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ABSTRACT

Nonograms are a popular type of logic puzzles, where a pixel grid has to be filled with black and
white pixels, based on a description that indicates the lengths of the consecutive black segments
for each row and column. While the Nonograms that can be found in puzzle books can typically
be solved by applying a series of highly local reasoning steps regarding single rows and columns,
the general Nonogram problem is NP-hard. In this article, weexplore the difficulty distributions for
puzzles between these two extremes. After defining several difficulty measures and subclasses, we
analyze the frequencies of various types of puzzles within the set of all possible Nonograms, using
both exhaustive enumeration and sampling.

1. INTRODUCTION

Logic puzzles — which can be solved by applying logic reasoning — are very popular nowadays. By far the
most prominent example is the Sudoku, which has not only drawn broad attention from the public, but has also
attracted significant scientific interest (Ercsey-Ravasz and Toroczkai, 2012). Another popular type of logic puzzle
(involving simple arithmetic) is the Nonogram, where a gridof black and white pixels has to be filled, based on a
series of descriptions (Ishida, 1993): for every row and column, the lengths of the consecutive black segments are
specified in order; see Figure 1 for an example. The resultingpuzzle poses a combinatorial problem that combines
elements of logical reasoning with integer calculations. It can be approached using methods from combinatorial
optimization, logical reasoning or both, which makes Nonograms highly suitable for educational use in Computer
Science (Salcedo-Sanzet al., 2007b).
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Figure 1: Relatively hard6× 6 Nonogram; left: puzzle; right: unique solution.

Several implementations of Nonogram solvers can be found onthe Internet; see, e.g., (Wolter, 2012) for a list of
solvers. Bosch proposed an Integer Linear Programming (ILP) formulation for the Nonogram problem in (Bosch,
2001). An evolutionary algorithm (EA) for solving Nonograms was described in (Ortiz-Garcíaet al., 2008) and
(Ortiz-Garcíaet al., 2009), and a heuristic algorithm was proposed in (Salcedo-Sanzet al., 2007a). The related
problem of constructing Nonograms that are uniquely solvable is treated in (Ortiz-Garcíaet al., 2007). As the
Nonogram problem involves reasoning steps that link the values of the unknown cells, it can be approached using
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models for reasoning about logical expressions, such as SAT-expressions. In (Batenburg and Kosters, 2009), a
reasoning framework is proposed for solving Nonograms thatuses a 2-SAT model for efficient computation of
reasoning steps.

In (Ueda and Nagao, 1996), it was first proved that the generalNonogram problem is NP-hard. On the other
side of the difficulty spectrum are the Nonograms that can be found in puzzle collections, which can usually be
solved by hand, applying a sequence of elementary reasoningsteps. This latter class of Nonograms is called the
simple type in (Batenburg and Kosters, 2009). Such Nonograms can be solved without resorting to branching,
yet there can still be a large variance in the number of steps required to find solutions. In (Batenburget al.,
2009) a difficulty measure for this class, the so-calledsimplepuzzles, is proposed and analyzed. In particular, a
construction for a family of Nonograms that have asymptotically maximal difficulty, up to a constant factor, is
provided. An overview of these results can be found in (Batenburg and Kosters, 2012).

Both Sudoku and Nonograms share the property that their instances can vary from very simple (i.e., easily solv-
able by hand) to highly complex (hard to solve by a computer program). For the Sudoku puzzles, it was recently
shown that via an exact mapping of the set of puzzles into a deterministic, continuous-time dynamical system,
their difficulty translates into transient chaotic behaviour of this system, allowing a Richter-like scale of puzzle
difficulty (Ercsey-Ravasz and Toroczkai, 2012). For Nonograms, a difficulty model that may demonstrate similar
behaviour is not yet available. At the same time, the resultspresented in (Batenburget al., 2009) hint at tran-
sient behaviour as well, showing abrupt transitions between rather simple solvable Nonograms and very hard
Nonograms (often having many solutions) as the density of black pixels is gradually increased. Another reason
for exploring difficulty measures is to obtain insight into the difficulty of Nonograms as observed by human puz-
zlers. Although the present paper does not deal with these issues, a successful link between the proposed concepts
and the perceived difficulties would enable opportunities for automatic generation of Nonograms of varying diffi-
culty. As an alternative route to defining a difficulty measure, we mention the use of the convergence rate of EAs
that solve the Nonograms (see, e.g., (Ortiz-Garcíaet al., 2009)).

