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Abstract

Mining subgraphs is an area of research where we have a given set
of graphs, and we search for (connected) subgraphs contained in these
graphs. In this paper we focus on the analysis of graph patterns where
the graphs are molecules and the subgraphs are patterns. In the analysis
of fragments one is interested in the molecules in which the patterns
occur. This data can be very extensive and in this paper we introduce a
technique of making it better available using visualization. The user does
not have to browse all the occurrences in search of patterns occurring in
the same molecules; instead the user can directly see which subgraphs
are of interest.

1 Introduction

Mining frequent patterns is an important area of data mining where we discover
substructures that occur often in (semi-)structured data. The research in this
work will be in the area of frequent subgraph mining. These subgraphs are
connected vertex- and edge-labeled graphs that are subgraphs of a given set of
graphs. A subgraph is considered to be frequent if it occurs in at least minsupp
transactions, where minsupp is a user-defined threshold above which patterns
are considered to be frequent. The frequent subgraph mining algorithm will
discover all these frequent subgraphs. Figure 1 shows an example graph and
two of its subgraphs.

This work is motivated by bio-chemists wishing to view co-occurrences of
subgraphs in a dataset of molecules (graphs):

e For a bio-chemist it is very interesting to know which fragments occur
often together, for example in so-called active molecules. This is because
frequent co-occurrence implies that the fragments are needed simultane-
ously for biological activity.



e Pharmaceutical companies provide generated libraries of molecules. A
visualization of co-occurrences in molecule libraries gives a bio-chemist
insight how the libraries are constructed by the company.
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Figure 1: An example of a graph (the amino acid Phenylalanine) in the molecule

data set and two of its many (connected) subgraphs, also called patterns or
fragments.

Z

The distance between patterns, the amount of co-occurrence, can be mea-
sured by calculating in how many graphs (or transactions) only one of the two
patterns occurs: if this never happens then these patterns are very close to each
other and if this always happens then their distance is very large.

We will define our method of building a co-occurrence model and show its
usefulness. To this end, this paper makes the following contributions:

— The visualization of co-occurring graph patterns.

— We improve the clarity of the visualization by grouping.

— We will define a measure of calculating distances between patterns and show
how it can be calculated (Section 2 and Section 3).

— An empirical discussion of model construction for visualizing co-occurrence
(Section 5).

The mining techniques for molecules in this paper make use of a graph
miner called GSPAN, introduced in [17] by Yan and Han.

For the visualization a method of pushing and pulling points in accordance
with a distance measure is used. The main reason to choose this particular
method was because it enables us to put a limit on the number iterations and
still have a result. Similar techniques were used in [1] to cluster criminal careers
and in [8] for clustering association rules.

This research is related to research on clustering, in particular of molecules.
Also our work is related to frequent subgraph mining and frequent pattern
mining when lattices are discussed. In [18] Zaki et al. discuss different ways for
searching through the lattice and they propose the ECLAT algorithm.

Clustering in the area of biology is important because of the visualization
that it can provide. In general our work is related to SOMs as developed by
Kohonen (see [7]), in the sense that SOMs are also used to visualize data
through a distance measure. A Self-Organizing Map (SOM) is a type of artificial
neural network that is trained to produce a low dimensional representation of
the training samples. A SOM is constructed by moving the best matching point
and its neighbours (within a lattice of neurons) towards the input node. SOMs
have been used in a biological context many times, for example in [5, 11]. In



some cases molecules are clustered via numeric data describing each molecule,
in [16] clustering such data is investigated. Also our work is related to work done
on the identification structure activity relationships (SARs) where one relates
biological activity of molecules by analyzing their chemical structure [3, 6] in the
sense that in our work the structure of a graph is used to build a model. In [2,
13, 14] a statistical analysis was done on the presence of fragment substructures
in active and inactive molecules. However our work is not concerned with the
discovery of SARs, but with co-occurrence of subgraphs occurring in a collection
of graphs. More related is the work done by Lameijer et al. in [9]. This work is
concerned with co-occurring fragments discovered with a graph splitting. Graph
splitting breaks molecules at topologically interesting points. Also they use a
frequency threshold to filter out some fragments after they were generated,
however they do not use frequent pattern mining techniques. Furthermore they
do not build a co-occurrence model or a similar visualization of co-occurrence.
Figure 2 shows two co-occurring subgraphs (fragments) discovered by Lameijer
et al. in their dataset of molecules.

In [4] the current setup is used to cluster data; that paper discusses an
application that enables the user to further explore the results from a frequent
subgraph mining algorithm, by browsing the lattice of frequent graphs.
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Figure 2: An example of co-occurring subgraphs from [9] with an example
molecule.

