cakd (followed by {5) must be moved to its corresponding key c&d
or the lock cardV6 (followed by &5) must be moved to its corresponding key cad after which#6 and<{>5
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Figure 3: Klondike gadgets. Note th#5 in the AND gadget is also a lock card.

can be moved t&7. If both key cards are available, both sequences can beglaje AND gadget has a fixed
order to free the key card, which is sufficient for our purpose

Now we have:
Theorem 2.1 KLONDIKE is NP-complete.

Proof Reduction from Acyclic Bounded NCL. Given a constraint drapade of AND, OR, FANOUT and
CHOICE vertices, we construct a corresponding Klondikefigomation using the gadgets shown in Figure 3.
Note that planarity is not an issue both here and for Mahjong.

We need a way to ensure that the player can move all cards &uthstacks if and only if the key card corre-
sponding to the target edge can be turned face-up. To thisafinthrds not used in the gadgets are positioned
in one big build stack (ordered by rank and within each rank % order, with the three Aces at the top and
ending with the three Kings at the bottom), protected by & &@ad representing the target edge. Once this card is
moved, all these other cards become available and allovaalsdrom all gadgets to be moved to the suit stacks.

Now the fact that the original NCL graph is acyclic is useddded, the gadgets can be numbered, using a
topological sort of the corresponding nodes, and we candakethat for every gadget the key cards used have
higher rank than the cards in the gadgets. This ensures amooger for this part of the process. In fact, even
(partially) unplayed gadgets can be “discarded”, usingrtdactive assumption that all cards of lower ranks have
already been moved to the suit stacks. Note that, if for theg@iRyetO5 were used instead @5, this property
would not hold.

For creating the Klondike configuration, the number of cadd stacks we need are both bounded by a linear
function of the number of vertices in the corresponding N@pdp. In a winning sequence there are exactly
moves of type 1, anechn moves of type 3. As for the type 2 moves, there are at mosof them: every card
block is moved once (when focussing on its bottom card), reapla suit stack. Therefore Klondike is in NP,
since any potential solution can be verified in polynomiaii |

3. MAHJONG SOLITAIRE

Mahjong Solitaire also known as Shanghai Solitaire, is a one player puzzlegaainly played on the computer
in which the player is presented with a randomly arrangezksiétiles. The goal is to remove all tiles in matching
pairs of two. Condoret al. (1997) have given a formal definition of this game, and hawwshthat a version

of this game with imperfect information is PSPACE-compld&ppstein (2012) has stated a proof that a version
of this game with perfect information is NP-complete. In gaper by de Bondt (2012) Mahjong is proven to
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be NP-complete by a reduction from 3-SAT. We will give a fotmefinition of this game and validate the latter
result by a reduction from Acyclic Bounded NCL.

3.1 Definition

The game uses Mahjong tiles, that are divided intdisjointtile sets7, of |7,| = s, matching tiles, whers,,

is an even numbemp(= 1,2,...,m). We define the set of all tiles to bE = Up7;. Two tilesa andb match

if and only if for somep it holds thata, b € 7,. Below we say that elements of the same tile set have the same
color. We generalize the standard game simply by assumatdgthiere is an arbitrarily large, finite number of
tiles. A configurationC'is a set of positionéi, j, k), where each of, j, k is a non-negative integer, satisfying the
following constraints:

1. If (i,5,k) € Cand(i,j', k) € C wherej < j’, then for everyj” in the range , i1, (¢,5", k) € C;
2. If (i,5,k) € C wherek > 0then(i,j,k —1) € C.

This captures the fact that tiles are arranged in three diioes. Tiles can be stacked on top of each other; all
tiles with commonk are at the same height. All tiles with a commaoimdex, form across sectionTiles at the
same height, with commaiindex, form arow. The first condition ensures that there cannot be gaps in aihew
second, that a tile at height> 0 must have a tile underneath it (in fact, at positjony, £ — 1)).