In this article, we examine various difficulty measures for Nonograms, both for the simple type and for more
complex puzzles. In particular, we analyze the distribution of small Nonograms over the difficulty levels. In
Section 2 we define notation and concepts. Several difficultyclasses and measures are introduced in Section 3.
Section 4 has experimental results for Nonograms of small tomedium size, and Section 5 concludes.

2. NOTATION AND CONCEPTS

We first define notation for a single line (i.e., row or column)of a Nonogram. After that, we combine these lines
into rectangular puzzles. LetΣ = {0, 1}, the alphabet of pixel values (more general alphabets are also allowed).
We usually refer to1 asblackand0 aswhite. While solving a Nonogram, the value of a pixel can also beunknown.
Let Γ = Σ ∪ {?} = {0, 1,?}, where the symbol? refers to the unknown pixel value.

A (general) descriptiond of lengthk > 0 is an ordered series(d1, d2, . . . , dk) with dj = σj{aj , bj}, where
σj ∈ Σ andaj , bj ∈ {0, 1, 2, . . .} with aj ≤ bj (j = 1, 2, . . . , k). The curly braces are used here in order to stick
to the conventions from regular expressions; so, inσj{aj , bj} they do not refer to a set, but to an ordered pair. Any
suchdj will correspond with betweenaj andbj charactersσj , as defined below. Without loss of generality we
will assume that consecutive charactersσj differ, soσj 6= σj+1 for j = 1, 2, . . . , k− 1. We will sometimes write
σ∗ as a shortcut forσ{0,∞} (for σ ∈ Σ) andσ+ as a shortcut forσ{1,∞}, where∞ is a suitably large number.
We useσa as a shortcut forσ{a, a} (a ∈ {0, 1, 2, . . .}), and we sometimes omit parentheses and commas; also
σ0 is omitted. A finite strings overΣ adheresto a descriptiond (as defined above) ifs = σc1

1 σc2
2 . . . σck

k , where
aj ≤ cj ≤ bj for j = 1, . . . , k. As an example, consider the following description:

d = (0{0,∞}, 1{a1, a1}, 0{1,∞}, 1{a2, a2}, 0{1,∞}, . . . , 1{ar, ar}, 0{0,∞})

with ai > 0 (i = 1, 2, . . . , r). This is exactly what we consider to be aNonogram descriptiona1a2 . . . ar for a
line (row or column), where we only mention the lengths of consecutive non-touching series of1s. Note that it
has length2r + 1 and can also be written as0∗1a10

+
1
a20

+ . . . 1ar0
∗.

A string s ∈ Γℓ (ℓ ≥ 0) can be(fully) fixed to a stringt ∈ Σℓ (referred to as afix) if sj = tj wheneversj ∈ Σ
(1 ≤ j ≤ ℓ). Loosely speaking, one should replace the?s, or unknowns, with pixel values; we also say that wefix
these string elements. Ifs ∈ Γℓ can be fixed to a string inΣℓ that adheres to a given descriptiond, s is calledfixable
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with respect tod; in that case the Boolean function valueFix (s, d) is defined to betrue, and otherwisefalse.
The formal operation SETTLE (s, d) constructs a (unique) string from a fixable strings and a descriptiond in the
following way: for all ? symbols ins such that all strings inΣℓ that adhere to the descriptiond have the same
unique pixel valueu, we fix this? to u. In other words, all pixels that must have a certain value in order to adhere
to the description, are set to that value; these are exactly the pixels that are the same in all fixes. This operation
is also referred to assettling. As an example, fors = ?1?1?0????? (with ℓ = 11) and Nonogram description
d = 3 2 1 (so general description0∗130+120+110∗), we have SETTLE (s, d) = 011100?1???. In (Batenburg
and Kosters, 2009) an efficient, polynomial-time algorithmis described for performing the SETTLE operation on
a string, by using dynamic programming. The complexity of the computation ofFix (s, d) isO(k · ℓ2). Note that
we may assume thatk ≤ ⌈ℓ/2⌉, otherwise there cannot be any fix.

