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ABSTRACT

Nonograms are a popular type of logic puzzles, where a piéltgs to be filled with black and
white pixels, based on a description that indicates thethengf the consecutive black segments
for each row and column. While the Nonograms that can be foormulzzle books can typically
be solved by applying a series of highly local reasoningsstegarding single rows and columns,
the general Nonogram problem is NP-hard. In this articleewmore the difficulty distributions for
puzzles between these two extremes. After defining sevédfisutty measures and subclasses, we
analyze the frequencies of various types of puzzles witiénset of all possible Nonograms, using
both exhaustive enumeration and sampling.

1. INTRODUCTION

Logic puzzles — which can be solved by applying logic reasgnri— are very popular nowadays. By far the
most prominent example is the Sudoku, which has not only ditanead attention from the public, but has also
attracted significant scientific interest (Ercsey-RavaszEoroczkai, 2012). Another popular type of logic puzzle
(involving simple arithmetic) is the Nonogram, where a gridlack and white pixels has to be filled, based on a
series of descriptions (Ishida, 1993): for every row andigwl, the lengths of the consecutive black segments are
specified in order; see Figure 1 for an example. The resygtizgle poses a combinatorial problem that combines
elements of logical reasoning with integer calculatiohsah be approached using methods from combinatorial
optimization, logical reasoning or both, which makes Naaaogs highly suitable for educational use in Computer
Science (Salcedo-Saet al., 2007b).
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Figure 1: Relatively hards x 6 Nonogram; left: puzzle; right: unique solution.

Several implementations of Nonogram solvers can be fourthi®internet; see, e.g., (Wolter, 2012) for a list of
solvers. Bosch proposed an Integer Linear Programming) ftidfhulation for the Nonogram problem in (Bosch,
2001). An evolutionary algorithm (EA) for solving Nonogramwas described in (Ortiz-Garcéa al., 2008) and
(Ortiz-Garciaet al,, 2009), and a heuristic algorithm was proposed in (Salcalwzet al, 2007a). The related
problem of constructing Nonograms that are uniquely sdévabtreated in (Ortiz-Garciat al,, 2007). As the
Nonogram problem involves reasoning steps that link theesabf the unknown cells, it can be approached using
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models for reasoning about logical expressions, such ase®pfessions. In (Batenburg and Kosters, 2009), a
reasoning framework is proposed for solving Nonogramsukas a 2-SAT model for efficient computation of
reasoning steps.

In (Ueda and Nagao, 1996), it was first proved that the gemd¢vabgram problem is NP-hard. On the other
side of the difficulty spectrum are the Nonograms that carobed in puzzle collections, which can usually be
solved by hand, applying a sequence of elementary reasetepg. This latter class of Nonograms is called the
simple type in (Batenburg and Kosters, 2009). Such Nonogrzan be solved without resorting to branching,
yet there can still be a large variance in the number of steqaired to find solutions. In (Batenbugj al,
2009) a difficulty measure for this class, the so-caliedplepuzzles, is proposed and analyzed. In particular, a
construction for a family of Nonograms that have asymp#dijcnaximal difficulty, up to a constant factor, is
provided. An overview of these results can be found in (Bladeg and Kosters, 2012).

Both Sudoku and Nonograms share the property that thearioss can vary from very simple (i.e., easily solv-
able by hand) to highly complex (hard to solve by a computegmm). For the Sudoku puzzles, it was recently
shown that via an exact mapping of the set of puzzles into ergénistic, continuous-time dynamical system,
their difficulty translates into transient chaotic behawiof this system, allowing a Richter-like scale of puzzle
difficulty (Ercsey-Ravasz and Toroczkai, 2012). For Nosogs, a difficulty model that may demonstrate similar
behaviour is not yet available. At the same time, the regukisented in (Batenbumt al., 2009) hint at tran-
sient behaviour as well, showing abrupt transitions betwat¢her simple solvable Nonograms and very hard
Nonograms (often having many solutions) as the densityadkbpixels is gradually increased. Another reason
for exploring difficulty measures is to obtain insight inteetdifficulty of Nonograms as observed by human puz-
zlers. Although the present paper does not deal with thesess a successful link between the proposed concepts
and the perceived difficulties would enable opportunit@saiutomatic generation of Nonograms of varying diffi-
culty. As an alternative route to defining a difficulty measwe mention the use of the convergence rate of EAs
that solve the Nonograms (see, e.g., (Ortiz-Gaetf., 2009)).