With respect to a given configuration, a positiény, k) is hiddenif in the configuration also a positiqa, j, k+1)
exists; the other positions are calleidible An arrangementonsists of a set of tileg, a configurationC' of
size|T |, and a bijective functiotf from the positions o€ to 7. Heref (i, j, k) denotes the tile at positidn, j, k).

If the function f maps positior(i, j, k) to tile t we saypos(t) = (i, 4, k). The elements of will be mapped to
the elements of’ in such a way, that every combination is possible. With resfmea given arrangement, we say
a position(i, 7, k) is availableif it is not hidden, and either positiofi, j — 1, k) ¢ C or position(i, j +1,k) ¢ C

or both, i.e., we can only take tiles that are at one of the @hdsrow, and that have no tiles on top of it. An
arrangement is called emptyff is empty. In order to avoid misunderstandings, all tiles barseen from the
beginning: the player has perfect information.

A legal move consists of the removal of two matching tiles that are both available. Formallyy = 7 — {a, b}
andC’ = C — {pos(a), pos(b)}. The game is won if a series of moves results in the empty geraent.

3.2 NP-completeness

In order to prove NP-completeness, we will show that everychic Bounded NCL graph can be transformed
to a Mahjong configuration, in such a way that the Mahjong gaarebe won if and only if the target edge of
the Acyclic Bounded NCL graph can be flipped. We study theddegiproblem M\HJONG SOLITAIRE: given a
Mahjong configuration, can the player win?

We will use the gadgets in Figure 4. The gadgets consist ofcores section containing between two and five
tile stacks, with different numbers representing différtde sets. Every gadget has a unique range of numbers.
Again, for simplicity, in the figure we use the range 1-7 forgaldgets. Alock tile represents the tail of an edge
adjacent to the corresponding NCL vertex; a lock icon isldiggd on these tiles. Rey tilerepresents the head of
an edge which is adjacent to the corresponding NCL vertegyadon is displayed on these tiles. Corresponding
key and lock tiles from different gadgets share the same egdr obvious reasons.

When a key tile is available, it can be removed together withch tile from one of the other gadgets. The target
edge in the corresponding NCL graph is always representedkiey tile. When this target edge is available this
will initiate the end game, which is always winning for thapér as we will show further on.

The four gadgets in Figure 4 have their intended behaviariristance, consider the CHOICE gadget. To free
either one of the key tiles the lock tile has to be removed. Nbe/actual choice has to be made: the newly freed
“3-tile” must be used to remove either the leftmost or rigbstri*3-tile”. After removing both “4-tiles” precisely
one of the key tiles is available. Note that the gadgets rbkethose for Klondike; in fact, the AND gadget can
also be modeled to look even more like its counterpart.
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Figure 4: Mahjong gadgets as a cross section of a configuration.

Now we have:
Theorem 3.1 MAHJONG SOLITAIRE is NP-complete.

Proof Reduction from Acyclic Bounded NCL. Given a constraint drapade of AND, OR, FANOUT and
CHOICE vertices, we construct a corresponding Mahjong gondition using the gadgets shown in Figure 4.

In order to have a way of clearing all remaining tiles after thrget tile is removed, we supply a victory gadget
consisting of one linear row of tiles with two “5-tiles” fovery CHOICE gadget. The victory gadget itself is
protected in a similar way as the FANOUT gadget: a pair of imaty tiles is placed at both sides, and a tile
matching the target tile is placed on the left one of thesés &hsures that none of the tiles in the victory gadget
can be used before the tiles representing the target edgeraozed. Again, we will use the fact that the original
NCL graph is acyclic by numbering the gadgets using the tugiohl sort of the corresponding vertices. This
ordering defines the proper order for this process allowengigdly unplayed (CHOICE) gadgets to be removed
by using the tiles from the victory gadget, that are placethisa same order. Note that from this acyclicity it
follows that when the player is able to remove all CHOICE gasdgall other (partially) unplayed gadgets can
also be removed.