An m × n Nonogram puzzle descriptionD consists ofm > 0 row Nonogram descriptionsr1, r2, . . . , rm and
n > 0 column Nonogram descriptionsc1, c2, . . . , cn. An imageP = (Pij) ∈ Σm×n adheresto the description
if all lines adhere to their corresponding description. ANonogramN is a pair(D,P ), whereD is a Nonogram
puzzle description andP is an image inΓm×n; its elements are referred to aspixels. We use the termNonogram
to refer both to the image and its description. Solving such apuzzle means finding an imageP ′ ∈ Σm×n that
adheres toD, and where every line inP is fixed to the corresponding line inP ′. The imageP can be viewed as
a partial solution. Usually we will assume that all lines inP are still fixable with respect to their corresponding
Nonogram descriptions, which means that the puzzle issolvable; otherwise it isunsolvable(in the next paragraph
we mention situations where this occurs within the context of solvable puzzles). If there is precisely one solution,
the Nonogram is calleduniquely solvable; Nonograms in puzzle collections are usually of this class.

In most puzzlesP fully consists of?s. However, analogous to Sudoku, it is possible to have extrainformation
in the form of clues. Aclue is a pixel that is fixed to either0 or 1, consistent with the final solution. The more
clues are given, the easier the puzzle will be. But it is more subtle than this: apart from a clue being incorrect,
meaning that the Nonogram has no solution at all, it can also be that adding one or more clues turns a non-
uniquely solvable puzzle into a uniquely solvable one, or more generally decreases the number of solutions.
And clues often influence the difficulty. In a similar vein, the shape of the puzzle grid can also be other than
rectangular. In fact, one can imagine directed graphs wherethe nodes represent the pixels, and where descriptions
infer restrictions on the pixels in paths in the graph. It is also possible to provide clues during the puzzle solving
process: so-calledonline clues; in this case a person that got stuck during solving, can be helped through hints.

3. THE DIFFICULTY OF NONOGRAMS

We will distinguish between simple and non-simple Nonograms, the simple ones only using knowledge regarding
single lines. We recall some necessary material from (Batenburget al., 2009) in the next subsection.

3.1 Simple Nonograms

Most Nonograms that appear in puzzle collections can be solved by applying a series of local reasoning steps,
each involving just a single row or column. Recall that the SETTLE operation as defined in Section 2 fills in
all unknown elements of a row or column that are uniquely defined by the combination of the line description
and the set of known elements on that line. As the SETTLE operation considers one line at a time, it can be
performed in parallel for all rows, or all columns respectively. The operationH-SWEEP(N) applies the SETTLE

operation to all rows of the NonogramN : a horizontal sweep; and the operationV-SWEEP(N) applies the SET-
TLE operation to all columns of the NonogramN : a vertical sweep. The Nonogram that is returned by these
operations has fewer unknowns than the input Nonogram, unless no entries could be deduced by using only in-
formation from a single direction (horizontal or vertical). Note thatH-SWEEP(H-SWEEP(N)) = H-SWEEP(N)
andV-SWEEP(V-SWEEP(N)) = V-SWEEP(N).

A NonogramN is calledsimpleif it can be (uniquely) solved by applying an alternating sequence ofH-SWEEP

andV-SWEEPoperations. Equivalently, one can say that asimpleNonogram can be solved by applying a sequence
of SETTLE operations, each involving just a single line.

The total number of sweep-operations that must be performedto solve a simplem× n Nonogram can be used as
a difficulty measure for simple Nonograms, as proposed in (Batenburget al., 2009), using the algorithm SIMPLE-
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SOLVER: it starts with aH-SWEEP operation and then alternates betweenV-SWEEP andH-SWEEP operations,
until no further unknown entries are fixed by bothV-SWEEPandH-SWEEP. The number of sweep-operations that
is needed to completely solve the Nonogram is then called thedifficulty; its value is between 1 andmn + 1. By
definition, the SIMPLESOLVER algorithm always terminates if the input NonogramN is simple. The algorithm
can also be used for non-simple Nonograms, in which case some, but not all, unknown entries may be filled.

Note that SIMPLESOLVER could start with aV-SWEEPoperation instead of aH-SWEEPoperation, which results
in a difficulty that differs from the one defined above by at most 1. One could also take the average of these two
numbers, but we will use the first definition. An alternative approach would be to compute the minimum number
of SETTLE operations needed to solve a given Nonogram. However, this would be very hard to compute due to
extensive backtracking, especially when considering all puzzles of a given size.