The overview of the rest of the paper is as follows. In Section 2 our distance
measure is introduced, in Section 3 we discuss our method of grouping, in
Section 4 we introduce the visualization and finally in Section 5 we discuss our
experimental results.

2 Distance Measure

As was mentioned in the introduction, we are interested to know if patterns
occur in the same graphs in the dataset of graphs. Patterns in this work are
connected subgraphs.

The distance measure will compute how often subgraphs occur in the same
graphs of the dataset. In the case of our working example it will show if dif-
ferent patterns (subgraphs) exist in the same molecules in the database. This
distance measure is known as the Jaccard metric and was primarily chosen for



its common use in Bio-informatics (see [15]). It is also easy to compute, given
the appropriate supports; it doesn’t make use of complicated graph compar-
isons, that would slow down the process. Formally we will define the distance
measure in the following way (for graphs ¢g; and g»):

support(g1) + support(gz) — 2 - support(gy A g2) )

dist =
ist(g1, 92) support(g1 V g2)

Here support(g) is the number of times a (sub)graph g occurs in the set of
graphs; support(gy A ge) gives the number of graphs (or transactions) with both
subgraphs ¢; and g2 and support(g; V g2) gives the number of graphs with at
least one of these subgraphs. The numerator of the dist measure computes the
number of times the two graphs do not occur together in one graph of the
dataset. We divide by support(g; V g2) to make the distance independent from
the total occurrence, thereby normalizing it. We can reformulate dist in the
following manner:

support(gs) + support(ge) — 2 - support(g; A g2) @)

dist =
(91, 92) support(g;) + support(gs) — support(g; A go)

In this way we do not need to separately compute support(g1 V g2) by counting
the number of times subgraphs occur in the graphs in the dataset.

The measure is appropriate for our algorithm because it exactly calculates
the number of transactions in which both patterns do not exist, hence a small
distance means much co-occurrence. This measure also normalizes the exact co-
occurrence, otherwise very frequent patterns can be considered mutually more
distant compared to other points with the same proportional co-occurrence.

The distance measure satisfies the usual requirements, such as the triangular
inequality. Note that 0 < dist(g1,g2) < 1 and dist(g1,g92) = 1 < support(g; A
g2) = 0, so g1 and g2 have no common transactions in this case. If dist(g1,g2) =
0, both subgraphs occur in exactly the same transactions, but they are not
necessarily equal.

3 Optimization: Restriction to Frequent
Subgraphs and Grouping

In practise it is possible for the user to select a set of patterns for visualization.
In this context we consider an optimization to be an automated selection of
patterns such that the algorithm faster provides a model within reasonable time.
The first optimization is to restrict the patterns to frequent patterns. Patterns
(subgraphs) are considered to be frequent if they occur in at least minsupp
graphs in the dataset. If we do not use frequent patterns we simply have too
many patterns and, the frequent patterns give a comprehensive overview of the
patterns. Efficient algorithms exist for finding frequent subgraphs, e.g., [17].
The second optimization is grouping: we group subgraphs and we will treat
them as one point in our co-occurrence model. This will reduce the number of



points. Moreover, the visualization will now show more directly the structural
unrelated patterns, since related patterns are grouped. This will show to a
biochemist the structural unrelated patterns that suggest to be together needed
for biological activity.

The formula for the distance between supergraph go and subgraph g¢; orig-
inates from Equation 2, where support(gi A g2) = support(gs):

support(g1) + support(ga) — 2 - support(gs)
support(g1) + support(ge) — support(gs)
support(g1) — support(gs)
support(gy)

dist(g1,92) =

The frequent pattern mining algorithm gives rise to a so-called lattice, in
which the frequent subgraphs are ordered with respect to supergraphs. All
information used to compute these distances can be retrieved from the lattice
information provided by the graph mining algorithm, when we focus on the
subgraph-supergraph pairs. This information is needed by the graph mining
algorithm to discover the frequent subgraphs and so the only extra calculating
is done when dist does a search in this information.

Of course, many graphs have no parent-child relation and for this reason we
define lattice_dist in the following way:

dist(g1, g2) if go is a supergraph of g;
lattice_dist(gy, g2) = or g1 is a supergraph of go (3)
1 otherwise

Note that lattice_dist(g1,92) < 1 if g1 is a subgraph of g, and has non-zero
support, or the other way around.

We will now organize “close” patterns into groups. The algorithm forms
groups hierarchically, but this can be done fast because only related sub-
graph are compared and also as a consequence all distances can be com-
puted with the lattice. Now we need a distance between groups of patterns
Cl = {gl,gg,...,gn} and 02 = {hl,hg,...,hm}:

_ max (PG it PG #0
grdist(Cy,Cy) = { 1 (FG) otherwfse

PG = {lattice_dist(g,h) | g € C1,h € Cq, lattice_dist(g,h) # 1}

(4)

Two clusters should not be merged if their graphs do not have a supergraph-
subgraph relation, so we do not consider graphs where lattice_dist(g,h) = 1.
The value of grdist is —1 if no maximal distance exists, and clusters will not
be merged in the algorithm.