Both the number of tiles and the number of tile sets we needdaallinearly bounded by the number of vertices
used in the corresponding Acyclic Bounded NCL graph. TheeeeMahjong Solitaire is in NP, since any potential
solution can be verified in polynomial time. O

4. NONOGRAM

A Nonogram also referred to as a Japanese puzzle, is a logic puzzléwhitbe considered as an image recon-
struction problem. The player is presented a rectanguidr fgr each row and column a description consisting
of one or more integers is provided, representing the nusnieconsecutive cells that need to be black. If the
player can color a subset of cells in such a way that it is sbest with the description of all rows and columns,
(s)he has solved the puzzle and won the game. An example ofiagiam and its solution is shown in Figure 5.
Batenburg and Kosters (2012) have given a formal definitiddanograms and provided an algorithm for solv-
ing many Nonograms in polynomial time. In Nagaibal. (1996) it is proven that the Another Solution Problem
for Nonograms is NP-complete, and more in particular thatfhestion whether a given puzzle has a solution is
NP-complete. We will also give a formal definition of Nonogrs and show that the latter decision problem
is NP-complete, by reduction from Constraint Graph Sabgftg
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(a) 6 x 6 Nonogram (b) Solved Nonogram

Figure 5: An example Nonogram (a) and its unique solution (b), takemfBatenburg and Kosters (2012).

4.1 Definition

A Nonogram is a puzzle in which the player is presentedrar n grid of cells consisting ofm rows andn
columns. The state of a cell is eithehite = 0 or black = 1. Initially, all cells arewhite. A line is defined to be
either a row or a column.

For each line a descriptiafis provided,d being an ordered series of integéds, do, . . ., d.). The description

is adhered to, if there are exactlyblack segmenti the line, where each successive black segraénbf size

ds (s = 1,2,...,k). A black segment is defined to be a group of consecutive gelike line, such that all
cells within the interval arélack, and both cells adjacent to the interval, if any, arfgte. Now the puzzle is
solved if the player can make a subset of the cells black, ¢h suway that all descriptions are adhered to. The
corresponding decision problemoNOGRAM asks if a given Nonogram can be solved. For more information o
Nonograms, the reader is referred to Batenburg and Ko28i4} and the references therein.

4.2 NP-completeness

We will show that solving Nonograms is NP-complete, by reducfrom Constraint Graph Satisfiability (Hearn
and Demaine (2009)), only using two initially undirectedigats: AND and OR. The global layout of the con-
struction will be as in Figure 6. There will be several grogpsD adjacent columns (or rows) where the de-
scription consists of a single element, i, (or n), such that the pattern of Figure 6 is maintained. We call
these lines theeparation linesBetween each group of separation lines, thereCagher lines. In the case of
Figure 6,D = 5 andG = 7. The descriptions and the width of the delimiters will ndenfere with those of the
single elements in between. As a result of this construatiercan specify disjoinsubnonogrambetween the
separation lines.

Itis also possible to send a signal between two orthogorjatadt subnonograms by slightly adjusting delimiters
between them. This is illustrated in Figure 7. The figure shtwo subnonograms separated/by= 3 separation
lines; one subnonogram between c¢llsl) and(4, 4), inclusive, and one subnonogram between déll8) and
(4,11), inclusive. If we were to decide thgs, 4) should beblack, this would explicitly mean that ce(l3, 8)
cannot beblack. (Note that this would also explicitly mean th@, 8) is black, and (2,4) is not black.) The
opposite is also true. We will use this property to constgaatgets within a subnonogram, and propagate signals
between them. This way we can embed a constraint graph on agkim grid.

In Figure 8 a template of the gadgets is shown. From the geguriof every gadget follows immediately that the
black cells must bélack and the dotted cells must hehite. The state of the other cells is dependent on the type
and state of the gadget.