In (Batenburget al., 2009) a construction is given for anm × n Nonogram of the simple type, that has a very
high difficulty. Indeed, it is shown that the proposed Nonogram (withm = 8r + 2 for some integerr ≥ 1 and
n ≥ 14 even) has difficulty(m+ 2)(2n− 15)/4 + 10 ≈ mn/2. Solving the Nonogram requires the consecutive
traversal of the so-called 5-strips, ending in a single 2-strip. These 5-strips are largely solved at a speed of only
one pixel per sweep, yielding a high difficulty. In the first steps of the solution process the 3-strips including the
so-called split rows are fixed, serving as a kind of separatorbetween the different 5-strips and the final 2-strip.
Figure 2 illustrates the construction form = n = 18. Full details can be found in (Batenburget al., 2009).
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Figure 2: Overview of the construction of an18 × 18 Nonogram with difficulty115. The construction can be
extended in the vertical direction by inserting consecutive copies of the marked block (rows 9–16). Extension in
the horizontal direction is relatively straightforward byadding more “middle columns”.

3.2 Non-simple Nonograms

Having defined a difficulty measure for simple Nonograms, we now proceed to more complicated ones. If a
Nonogram is non-simple, SIMPLESOLVER will leave a partially filled solution. We now introduce the(p, q)-
SOLVER for integerp andq, with 1 ≤ p ≤ m and1 ≤ q ≤ n. In every step of the solving process we take
p rows andq columns. For allp · q intersections we consider every possibility of the unknownpixels; any such
combination of pixels is referred to as a configuration. For all p + q lines involved, we apply SETTLE, and keep
track of those configurations that can be extended in every line; we then can fix the unknown intersection pixels
that are the same in all of them. If at least one pixel can be fixed, we call this asuccessful(p, q)-intersection. After
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that we can freely apply SIMPLESOLVER. The order in which these operations are done, is of no importance for
the final result: this will be the (partially) solved Nonogram where no more progress can be made.

If eitherp or q is equal to 1,(p, q)-SOLVER is nothing more than SIMPLESOLVER. We observe that(p, q)-SOLVER

“contains” all(p′, q′)-SOLVERs with p′ ≤ p andq′ ≤ q. Therefore, the simplest(p, q)-SOLVER that is stronger
than SIMPLESOLVER is the(2, 2)-SOLVER, also referred to as the FOURSOLVER: it considers four pixels at a
time, that are in rectangular position and unknown so far. A Nonogram that can be solved by(p, q)-SOLVER, but
not by any(p′, q′)-SOLVER with p′ ≤ p, q′ ≤ q and(p′, q′) 6= (p, q), is called(p, q)-hard. This leads to a partial
ordering of the solvers, where SIMPLESOLVER is the least element, having FOURSOLVER immediately above
it. Allowing p or q to be 0, yields only horizontal and vertical sweeps: the(1, 0)-SOLVER, or equivalently any
(p, 0)-SOLVER with p ≥ 1, would in fact just use single horizontal sweeps.

The time complexity of the(p, q)-SOLVER can be large, but the operation in total takes polynomial time (if p and
q are fixed). If all the pixels of a configuration are unknown yet, there are2p·q of these, but in general there may be
less. However, there are

(

m
p

)

×
(

n
q

)

sets of lines to consider, giving an enormous number of possibilities. If p = m
andq = n, this method in fact just tries all possibilities of the fullNonogram, and it will solve the Nonogram in
one successful(m,n)-intersection — provided it is uniquely solvable. If SIMPLESOLVER could not fix a single
pixel, this just tries all2m·n possibilities, showing that the method in this case could beconsidered infeasible.

For(p, q)-hard puzzles it is possible to distinguish a difficulty level analogous to the difficulty measure for simple
Nonograms. It seems natural to define the(p, q)-difficulty of a Nonogram as the minimum number of successful
(p, q)-intersections needed to solve the puzzle. Notice that sucha difficulty computation requires quite a lot of
backtracking, but a definition analogous to the one for the difficulty of simple puzzles seems impossible. Again,
if the solver cannot fully solve the puzzle, the difficulty isdefined as∞. Clearly, all Nonograms that are not
uniquely solvable have(p, q)-difficulty ∞. According to this definition, a simple Nonogram has(p, q)-difficulty
0. And any uniquely solvable non-simple Nonogram has(m,n)-difficulty 1.

