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Games Chess

Deep Blue (with minimax/α-β) vs. Garry Kasparov, 1997
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Games Deep learning

December 2018

AlphaZero

Silver et al.

Science 362, 1140–1144

COMPUTER SCIENCE

A general reinforcement learning
algorithm that masters chess, shogi,
and Go through self-play
David Silver1,2*†, Thomas Hubert1*, Julian Schrittwieser1*, Ioannis Antonoglou1,
Matthew Lai1, Arthur Guez1, Marc Lanctot1, Laurent Sifre1, Dharshan Kumaran1,
Thore Graepel1, Timothy Lillicrap1, Karen Simonyan1, Demis Hassabis1†

The game of chess is the longest-studied domain in the history of artificial intelligence.
The strongest programs are based on a combination of sophisticated search techniques,
domain-specific adaptations, and handcrafted evaluation functions that have been refined
by human experts over several decades. By contrast, the AlphaGo Zero program recently
achieved superhuman performance in the game of Go by reinforcement learning from self-play.
In this paper, we generalize this approach into a single AlphaZero algorithm that can achieve
superhuman performance in many challenging games. Starting from random play and given
no domain knowledge except the game rules, AlphaZero convincingly defeated a world
champion program in the games of chess and shogi (Japanese chess), as well as Go.

T
he study of computer chess is as old as
computer science itself. Charles Babbage,
Alan Turing, Claude Shannon, and John
von Neumann devised hardware, algo-
rithms, and theory to analyze and play the

game of chess. Chess subsequently became a
grand challenge task for a generation of artifi-
cial intelligence researchers, culminating in high-
performance computer chess programs that play
at a superhuman level (1, 2). However, these sys-
tems are highly tuned to their domain and can-
not be generalized to other games without
substantial human effort, whereas general game-
playing systems (3, 4) remain comparatively weak.
A long-standing ambition of artificial intelli-

gence has been to create programs that can in-
stead learn for themselves from first principles
(5, 6). Recently, the AlphaGo Zero algorithm
achieved superhuman performance in the game

of Go by representing Go knowledge with the
use of deep convolutional neural networks (7, 8),
trained solely by reinforcement learning from
games of self-play (9). In this paper, we introduce
AlphaZero, a more generic version of the AlphaGo
Zero algorithm that accommodates, without
special casing, a broader class of game rules.
We apply AlphaZero to the games of chess and
shogi, as well as Go, by using the same algorithm
and network architecture for all three games.
Our results demonstrate that a general-purpose
reinforcement learning algorithm can learn,
tabula rasa—without domain-specific human
knowledge or data, as evidenced by the same
algorithm succeeding in multiple domains—
superhuman performance across multiple chal-
lenging games.
A landmark for artificial intelligence was

achieved in 1997 when Deep Blue defeated the
human world chess champion (1). Computer
chess programs continued to progress stead-
ily beyond human level in the following two
decades. These programs evaluate positions by
using handcrafted features and carefully tuned
weights, constructed by strong human players and

programmers, combined with a high-performance
alpha-beta search that expands a vast search tree
by using a large number of clever heuristics and
domain-specific adaptations. In (10) we describe
these augmentations, focusing on the 2016 Top
Chess Engine Championship (TCEC) season 9
world champion Stockfish (11); other strong chess
programs, including Deep Blue, use very similar
architectures (1, 12).
In terms of game tree complexity, shogi is a

substantially harder game than chess (13, 14): It
is played on a larger boardwith awider variety of
pieces; any captured opponent piece switches
sides and may subsequently be dropped anywhere
on the board. The strongest shogi programs, such
as the 2017 Computer Shogi Association (CSA)
world champion Elmo, have only recently de-
feated human champions (15). These programs
use an algorithm similar to those used by com-
puter chess programs, again based on a highly
optimized alpha-beta search engine with many
domain-specific adaptations.
AlphaZero replaces the handcrafted knowl-

edge and domain-specific augmentations used
in traditional game-playing programs with deep
neural networks, a general-purpose reinforce-
ment learning algorithm, and a general-purpose
tree search algorithm.
Instead of a handcrafted evaluation function

and move-ordering heuristics, AlphaZero uses a
deep neural network (p, v) = fq(s) with param-
eters q. This neural network fq(s) takes the board
position s as an input and outputs a vector of
move probabilities pwith components pa = Pr(a|s)
for each action a and a scalar value v estimating
the expected outcome z of the game from posi-
tion s, v≈E½zjs�. AlphaZero learns these move
probabilities and value estimates entirely from
self-play; these are then used to guide its search
in future games.
Instead of an alpha-beta search with domain-

specific enhancements, AlphaZero uses a general-
purposeMonteCarlo tree search (MCTS) algorithm.
Each search consists of a series of simulated
games of self-play that traverse a tree from root
state sroot until a leaf state is reached. Each sim-
ulation proceeds by selecting in each state s a
move a with low visit count (not previously
frequently explored), high move probability, and
high value (averaged over the leaf states of