The gadgets are shown in Figure 9 and héve= 7. As it does not influence the functionality, on each side
these are surrounded by only one separation line. (In tige laonstruction we will us® = 5, with obvious
adaptations of the descriptions.) These are alréaahyk. If a cell corresponding to an edgeigite, this means
that the edge is pointing away from the vertex, and vice vaBsaides AND and OR gadgets, we also provide
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Figure 6: Global layout.
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(a) (b)

Figure 7: The two solutions of a Nonogram featuring two subnonogrhorizontally separated b/ separation
lines.

Figure 8: Template for Nonogram gadgets. Squares that are blackaak im all instances; squares with a dot
are white in all instances.

two gadgets needed for wiring.

The three cells marked with b andc correspond with the edges; for the (initially undirectedy2gadget and

b correspond with the “red” ones. Given the values for thesa@lresponding to the edges, the gadgets are within
the so-called “simple” Nonogram class, and can be easilesolFor a definition and solving algorithm of the
“simple” nonograms, the reader is referred to Batenburgkarsters (2012). In any case, the solutions can be eas-
ily verified. They are uniquely characterized @y b, ¢) € {(0,0,1),(1,0,1),(0,1,1),(1,1,0),(1,1,1)} (AND
gadget) anda, b, c) € {(1,0,0),(0,1,0),(0,0,1),(1,0,1),(0,1,1),(1,1,0),(1,1,1)} (OR gadget), implying
that the gadgets indeed perform as desireth,Ib,c) = (1,0, 1), the OR gadget has two solutions, making use
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Figure 9: Nonogram gadgets.

of a so-called switching component.
Now we have:
Theorem 4.1 NONOGRAM is NP-complete.

Proof We can simulate a planar constraint graph with only AND andr®@Res on a Nonogram grid using the
global layout of Figure 6 and the two top gadgets shown infiéi@u The two bottom gadgets from Figure 9 can
be used for wires, in a straight line or as a corner. Now thenagican be inserted in a legal way if and only if the
resulting Nonogram can be solved.

Di Battistaet al. (1994) have proven that a graph with maximal degree 3 canyalva stored in a square grid
of width v, whereu is the number of vertices contained by the graph. This esgtia the number of rows and
columns used in our reduction is bounded linearly by the remobvertices in the corresponding NCL graph.

NONOGRAMi s clearly in NP, as any potential solution can be verifieddtypomial time. O

5. DOU SHOU QI

Dou Shou Q{meaning: “Game of Fighting Animals”), as described bydPréird and Beasley (2007), is a Chinese
board game. In the Western world it is often called Jungles Jingle Game, Jungle Chess, or Animal Chess.
Dou Shou Qi is a two-player abstract strategy game and itgmsome elements from Chess and Stratego as
well as some other chess-like Chinese games (e.g., Batgjdriins are not entirely clear, but it seems that it
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evolved rather recently (around the 1900s). It has beenestigd by some that the game often ends in a draw, but
preliminary results from van Rijn and Vis (2013) show a rekaaty low percentage of draws.

The game Dou Shou Qi is not extensively studied in literatureBurnett (2010), a definition of the game is
given and an attempt is made to characterize certain looglepties of subproblems that occur when analyzing
the game. These so-called loosely coupled subproblemsecandlyzed separately in contrast to analyzing the
problem as a whole, resulting in a possible speed-up in teeathanalysis. A first complexity result has been
obtained by van Rijn and Vis (2013). Dou Shou Qi is proven RSPAard by reduction from logic circuits. Here,
we will prove Dou Shou Qi to be PSPACE-hard by reduction frdanBr Bounded 2CL based on the reduction
given by van Rijn (2012).

We cannot prove Dou Shou Qi to be PSPACE-complete; as an ndbduwo-player game it is probably not in
PSPACE. Dou Shou Qi is clearly in EXPTIME — like Chess.

5.1 Definition

Dou Shou Qi is played on a rectangular board consisting &f7 squares, see Figure 10. There are several
different kinds of squares. Thaens(D), one for each player, are located in the center of the dinst last row
and are protected on all sides tigps (T). Furthermore, there are two bodies of water (W), whileréraaining
squares are ordinary land squares.