We now focus on the situation withp = q = 2. First we mention that, when considering two unknowns in a line
for which SETTLE cannot fix any more pixels, the following seven possibilities can arise:

• All four combinations0–0, 0–1, 1–0 and1–1 can occur; e.g., consider the two outmost pixels in a string
????? with description 1 1.

• Only the combination1–0 is forbidden; e.g., consider the two leftmost pixels in a string ??1?? with
description 3.

• Only the combination0–1 is forbidden; e.g., consider the two rightmost pixels in a string ??1?? with
description 3.

• Only the combination0–0 is forbidden; e.g., consider the two outmost pixels in a string ???? with de-
scription 1 1.

• Only the combination1–1 is forbidden; e.g., consider the two outmost pixels in a string ???? with de-
scription 2.

• Only the combinations0–0 and1–1 are forbidden, which means that the two pixels must be different; e.g.,
consider the two pixels in a string?? with description 1.

• Only the combinations1–0 and0–1 are forbidden, which means that the two pixels must be the same; e.g.,
consider the two leftmost pixels in a string??0?? with description 2.

Indeed, forbidding any other group of combinations would have allowed SETTLE to fix a pixel. When we consider
p = 2 rows andq = 2 columns, we only need to examine those situations where these lines intersect in four?s.
We can encounter all the seven cases mentioned above along the four lines. Clearly, if for one or more of the
lines all combinations are allowed, we cannot draw any conclusion. However, if for all four lines one or more
combinations are forbidden, we might conclude that one or more of the four pixels involved can be fixed. Indeed,
it is easy to construct a lookup table for the64 = 1,296 possible situations, exactly 512 of them leading to one,
two, three or even four pixels fixed; in any of these situations at least 12 from the22·2 = 16 configurations are
forbidden. Note that in Nonograms that have one or more solutions 32 of the situations cannot occur in practice;
for instance, if for three of the four lines involved the two pixels at the line must be the same, but the fourth
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line requires them to be different, no solution would be possible. Any examination of two rows and two columns
requires 16 SETTLE operations and a single lookup, allowing for polynomial time evaluation.

The concept of analyzing the relations between pairs of pixels on a single line is in fact a special case of the ap-
proach described in (Batenburg and Kosters, 2009), which builds a set of 2-SAT clauses that express the relations
that must hold between pixel values. There, instead of considering two specific pixels (on the intersection points
of the two horizontal and two vertical lines), all such relations between two pixels within each horizontal and each
vertical line are collected and assembled into a larger 2-SAT problem. The resulting 2-SAT problem involves pix-
els from all rows and columns. Although that model is very suitable forsolvingNonograms, the present concept
of choosing specific rows and columns (in this case: 2 rows and2 columns) is more suitable for defining a diffi-
culty measure. Each pair of pixel values within one of the four lines that is not allowed forms a 2-SAT clause. The
invariant pixels in the solution set of the 2-SAT problem that results from combining these clauses can be fixed,
whereas the pixels that can be either 0 or 1 cannot be inferredbased on the(2, 2)-intersection. Determining the
possible subsets of pixel values that can occur for the intersection points is equivalent to restricting the collection
of 2-SAT clauses in the algorithm from (Batenburg and Kosters, 2009) to the intersection points of two rows and
two columns.

As the proposed difficulty measure can be computed effectively for small Nonograms (and sometimes for larger
Nonograms, as long as the difficulty does not become too high), it is well suited for creating a series of benchmark
Nonograms that can be used for algorithm evaluation. In suchan evaluation, the algorithm from (Batenburg and
Kosters, 2009) would prove to be at least(2, 2)-capable, meaning that all(2, 2)-hard instances can be solved.
This concept can be used to rank algorithms by the highest difficulty for which all benchmark instances can be
solved successfully.

4. NONOGRAMS OF SMALL TO MEDIUM SIZE

We analyze small Nonograms using exhaustive enumeration, and examine medium size Nonograms by sampling.

4.1 Small Nonograms

In this subsection we first consider the set of all25·5 = 225 = 33,554,4325×5 black and white images. For every
image we compute its line descriptions, and we examine the difficulty of the corresponding Nonogram.