RESEARCH

Silver et al., Science 362, 1140–1144 (2018) 7 December 2018 1 of 5

Fig. 1. Training AlphaZero for 700,000 steps. Elo ratings were
computed from games between different players where each player
was given 1 s per move. (A) Performance of AlphaZero in chess
compared with the 2016 TCEC world champion program Stockfish.

(B) Performance of AlphaZero in shogi compared with the 2017
CSA world champion program Elmo. (C) Performance of AlphaZero
in Go compared with AlphaGo Lee and AlphaGo Zero (20 blocks
over 3 days).

1DeepMind, 6 Pancras Square, London N1C 4AG, UK. 2University
College London, Gower Street, London WC1E 6BT, UK.
*These authors contributed equally to this work.
†Corresponding author. Email: davidsilver@google.com (D.S.);
dhcontact@google.com (D.H.)
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Games Go positions

In 2016 John Tromp showed at CG2016 that there are

2081681993819799846

9947863334486277028

6522453884530548425

6394568209274196127

3801537852564845169

8519643907259916015

6281285460898883144

2712971531931755773

6620397247064840935

≈ 2 · 10170 legal positions in 19× 19 Go, using dynamic

programming and HARDWARE.

https://tromp.github.io/go/legal.html

5

https://tromp.github.io/go/legal.html


Games Watson

In 2011 IBM used a computer to play “Jeopardy!”:
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GC—Gadgets Goal

We study the complexity of games (puzzles, . . . ). We

want to make statements like

Tetris is NP-complete.

In order to do so, we examine reductions between approp-

riate games, with the help of gadgets.

Games studied include TipOver,

Plank puzzles, Sokoban→,

Rush Hour, Mahjongg, . . .
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GC—Gadgets Intro/Re-duction

We want to reduce a known problem to a new one, for

example, 3SAT to VC (so VertexCover is NP-hard).

For every Boolean variable xi we make a variable gadget

(left) and for every clause Cj a clause gadget (right):
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We connect these gadgets in the intuitive way; satisfying

assignments (left) correspond to vertex covers (right):
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Satisfying assignment x1 = true, x2 = x3 = false gives a

VC X of size 3 + 2 · 2 = 7, for 3 literals and 2 clauses.
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GC—Gadgets Basic idea: gadgets
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GC—Gadgets Intuition

Suppose we want to show a game to be NP/PSPACE-hard

(formally: some related (y/n)-decision problem Π).

For this purpose we produce a reduction from a known

well-chosen graph game (formally: some related (y/n)-

decision problem Π′, hopefully with planar graphs) to Π.

The less complicated Π′ is, the better. If we are lucky,

we only have to show how certain basic constructs are

“emulated” by means of gadgets. Plus many details . . .

We also have gadgets to emulate certain

(sub)graph behaviour in the graphs themselves.
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@����������������������������������������
����������������������������������������

����������������������������������������
����������������������������������������r r rr r r rr r r

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@����������������������������������������
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GC—Gadgets Constraint graphs

Constraint graphs consist of AND- and OR-nodes:
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Edges are always directed such that every node = vertex

receives a total input ≥ 2, where incoming blue edges

contribute 2 and incoming red edges 1.
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An edge can be reversed if all total inputs remain ≥ 2 (X).
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GC—Gadgets AND- and OR-node
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External behavior of these gadgets can be described by

the statespaces below (where 1: points in; 0: points out):
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GC—Gadgets Simple gadgets

We have several simple gadgets available:

• free blue-edge terminator (FBET)

• constrained blue-edge terminator (CBET):

• free red-edge terminator (do we need this?)
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Exercise: Explain the CBET (arrows? statespace?).

Exercise: Develop a FBET.
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GC—Gadgets Choice

The CHOICE-vertex (left) can be emulated by the gadget

on the right:
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Exercise: Show that the emulation works.

Don’t worry about the fact that A, B and C are all red or

blue. What matters now is whether they point in or out.

And in reality edges are always directed (have arrows)!
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GC—Gadgets Edge crossings

In many graphs we have (unavoidable) edge crossings.