Each players has eight different pieces representingrdiffeanimals with a respectivarength according to
which they carcapturesome of the opponent’s pieces. Pieces can only captureagiegual or lower strength,
with the exception of the weakest piece which is able to aaphe strongest piece. The strength of the animals
from weak to strong is: 1 rat, 2 cat, 3 wolf, 4 dog, 5 pantheiigért 7 lion, 8 elephant. The initial placement
of the pieces is fixed, see Figure 10. Players alternate withswhite moving first. Each turn a piece must be
moved either one square horizontally or vertically. Piemesforbidden to enter their own den and are usually
blocked by water. The rat is the only piece able to move thinadhg water where it is also capable of capturing,
i.e., the enemy rat, but it is forbidden to capture an elephéuiie attacking from the water. Lions and tigers are
able to leap over water either horizontally or verticallyt they are blocked by any rat on the intermediate water

squares.

W W
W W
W W

O ©
wW wW
W W
wW wW
O/lO,

®
@ |7 @
() TID|T (7)

Figure 10: A schematic Dou Shou Qi game board showing the initial pmsit

Pieces can be trapped by the traps surrounding the oppsrtmt! their strength is effectively reduced to zero,
meaning that they can be captured by any enemy piece. Thetiobj®f the game is to place a piece in the
opponents den or to eliminate all of the opponent’s piecestafemate position is declared a draw.
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5.2 PSPACE-hardness

The Bounded 2CL graph will be simulated omax n board, where both players hakepieces. Whether a
natural generalization of the game would imply that khgieces all have a strength from the inter{gl8] or a
distinct strength from the intervél, k] is open for discussion. In our reduction all pieces haveemgth from the
interval 2, 5], excluding all pieces with special capabilities. The ar@igame board contains several properties,
i.e., clustered water squares, narrow paths between theg, wratps surrounding the dens, which are symmetrical
and highly regular. Which of these properties should be pvesleon a generalized game board is open for debate,
however in our reduction we took the liberty of using watarags and traps freely in the gadgets.

We will show a complexity proof for the decision problenoD SHou QI: given a Dou Shou Qi position, does
the player on turn have a forced win?

W W WiW| \WW W W
W T W W T W
WITQTW WTQ@TW
W T W |W T W
W (5} W W (5] W W W \w W WIiW W W
W T wW| |W T wW| |W W W W
WITQTW WTQ@TW |W (3) W| W W W, |W o w
W T W |W T@®W| W@ Wi W W, |W @ W
W W wW| |W W W |W W W W\W| (W|W W\W| (WW WIiWwW
(a) AND gadget (b) OR gadget (c) FANOUT gadget (d) CHOICE gadget (e) VARIABLE gadget

Figure 11: Dou Shou Qi gadgets.

We will reduce from Planar Bounded 2CL. The main gadgets laogs in Figure 11. The reversal of an edge
in the original Bounded 2CL graph will be modeled as the maseinof a white dog (strength 4) into another
gadget. The VARIABLE vertex (in its initial state) can be eesed by the current player. The same is true for the
VARIABLE gadget. Since both pieces are of the same strerigéhcurrent player can capture the piece of the
other player, and move its piece through to the next gadget.

There are some additional issues that need to be addressdwhite dogs that enter a gadget should not be
allowed to go back into the previous gadget. Next, white dogs FANOUT gadget should not be allowed to
move through the same exit twice. Finally, black pieces ilARMBLE gadget should not be allowed to leave
the gadget through the exit corresponding to the white edlgfesi graph game. In order to prevent this behavior,
we have created some additional support gadgets, thatevdttached to the inputs and outputs of the gadgets.
These are shown in Figure 12.