Data are presented in Figure 4. Note that there are symmetries involved, using the dihedral groupD4: most puzzles
occur in groups of 8. The first column contains the difficulty level, while the second column has the number of
simple puzzles of this difficulty. The hardest puzzles of thesimple type have difficulty 17; there are 4 of them.
Figure 3, first panel, has a representative of its symmetry equivalence class (the other 4 in its symmetry class have
difficulty 16). The third column has the number of puzzles that can be solved by FOURSOLVER, indexed by the
number of sweeps that were used by SIMPLESOLVER until no further progress was made (including the last two
that did not fix any more pixels). An example is shown in Figure3, second panel; for this puzzle 14 sweeps are
used, before a single successful(2, 2)-intersection is needed. Out of the 317,944 puzzles of this class, 224,751
could be solved by involving one successful(2, 2)-intersection; these puzzles have(2, 2)-difficulty 1. Figure 3,
third panel, shows a puzzle with higher(2, 2)-difficulty. The fourth column shows the number of puzzles for
which FOURSOLVER could make some progress, but was not able to fully solve them. The fifth (and last) column
has the number of puzzles for which FOURSOLVER could not fix any pixel at all. In particular, there are 124,189
puzzles where neither any line SETTLE could fix a pixel nor any successful(2, 2)-intersection could be found.

From the puzzles where FOURSOLVER made some progress but was not able to fully solve them, only 8,400 are
in fact uniquely solvable (an example is provided in Figure 3, fourth panel); 1,192,994 puzzles can be solved
by SIMPLESOLVER after adding one well-chosen clue (see the next paragraph).And for those puzzles where
FOURSOLVER could not make any progress at all only 6,720 are in fact uniquely solvable (an example is given
in Figure 3, fifth panel); 6,124,630 puzzles can be solved by SIMPLESOLVER after adding one well-chosen clue.
We conclude that out of the 333,064 uniquely solvable non-simple Nonograms, 95.46% is (2,2)-hard; the total
number of uniquely solvable5× 5 Nonograms is 25,309,575, with only 0.06% being not simple or(2,2)-hard..

Clues that make a puzzle uniquely solvable, or make them easier, can be generated by just trying all pixels that
are unknown so far. Fixing such a pixel to the value it should have in the solution, can either allow a particular
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Figure 3: Hardest simple5× 5 Nonogram (first panel),(2, 2)-hard5× 5 Nonogram of(2, 2)-difficulty 1 (second
panel),(2, 2)-hard5 × 5 Nonogram of higher(2, 2)-difficulty (third panel), uniquely solvable Nonogram where
FOURSOLVER could make some progress (fourth panel; note the 2-fold symmetry), and uniquely solvable Nono-
gram where FOURSOLVER could not make any progress (fifth panel). The correspondingline descriptions can be
easily derived.

difficulty simple (2,2)-hard some progress by no progress by
Nonograms Nonograms FOURSOLVER FOURSOLVER

1 7,776 0 0 0
2 3,409,924 5,752 72,052 124,189
3 9,367,027 56,158 299,778 576,293
4 6,514,096 156,236 701,152 1,846,395
5 3,232,762 50,796 233,590 1,621,838
6 1,350,200 31,844 145,070 1,277,062
7 633,400 9,654 42,232 590,436
8 267,632 5,396 18,660 378,354
9 115,178 1,208 5,004 153,364
10 47,584 580 2,644 93,320
11 19,972 180 888 39,904
12 7,132 120 404 24,512
13 2,864 16 0 6,892
14 728 4 0 4,664
15 216 0 0 744
16 16 0 0 496
17 4 0 0 24
18 0 0 0 16
19 0 0 0 0

total 24,976,511 317,944 1,521,474 6,738,503
74.44% 0.94% 4.53% 20.08%

Figure 4: Statistics for the5× 5 images and the corresponding Nonograms.

solver to solve the puzzle, make it easier or have no effect (but perhaps one arrives at more fixed pixels when
solving); this also depends on the point in time that the clueis provided. It seems hard to devise a method to
find such clues without trying, though simple heuristics could be conceived. The clues mentioned in the previous
paragraph were indeed found by just trying all possibilities.