The parameter mazdist is a user-defined threshold giving the largest dis-
tance allowed for two clusters to be joined. Note that grouping is efficient due
to the fact that we can use the lattice information stemming from the frequent
graph mining algorithm.

The outline of the algorithm is the following;:



initialize P with sets of subgraphs of size 1 from the lattice
while P was changed or was initialized
Select C; and Cs from P with minimal grdist (C1,C3) > 0
if grdist(Cy,Cy) < mazxdist then
P=PU{C;UCy}
Remove C; and Cy from P

GROUPING

4 Visualization

We will visualize co-occurrence by positioning all groups in a 2-dimensional
area. We take the Euclidean distance eucl_dist(C1, C2) between the 2D coordi-
nates of the points corresponding with the two groups (of frequent subgraphs)
Cq and Cs.

The graphs in a group occur in almost all the same transactions, hence
the distance between groups is assumed to be the distance between any of the
points of the two groups. We choose to define the distance between groups as
the distance between a smallest graph of each of the two groups (size gives the
number of vertices): for g1 € C1 and g2 € Cy with size(g1) = min({size(g) | g €
C1}) and size(ga) = min({size(g) | g € Ca}), we let group_dist(Cy,Cs) =
dist(g1,g2)-

The coordinates (z¢,,yc, ) and (z¢,,yc,) of the points corresponding with
C7 and (5 are adapted by applying the following formulas:

1. ¢, «— z¢o, — a- (eucl_dist(Cy, Cy) — group_dist(Cy,Cs)) - (xo, — xcy)
2. yo, — Yo, — a - (eucl_dist(C, Ca) — group_-dist(C1,C2)) - (Yo, — yos,)
3. zo, — xoy, + a - (eucl_dist(Cq,Cs) — group_dist(Cq,C2)) - (xc, — xcy)
4. yo, — yo, + a - (eucl_dist(Cy, Cy) — group_dist(Cy, Cs)) - (yo, — ye,)

Here o (0 < o < 1) is the user-defined learning rate.

Starting with random coordinates for the groups, we will build a 2D model
of relative positions between groups by randomly choosing two groups r times
and applying the formulas. This is a kind of push and pull algorithm which
yields a visualization in which the distances in 2D correspond to the distances
in the pattern space. Note that we always have a visualization: the longer we run
the algorithm, the better the Euclidean distances correspond to the distances
between groups in the pattern space.



5 Performance

The experiments are organized such that we first show that the distances are
approximated correctly. Secondly we will discuss runtime in the case of different
minsupp settings for different datasets. Finally through experiments we analyze
the speed-up due to making groups first.

One dataset we use, the 4069.no_aro dataset, containing 4,069 molecules;
from this we extracted a lattice containing the 1,229 most frequent subgraphs.
This dataset was provided by Leiden/Amsterdam Center for Drug Research
(LACDR). Other datasets we use are datasets of the National Cancer Insti-
tute (NCI), and can be found in [12]. One of these datasets contains 32,557
2D structures (molecules, average size is 26.3 nodes) with cancer test data
as of August 1999; we will call this dataset the NCI.normal.99 dataset. The
other NCI dataset contains 250,251 molecules and we will call this dataset the
NCI.large.99 dataset.

All experiments were performed on an Intel Pentium 4 64-bits 3.2 GHz
machine with 3 GB memory. As operating system Debian Linux 64-bits was
used with kernel 2.6.8-12-em64t-p4.
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Figure 3: Clusters for graphs in the 4069.no_aro dataset built in 24.5 seconds,
connecting points at distance 0.05 or lower (a = 0.1, mazdist = 0.1, r =
1,000, 000).

Figure 3 shows how points, that represent subgraphs occurring in the same
graphs (transactions) of the dataset, are close together. We draw lines between
points if their Euclidean distance is < 0.05. The darker these lines the lower
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Figure 4: Clusters of graphs in the 4069.no_aro dataset built in 24.5 seconds,
connecting points at distance 0.95 or higher (o = 0.1, mazdist = 0.1, r =
1,000, 000).

their actual distance and in this way one can see gray clusters of close groups of
subgraphs. Some groups are placed close but their actual distance is not close
(they are light grey). This is probably caused by the fact that these groups
do not occur together with some specific other groups, so being far away from
these other ones.