We now want a gadget that can replace such a crossing.

So assume that we have two crossing blue edges. (There

is no node where the edges cross.)

������������������@@@@@@@@@@@@@@@@@@

@@@@@@@@@@@@@@@@@@
������������������

If we have such a gadget, we need only emulate planar

graphs in our reductions to specific games — and these

are often planar (flat)!
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GC—Gadgets Crossover gadget
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Exercise: Show that A and B may not both point out.

Exercise: Show there are ≤ 24 − 7 = 9 states for ABCD.

Exercise: Show that this emulates two crossing edges.

Exercise: And if each edge may be reversed at most once?
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GC—Gadgets Half-crossover gadget

Wait a minute: did we just use “4-red-nodes”!?

This gadget requires any 2 from A/B/C/D to go in:
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Exercise: Show that this can replace a “4-reds-node”.

Exercise: Still OK if each edge may be reversed at most once?

In that case we (unfortunately) need a “race condition”.
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GC—Gadgets Protected-OR

For a protected-OR vertex two of the three incident edges

are special: they are not both allowed to be directed inward

(by some outside force).
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Exercise: Show that this emulates an OR-node.

Remember again that A and B can “change to blue”.

Exercise: Where are the protected-OR-nodes in the gadgets?

Exercise: Describe the statespace of a protected-OR-node.
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GC—Rush Hour Rush Hour

Having seen the

general picture

and some gadgetry,

we now examine

particular games

and puzzles, like

Rush Hour®:

www.puzzles.com/products/rushhour.htm
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GC—Rush Hour The game

The rules of Rush Hour are easy: cars may move either

horizontally or vertically (left/right and up/down), in their

natural direction, as long as they do not bump/crash

through other cars or the walls.

Target: get the red car out of the garage through the exit.
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GC—Rush Hour The idea

Theorem Rush Hour is PSPACE-complete.

(Remember Savitch: PSPACE = NPSPACE.)

↑
non-deterministic Turing machine with polynomial space

The proof proceeds by reduction from Nondeterministic

Constraint Logic (NCL): NCL is PSPACE-complete for

planar graphs using only ANDs and protected-ORs.
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protected-OR

“latch”

The decision problem is: Given a constraint graph G (in-

cluding arrows) and a distinguished edge e in G; is there

a sequence of edge reversals that eventually reverses e?

Moves may be repeated: it is an unbounded game.
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GC—Rush Hour Proof

target “car” T

must go down

“car” is in

⇔
edge points out
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GC—Rush Hour Proof elements

Exercise: Fill in the proof details.

This includes

• proper inner working of the gadgets,

• proper communication between gadgets,

• proper glueing together (in polynomial space),

• check that walls do not move (or hardly),

• . . .
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GC—Rush Hour Protected-Rush-OR

The statespace for the Rush-Hour protected-OR gadget

is somewhat strange (where again 1: car out; 0: car in):
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GC—Rush Hour Rush-OR
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GC—Planks Plank puzzle — 1

And how about Plank puzzle = River CrossingTM (link)?

You must travel from Start to End; you can carry and

move one plank at a time (if you “have” it), and traverse

them in the obvious way.
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GC—Planks Plank puzzle — 2

The Plank puzzle is also PSPACE-complete:

In these gadgets, for the correct behavior it is important
that plank A and/or B are inside. You can freely walk
around the squares with a length 3 plank.
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GC—Planks Plank puzzle — 3
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GC—Mahjongg Mahjongg

Game rules: two visible stones may be removed if they are

the same and they are “free” to one or two sides.
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GC—Mahjongg Mahjongg — gadgets

Exercise: Provide AND- and OR-gadgets for Mahjongg.

Hint: keep it simple; find a small set of stones, such that

a special one can be “opened” exactly if one (for OR, or

both for AND) of two others can be removed.

Exercise: And a CHOICE-gadget?
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GC—Mahjongg Mahjongg — gadgets continued
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GC—Gadgets in the Rush Hour Summary

The statespaces for AND, OR and protected-OR:

Reductions between problems concerning games are

based on simple gadgets, technique and peculiarities.

Many games can be proven to be NP-hard, PSPACE-

hard, etc., using the Constraint Logic machinery.

Thanks: Erik Demaine & Bob Hearn (book: Games, Puzz-
les & Computation, AK Peters, 2009) and Jan van Rijn.

www.liacs.leidenuniv.nl/~kosterswa/19gadgets.pdf
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