For the set of all26·6 = 236 = 68,719,476,7366×6 black and white images, results are presented in Figure 5. From
the puzzles where FOURSOLVER made some progress but was not able to fully solve them, 57,158,639 are in fact
uniquely solvable. And for those puzzles where FOURSOLVER could not make any progress at all 12,106,334 are
in fact uniquely solvable. We conclude that out of the 1,119,951,439 uniquely solvable non-simple Nonograms,
93.82% is (2,2)-hard; the total number of uniquely solvable6×6 Nonograms is 49,745,060,370, with only 0.14%
being not simple or (2,2)-hard.

4.2 Medium Size Nonograms

The numbers thus obtained suggest that most uniquely solvable puzzles are simple, while there are also quite
many (2,2)-hard ones. There are just relatively few remaining uniquely solvable puzzles. In order to assess this
issue, we now explore larger puzzles. However, due the enormous number of images, we have to use sampling.

In order to better understand larger puzzles, we first perform sampling for small images. Figure 6 shows results



202 ICGA Journal December 2012

difficulty simple (2,2)-hard some progress by no progress by
Nonograms Nonograms FOURSOLVER FOURSOLVER

1 531,441 0 0 0
2 1,892,287,503 168,790,528 806,262,697 110,274,370
3 12,508,732,323 97,411,401 381,662,356 237,190,334
4 14,306,915,587 242,390,921 988,352,708 1,927,512,716
5 9,524,244,629 201,850,110 892,360,826 3,271,038,528
6 5,110,680,772 155,867,778 694,418,286 3,243,954,226
7 2,645,426,982 84,706,478 382,676,366 2,125,778,718
8 1,295,645,826 51,037,482 221,491,162 1,550,293,616
9 666,279,114 24,030,088 102,398,912 844,903,646
10 336,135,394 13,572,368 56,564,246 560,868,894
11 173,613,082 5,915,660 23,220,212 277,760,640
12 85,805,862 2,979,724 11,498,196 169,399,812
13 42,890,084 1,206,236 4,131,016 77,735,516
14 19,823,016 583,232 1,930,888 44,335,244
15 9,241,252 211,856 601,564 18,482,368
16 3,992,532 86,032 232,984 9,667,988
17 1,750,180 29,776 71,404 3,742,560
18 683,456 11,536 25,600 1,796,320
19 275,508 3,612 6,604 628,632
20 100,160 1,156 1,716 270,200
21 36,692 352 432 85,932
22 12,204 88 128 36,172
23 3,760 36 48 11,136
24 1,176 12 12 4,248
25 332 4 12 820
26 64 0 0 256
27 0 0 0 56
28 0 0 0 16
29 0 0 0 0

total 48,625,108,931 1,050,686,466 4,567,908,375 14,475,772,964
70.76% 1.53% 6.65% 21.07%

Figure 5: Statistics for the6× 6 images and the corresponding Nonograms.

for 6 × 6 images, with percentage of black pixels ranging from 0 to 100. For every integer percentage 1,000
random images were generated, and the corresponding puzzles were examined. In the figure, the numbers of
simple and — cumulative — (2,2)-hard Nonograms are plotted,as is the number of puzzles where some (often
just a little) progress could be made by FOURSOLVER. When interpreting such a graph, one should keep in mind
that the actual number of possible Nonograms having a given percentage of black pixels varies enormously as a
function of that percentage, following a binomial distribution centered at 50% (see the right panel from Figure 6).
The relative number of Nonograms for which less than 40% or more than 60% is black is negligible, even though
the absolute number of such puzzles can still be huge.

Due to the small image size for6 × 6 puzzles, specific behaviour can be observed in the graph in Figure 6. If
there are no black pixels, or just one, all puzzles are of the simple type. For the case of two black pixels (5.5%
black), two cases can arise. Either the black pixels are in the same line horizontally or vertically (with probability
approximately 28%), in which case the puzzle is always simple, or they are in different rows and columns. In the
latter case, we see the occurrence of a so-calledswitching component, a subset of the pixels where interchanging
the zeros and ones results in a different Nonogram with an identical description (see Figure 7). In this case,
there is no unique solution and FOURSOLVER can also not make any progress. As the percentage of black pixels
increases towards 50%, the number of possible patterns for each line increases as well. For a low percentage of
black pixels (around 20%), the SIMPLESOLVER algorithm is only rarely capable of solving the puzzle, while the
increased power of using the information from 2 rows and 2 columns simultaneously provides substantially more
information about the solution. As the percentage of black pixels increases further, SIMPLESOLVER becomes
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Figure 6: Left: results for random6 × 6 images/puzzles with varying percentage of black pixels; range 0–100;
right: binomial distribution.