The construction shown in Figure 12(a) is calledlack edge protectorThe white player can move a dog from
bottom to top, but not the other way around. When a white dogremiie construction, the black piece will retreat
behind either the left trap or the right trap, and the whitg dan pass. When passed, the black piece moves back
to its original position. The white piece cannot move batkyould be captured when entering the traps. The
construction shown in Figure 12(b) iswehite edge protectoiit allows only white pieces to pass. Black pieces
can be captured upon entering a trap. Note that these ciotstda not apply when the opposing player attacks
from both sides. We will show further on how to deal with thiie construction in Figure 12(c) is an outflow
protector, with the left entrance square as input and the eigtrance square as output. It ensures that upon arrival
of either one or two white pieces, only one can pass.

A chain of two white edge protectors, one black edge proteantd another two white edge protectors is called
aone-way channeFirst, it ensures that no black piece can move throughtilltbe captured upon entering a
white edge protector. After a capture, the white cat canmesits position, preventing black pieces from passing,
regardless of their number. Because it is always adjaceandther white edge protector, even an attack from
both sides is useless. Next, it ensures that all black pieithi are unable to move out of the construction they
started in, by the same argument. Finally, linking sevemalway channels to each other ensures that white pieces
can move through it in only one direction. White pieces thatenia the opposite direction will be stopped at the
black edge protector. Indeed, when having a piece at botghe and the output, the white player can enable
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(a) Black edge protector  (b) White edge protector (c) Outflow protector

Figure 12: Constructions used to support gadgets.

its piece at the output to move back through this gadget. Mewyé order to pass a number of subsequent black
edge protectors, the white player needs an equal numberitef ddgs at the input to ensure such a passing. There
can never be more than two white pieces at the input of a oryechannel, thus linking three one-way channels
together prevents white pieces from moving into the forbiddirection. A gadget protector is a chain of three
one-way channels, one outflow protector and another threevaty channels. The gadget protector is attached to
every entrance of the gadgets shown in Figure 11, ensuratgtbse facilitate exactly the same behavior as their
equivalents in the graph game.

Now we have:
Theorem 5.1 Dou SHou QI is PSPACE-hard.

Proof Reduction from Bounded 2CL. Given a planar constraint grapde of AND, OR, FANOUT, CHOICE

and VARIABLE vertices, we construct a corresponding Dous@o game board where the white player has a
forced win if and only if (s)he has a forced win on the origiBalunded 2CL graph; otherwise the black player
has a forced win. Note that there are no draws in Bounded 2€ither are there in the reduction by optimal play.

The target edge will be represented by a gadget containidgck den, and it will have a black edge protector
(Figure 12(a)) in front of it, preventing other pieces thha white dogs from entering it. The white player can
move a piece into this gadget if and only if (s)he can set theesponding Bounded 2CL graph to true. The black
player is given a piece that can move straight to the white @ais will take him so many moves, that if the
corresponding Bounded 2CL graph can be set to true, by the (B)ime reaches it the white player has already
won the game. |

6. CONCLUSIONS

We reduced Acyclic Bounded NCL to lONDIKE and MAHJONG SOLITAIRE and (planar) Constraint Graph
Satisfiability to NONOGRAM, proving them to be NP-complete. By using the acyclic priyptr our advantage,
we were able to keep the reductions elegant and easy to taualérsor games that require to return to an “empty”
configuration (like Klondike and Mahjong Solitaire) acyiy is even technically essential. We acknowledge the
NCL framework to be well-suited for reductions for games, ibis not without drawbacks. Often the primary
gadgets are relatively easy to construct, while the coastmuof victory gadgets is sometimes less trivial. Finally
we reduced Planar Bounded 2CL to the game of Dou Shou Qi mdvito by PSPACE-hard. The generic
planarization of the NCL graphs and 2CL graphs is very udefuleductions to games played on a 2-dimensional
board. As an unbounded two-player game Dou Shou Qi is exghaztee EXPTIME-complete in the classification
by Hearn and Demaine (2009). It is an open problem to congtra®ou Shou Qi gadgets for the special vertices,
e.g., multiplayer AND, that build the relevant 2CL graph.
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