In Figure 4 we draw lines between points with a Euclidean distance >
0.95. The darker these lines the higher their actual distance. The figure shows
their actual distance to be big also (the lines are black). Also Figure 4 shows
bundles of lines going to one place. This probably is again caused by groups
not occurring together with the same other groups.

The error for the cluster model for the 4069.no_aro dataset decreases quickly,
see Figure 5. After pushing or pulling 10,000 group pairs it becomes already
hard to reduce the error further making a reduction of model building time
possible.

In one experiment we assumed that the distances could not be stored in
memory. In this experiment we first clustered 1,229 patterns without grouping,
taking 81 seconds. However, grouping reduced the number of requests to the
compressed occurrence data and because of this with grouping model construc-
tion was done in 48 seconds (a = 0.1, » = 1,000, 000, mazdist = 0.1, dataset is
4069.n0_aro).

Table 1 shows the runtime where minsupp varies. Obviously for a lower
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Figure 5: Root squared error for distance given by the cluster model for the
4069.no_aro dataset (o = 0.1).

minsupp it takes longer to build the model, but for 12,734 subgraphs a model
is still built within an acceptable time frame.

Table 2 and 3 show the runtime where minsupp varies, it is set to a percent-
age of the total dataset size. Results show that the algorithm is able to handle
the NCI.normal.99 dataset of 32,557 molecules and NCI.large.99 dataset of
250,251 molecules, even with a low minsupp, within a reasonable time frame.

Our final experiments were done to show how the runtime is influenced by
the maxdist threshold and how much the preprocessing step influences runtime.
Here we assume that the distances can be stored in memory. In Figure 6 the
influence on runtime is shown and to each line a Bézier curve is fitted (the degree
is the number of datapoints). The figure displays preprocessing to proceed more
or less stable.

minsupp | average runtime (sec) | number of
+ stdev subgraphs
200 2204.60 + 6.36 12,734
300 335.10 £ 2.00 4,571
400 45.75 + 0.17 2,149
500 17.95 £ 0.23 1,229

Table 1: Runtime performance in seconds for different minsupp settings for the
4069.no_aro dataset (o = 0.1, r = 10,000, mazdist = 0.2).



Table 2: Runtime performance in seconds for different minsupp settings for the

minsupp | average runtime (sec) | number of
+ stdev subgraphs
5% 1495.57 £ 5.41 5,663
10% 160.82 + 0.42 1,447
20% 17.09 £ 0.13 361
30% 4.64 + 0.01 158

NCI.normal.99 dataset (o = 0.1, » = 10,000, mazdist = 0.2).

Table 3: Runtime performance in seconds for different minsupp settings for the

minsupp | average runtime (sec) | number of
+ stdev subgraphs
5% 2080.12 £+ 9.40 2,391
% 840.49 £ 11.67 1,313
10% 301.58 £ 3.57 648
15% 91.35 + 0.59 332

NCI.large.99 dataset (o = 0.1, r = 10,000, mazdist = 0.2).

Runtime in ms

Figure 6: Average runtime for the 4069.no_aro dataset with varying mazdist
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In Figure 7 results show the runtime for the NCI.normal.99 dataset with
approximatelly an equal number of patterns. The performance for grouping
is nearly the same as for the 4069.no_aro dataset. This performance depends
more on the number of patterns that are grouped. The results indicate that
the total runtime depends on the size of the dataset, but that runtime can be
improved strongly by better selecting the mazxdist threshold.
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Figure 7: Average runtime for the NCI.normal.99 dataset with varying mazdist
(a = 0.1, ur. of patterns = 1,447, r = 1,000, 000).

The first analysis of results shows promising patterns, see Figure 8. The re-
sults show two frequent subgraphs (a) and (b) occurring together. This suggests
that patterns (¢) and (d) might also occur together, requiring further research.

Also biochemists in Leiden are actively researching the development of sim-
ple biologically active molecules consisting of fragments (subgraphs) not co-
occurring frequently [10]. Modelling co-occurrence will hopefully help improve
their analysis.

6 Conclusions and Future Work

Presenting data mining results to the user in an efficient way is important. In
this paper we propose a visualization of a co-occurrence model for subgraphs
that enables quicker exploration of occurrence data.

The forming of groups improves the visualization. The visualization enables
the user to quickly select the interesting subgraphs for which the user wants to
investigate the graphs in which the subgraphs occur. Additionally the model
can be built faster because of the grouping of the subgraphs.



(c) (d

Figure 8: Two co-occurring frequent patterns (a) and (b), and two potentially
interesting ones (c) and (d).

In the future we want to take a closer look at grouping where the types
of vertices and edges and their corresponding weight also decide their group.
Furthermore, we want to investigate how we can compress occurrence more
efficiently and access it faster.
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