increasingly more powerful, up to the point where each line has a large fraction of black pixels and solving the
Nonogram is either straightforward, or there is no unique solution. In these cases, FOURSOLVER can hardly make
a difference. Solvability seems to have a complicated, but apparent, correlation with the percentage of black pixels
of the images.

1
1

1 1

Figure 7: Switching component in its simplest form:2× 2 Nonogram with two solutions.

The behaviour for larger instances (10 × 10 and30 × 30) is shown in Figure 8. In both situations, it can be
observed that up to a certain percentage of black pixels (around 30% for10 × 10, around 50% for30 × 30),
less than 2% of the Nonograms are either simple or(2, 2)-hard. The specific percentage at which a significant
fraction of the Nonograms starts being simple tends to rise as the size of the puzzle increases. Going up from this
percentage, there is a region where a substantial fraction of (2, 2)-hard puzzles can be found. We recall that due to
the shape of the binomial distribution, this region contains a large part of the complete set of possible Nonograms.
Further increasing the percentage of black pixels then enters a region where the puzzles are typically either simple
or more difficult than(2, 2)-hard. With evidence being based on simulations, we speculate that the non-simple
puzzles in this region do not have a unique solution, and can therefore also not be solved by FOURSOLVER.
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Figure 8: Results for random images/puzzles with varying percentage of black pixels; left:10×10, range 20–70;
right: 30× 30, range 45–75.

Another interesting pattern in Figure 8 is revealed by the curve which tracks the number of Nonograms for
which some progress could be made by the FOURSOLVER method. After increasing initially the curve shows a
distinctive peak, followed by a region in which it decreases. Indeed, when the percentage of black pixels increases,
the FOURSOLVER method can recover the value of more pixels, as there is less freedom to shift the segments on
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each line. The ability to deduce the value of these pixels forthe SIMPLESOLVER method lags behind, as it is less
powerful. From some point on, the SIMPLESOLVER is also capable of making progress, after which the added
benefit of using the FOURSOLVER drops, explaining the peak.

In the Nonogram solving tournament held during TAAI2011 (Sun et al., 2012) several carefully designed25×25
puzzles were provided by the competitors to test the strengths and weaknesses of the contributions by the other
contestants. Without exception these Nonograms are harderthan(2, 2)-hard, pushing the programs to their limits.

5. CONCLUSIONS AND FURTHER RESEARCH

In this paper, we have proposed, analyzed and discussed difficulty measures for Nonograms. The difficulty of
Nonograms follows a complex behaviour, ranging from simpleNonograms that can be found in puzzle books to
highly difficult ones that can only be solved by an exhaustivesearch, handling the underlying NP-hard combina-
torial problem. For simple Nonograms a difficulty measure was defined in (Batenburget al., 2009). We proposed
a new general difficulty measure, which ranks the set of all uniquely solvable (in general non-simple) Nonograms
by the number of rows and columns that must be involved in a simultaneous logical step to solve the complete
puzzle. The set of simple Nonograms corresponds to the “easiest” instances according to this difficulty measure,
using only logical steps within a single line. For Nonogramsof sizes up to30×30, we performed computational
experiments to explore the space of all Nonograms, focusingon those that are either simple or are(2, 2)-hard. In
that case we only use information regarding two rows and two columns simultaneously. The observed patterns
match well with intuitive explanations of Nonogram characteristics, but also provide more quantitative insights
into the transition of the difficulty of Nonograms from very simple ones to highly difficult instances.

Our future work will focus on a further stratification of the set of non-simple Nonograms, exploring the diffi-
culty levels that go beyond the(2, 2)-hard Nonograms. The distribution of Nonograms over each ofthe possible
difficulty levels is still to be revealed, e.g., for what values ofp andq do (p, q)-hard puzzles exist? For those
Nonograms that are not uniquely solvable, we want to classify the basic structures of non-uniqueness in a similar
hierarchical ordering as the proposed difficulty measure.
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