
Data Mining (DM)

Walter Kosters, Universiteit Leiden

Tuesday 23 October 2012 — Rotterdam, ICT.Open, IPA

http://www.liacs.nl/home/kosters/ rdam.pdf

1

Data Mining

2

Data Mining

What is Data Mining?

3

Data Mining

1. Definition by algorithm

4

Data Mining Top 10

According to IEEE ICDM 2006, top 10 DM algorithms are:

Classification C4.5, CART, kNN, NaiveBayes

Statistical learning SVM, EM

Link mining PageRank

Association rules Apriori

Clustering k-Means

Bagging and boosting AdaBoost
5

Data Mining C4.5

In the 1980s J. Ross Quinlan developed C4.5, that builds

decision trees based on entropy:

None Some Full

Patrons?

French Italian Thai Burger

Type?

The Patrons question is “better” than the Type question.

#classes
∑

i=1

pi + ni
p+ n

{

−
pi

pi + ni
log2

pi
pi + ni

−
ni

pi + ni
log2

ni
pi + ni

}

6

Data Mining Decision tree

C4.5 produces a decision tree like

No Yes
Fri/Sat?

None Some Full

Patrons?

No Yes
Hungry?

Type?

French Italian Thai Burger

F T

T F

F

T

F T

From: S.J. Russell and P. Norvig, Artificial Intelligence, A Modern Approach, Prentice

Hall, third edition, 2010.

7

Data Mining Support Vector Machines

A Support Vector Machine (SVM; Vapnik, 1990s) tries to

embed input data into a high-dimensional feature space,

in such a way that classes are linearly separable.

From: W.S. Noble, What is a Support Vector Machine?, Nature Biotechnology 24,

1565–1567 (2006).

8

Data Mining PageRank

Around 1998 Brin and Page published their ideas about

PageRank, that “drives” Google.

The PageRank Pi of a page i satisfies

Pi = (1− d) + d
∑

j: j→i

Pj /Oj

Here d is the “damping factor”,

and Oj is the number of

outgoing links of page j.

See books by Langville & Meyer.

9

Data Mining Support

Consider this very small “market basket” dataset:

product = item 1 2 3 4 5 6 7 8 9
customer
= transaction

i 1 1 0 0 1 1 1 1 0
ii 1 0 1 0 0 0 0 1 1
iii 0 1 1 0 1 0 1 0 0
iv 1 0 1 0 1 1 0 1 1
v 0 0 0 0 1 0 0 0 0
vi 0 1 0 0 1 0 1 0 0

The support of an itemset is the number of customers that

buy it. For example: the 2-itemset {1,5} has support 2: it

is bought by customers i and iv.

10

Data Mining Association rules

An itemset with high support (above some support thres-

hold) is called frequent. Suppose that from the α customers

that buy set A, β buy set B too (A∩B = ∅). Then we can

say that the association rule A⇒ B has confidence β/α.

Now we are interested in association rules A ⇒ B with

both high confidence and high support, i.e., high support

for the itemset A ∪B.

11

Data Mining And more . . .

There is an extensive literature on association rules, in

particular on the following aspects:

• efficient algorithms to find them . . . (see FIMI)

• how to select the interesting ones . . .

• how to deal with non-Boolean attributes . . .

For this last issue one can use fuzzy logic, where instead of

0/1 (not-buy vs. buy) intermediate values can occur. For

example: age can be “young” to an extent of 0.35.

12

Data Mining Example

product = item 1 2 3 4 5 6 7 8 9
customer
= transaction

i 1 1 0 0 1 1 1 1 0
ii 1 0 1 0 0 0 0 1 1
iii 0 1 1 0 1 0 1 0 0
iv 1 0 1 0 1 1 0 1 1
v 0 0 0 0 1 0 0 0 0
vi 0 1 0 0 1 0 1 0 0

Even for this small dataset it is hard to see that the itemset

{2,5,7} is the only 3-itemset that is “bought” by at least

50% (i.e., 3, the support threshold) of the customers, and

is therefore frequent.

Frequent itemsets naturally lead to association rules, like

{2,7} ⇒ {5}.

13

Data Mining Apriori

Around 1995 Agrawal et al. devised Apriori, relying on the

following property:

A subset of a frequent set must be frequent too!

We have A ⊆ B ⇒ support(A) ≥ support(B), which is anti-

monotone.

The algorithm proceeds this: small frequent sets are the

building blocks for larger ones; first you join them to make

candidates, and for these candidates you compute the sup-

port.

14

Data Mining Algorithm

The Apriori algorithm works as follows:

count frequency of itemsets with 1 item

L1 ← frequent ones; k ← 2

while Lk−1 6= ∅ do

Ck ← candidates in {A ∪B |A,B ∈ Lk−1, |A ∪B| = k}

compute their supports

Lk ← frequent sets from Ck; k ← k +1

od

return
k−2
⋃

ℓ=1

Lℓ

Example: {1,2,3,6} and {1,2,3,8} produce {1,2,3,6,8} (if

all its subsets are frequent).

15

Data Mining Example (continued)

product = item 1 2 3 4 5 6 7 8 9
customer
= transaction

i 1 1 0 0 1 1 1 1 0
ii 1 0 1 0 0 0 0 1 1
iii 0 1 1 0 1 0 1 0 0
iv 1 0 1 0 1 1 0 1 1
v 0 0 0 0 1 0 0 0 0
vi 0 1 0 0 1 0 1 0 0

L1 = {{1}, {2}, {3}, {5}, {7}, {8}}

C2 = {{1,2}, {1,3}, {1,5}, . . . , {7,8}}; |C2| = 15 =
(

6
2

)

<
(

9
2

)

L2 = {{1,8}, {2,5}, {2,7}, {5,7}}

C3 = {{2,5,7}} = L3

Indeed {2,5,7} is the only frequent (support ≥ 3) 3-itemset.

16

Data Mining FP-trees

An FP-tree, that condenses a dataset, looks like this:

1−17
```````

2−8 3−2 4−3
�� AA �� AA

3−5 5−1 4−1 5−1

4−5

Paths represent itemsets, including the number of custo-

mers that “buy” them. The example tree shows (among

other things) that there are 5 + 1+ 3 = 9 customers that

“buy” the 2-itemset {1,4}— so its support equals 9. Note

that items are first sorted with respect to support.

The fastest algorithms use FP-trees (Han et al., 2000).

17



Data Mining DM ↔ ML ⊆ AI

So far we have seen:

Classification C4.5

Statistical learning SVM

Link mining PageRank

Association rules Apriori

Apparently, there are many overlaps between Data Mining

(DM) on the one hand and Artificial Intelligence (AI) and

its subclass Machine Learning (ML) on the other hand.

Furthermore, we have Databases. And Statistics!

DM tries to discover previously unknown knowledge, ML

tries to predict based on known facts.

DM discovers hypotheses, Statistics tests them.

18



Data Mining

Today’s definition:

“Data Mining discovers patterns”

+ surprising

+ large datasets

+ visualization + algorithms (IPA)

19



Data Mining

2. Some recent trends

20



Data Mining

Streams — with time

21



Data Mining Majority

In 1980 Boyer and Moore devised the following Majority

algorithm for an array a1, . . . , an:

x← a1; c← 1;

for i← 2, . . . , n do

if ai = x then c← c+1;

else if c = 0 then x← ai; c← 1;

else c← c− 1; fi fi

od

If a has a majority element (occurs > n/2 times), it is x.

22



Data Mining Streams

The middle two bins realize the threshold of 20% (1/5) of

the “infinite” data stream:

From: G. Cormode and M. Hadjieleftheriou, Finding the Frequent Items in Streams

of Data, Communications of the ACM 52, 97–105 (2009).

23



Data Mining Frequent

The “Frequent” algorithm (1982/2002) finds all items in

sequence a whose frequency exceeds 1/k of the total count:

T ← ∅;

for i← 1, . . . do

if ai ∈ T then cai ← cai +1;

else if |T | < k − 1 then T ← T ∪ {ai}; cai ← 1;

else for t ∈ T do

ct ← ct − 1; if ct = 0 then T ← T \ {t}; fi

od fi fi

od

〈T, c〉 acts as some sort of summary.

24



Data Mining

DM goes BIO — with algorithms

25



Data Mining Burrows-Wheeler transform

The Burrows-Wheeler transform (1994), used for compres-

sion (the transformed string allows for good runlength en-

coding), has applications in biological data mining.

The string "^BANANA$" is (efficiently!?) processed like this:

^BANANA$ ANANA$^B B

$^BANANA ANA$^BAN N

A$^BANAN A$^BANAN N

NA$^BANA BANANA$^ ^

ANA$^BAN NANA$^BA A

NANA$^BA NA$^BANA A

ANANA$^B ^BANANA$ $

BANANA$^ $^BANANA A

Sort the “rotations”, and take the last column: BNN^AA$A.

The original string can be recovered from this.

26



Data Mining Suffix arrays

The suffix array of a string is the lexicographically sorted

array of all its suffixes. Usually we give the indexes where

the suffixes begin.

Example: the string example has 7 (non-empty) suffixes:

ample, e, example, le, mple, ple, xample

So its suffix array is [2,6,0,5,3,4,1].

27



Data Mining Burrows-Wheeler and suffix arrays

The string S = example has Burrows-Wheeler transform:

example ampleex x

eexampl eexampl l

leexamp example e

pleexam leexamp p

mpleexa mpleexa a

ampleex pleexam m

xamplee xamplee e

Note that BWT[i] = S[Suffix-Array[i]− 1].

Normally you append a ’$’ to the string, with ’$’ < ’a’.

28



Data Mining Some history

The story begins in the 1990s, when finally Ukkonen came

up with a linear time construction for suffix trees. Full

details: Dan Gusfield’s book, or Pekka Kilpeläinen’s lecture

notes:

www.cs.uku.fi/~kilpelai/BSA07/index.shtml

A depth first “lexical” suffix tree traversal easily gives the

suffix array.

In 2003 three independent algorithms to directly construct

suffix arrays (introduced by Myers and Manber) in linear

time (sometimes together with the so-called lcp-array =

lenghts of the longest common prefixes; together they

are equivalent with suffix trees) were found: Kärkkäinen-

Sanders, Ko-Aluru and Kim-Sim-Park-Park.

29



Data Mining Why suffix arrays?

Suffix trees and suffix arrays are great when one wants to

find, e.g., all overlaps in a large set of (DNA-)strings.

Often a special final character $ is attached to the string

at hand, to avoid a suffix that matches a prefix of another

suffix: xabxa.

How to find an occurrence of a substring P of a string T?

Perform a binary search on the suffix array SA: compare P

to the middle element of SA, and so on. With help of the

lcp-array, this can be done in O(n + log(m)) time, where

n = |P | and m = |T |. (Don’t forget the “preprocessing”; it

works if you have many P s.)

30



Data Mining Kärkkäinen-Sanders

The Kärkkäinen-Sanders algorithm is the easiest (but per-

haps not the very best) way to build the suffix array. It

goes like this:

• recursively construct the suffix array of the suffixes

starting at positions i that are not a multiple of 3:

1,2,4,5,7,8,10,11, . . .

• construct the suffix array of the others using the result

of the first step

• merge the two suffix arrays into one

31



Data Mining Example

01234567890

mississippi

• start with ississippi (i = 1), issippi (i = 4), ippi

(i = 7), i00 (i = 10, with extra 00), ssissippi (i = 2),

ssippi (i = 5), ppi (i = 8) — in this order

we find [3,2,1,0,6,5,4]⇒ [10,7,4,1,8,5,2]

• do mississippi, pi0, sippi, sissippi: [0,9,6,3]

• merge the two suffix arrays: [10,7,4,1,0,9,8,6,3,5,2]

The lcp value for issippi and ississippi is 4 = lcp(2,3).

32



Data Mining The lcp-array

How can the lcp-array help when searching for a substring?

Suppose we are looking for P = abcdemn. Suppose that we

do a binary search in L = abcdefg..., . . . , M = abcdefg...,

. . . ,R = abcdxyz... (within the suffix array). P matches the

first ℓ = 5 characters of L, and the first r = 4 of R. Here

lcp(L,M) > ℓ.

This helps . . . also in general. We need the lcp value not

just for neighbours!

For DNA (the human genome has 3,000,000,000 nucleo-

tides A/C/G/T): its BWT requires 3GB, its suffix array

maybe 12GB.

33



Data Mining

3. Privacy

34



Data Mining Privacy

35



Data Mining Books

Some good books:

I.H. Witten, E. Frank and M.A. Hall,

Data Mining: Practical Machine Learning

Tools and Techniques,

third edition, 2011

(plus free WEKA software!)

P.-N. Tan, M. Steinbach and V. Kumar,

Introduction to Data Mining,

2006

36



Data Mining Questions?

37