In this article, we examine various difficulty measures fanidgrams, both for the simple type and for more
complex puzzles. In particular, we analyze the distributidd small Nonograms over the difficulty levels. In
Section 2 we define notation and concepts. Several diffialdtyses and measures are introduced in Section 3.
Section 4 has experimental results for Nonograms of smatlddium size, and Section 5 concludes.

2. NOTATION AND CONCEPTS

We first define notation for a single line (i.e., row or colunafip Nonogram. After that, we combine these lines
into rectangular puzzles. L& = {0, 1}, the alphabet of pixel values (more general alphabets aceadibwed).
We usually refer td asblackando aswhite While solving a Nonogram, the value of a pixel can alsoblenown
LetT' =% U {?} = {0,1,?}, where the symbd? refers to the unknown pixel value.

A (general) descriptionl of lengthk > 0 is an ordered serie@l;, ds, . ..,d;) with d; = 0;{a;,b;}, where

oj € ¥andaj,b; € {0,1,2,...} witha; <b; (j =1,2,...,k). The curly braces are used here in order to stick
to the conventions from regular expressions; seyifu;, b, } they do not refer to a set, but to an ordered pair. Any
suchd; will correspond with between; andb; characters ;, as defined below. Without loss of generality we
will assume that consecutive characteysliffer, soo; # 041 for j = 1,2,..., k — 1. We will sometimes write

o* as a shortcut for {0, oo} (for o € ) ando™ as a shortcut fos{1, 0o}, whereoco is a suitably large number.

We uses® as a shortcut fos{a, a} (a € {0,1,2,...}), and we sometimes omit parentheses and commas; also
0¥ is omitted. A finite strings over X adherego a descriptioni (as defined above) § = o{'05 ... o}*, where

a; <c; <bjforj=1,...,k Asanexample, consider the following description:

d = (0{0,00}, 1{a1,a1},0{1,00}, 1{as, as},0{1,0},...,1{a,,a,},0{0,00})

witha; > 0 (i = 1,2,...,r). This is exactly what we consider to beN@mnogram descriptiomyas .. . a, for a
line (row or column), where we only mention the lengths ofsegutive non-touching series t§. Note that it
has lengtl2r + 1 and can also be written @$1910+ 1920+ .. 1970*,

A string s € T'* (¢ > 0) can be(fully) fixedto a stringt € X (referred to as #ix) if s; = t; whenevers; € ¥
(1 < j < ¥). Loosely speaking, one should replace theor unknowns, with pixel values; we also say thatfiwe
these string elements.dfc I'* can be fixed to a string iR¢ that adheres to a given descriptidrs is calledfixable
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with respect tal; in that case the Boolean function valfiér (s, d) is defined to bé r ue, and otherwisé al se.
The formal operation STTLE (s, d) constructs a (unique) string from a fixable stringnd a descriptiod in the
following way: for all ? symbols ins such that all strings ifL¢ that adhere to the descriptiahhave the same
unique pixel value:, we fix this? to u. In other words, all pixels that must have a certain valuedteoto adhere

to the description, are set to that value; these are exdwlpiels that are the same in all fixes. This operation

d = 321 (so general descriptiodir 13071207 110*), we have &TTLE (s,d) = 011100?1??7. In (Batenburg
and Kosters, 2009) an efficient, polynomial-time algoritisrdescribed for performing theeSTLE operation on
a string, by using dynamic programming. The complexity @ ¢bmputation ofiz (s, d) is O(k - £?). Note that
we may assume that< [¢/2], otherwise there cannot be any fix.

An m x n Nonogram puzzle descriptiab consists ofm > 0 row Nonogram descriptions,, rs, ..., r,, and

n > 0 column Nonogram descriptions, cz, ..., ¢,. AnimageP = (P;;) € ¥™*™ adherego the description

if all lines adhere to their corresponding descriptionNAnogram/ is a pair(D, P), whereD is a Nonogram
puzzle description anf is an image il™*"; its elements are referred to pixels We use the terrhlonogram

to refer both to the image and its description. Solving sugluzzle means finding an imadg€ € X" that
adheres td), and where every line i is fixed to the corresponding line iR’. The imageP can be viewed as
a partial solution. Usually we will assume that all linesArare still fixable with respect to their corresponding
Nonogram descriptions, which means that the puzaeligable otherwise it isunsolvablgin the next paragraph
we mention situations where this occurs within the contésbbvable puzzles). If there is precisely one solution,
the Nonogram is calledniquely solvableNonograms in puzzle collections are usually of this class.

In most puzzlesP fully consists of?s. However, analogous to Sudoku, it is possible to have @xfoamation

in the form of clues. Aclueis a pixel that is fixed to eithey or 1, consistent with the final solution. The more
clues are given, the easier the puzzle will be. But it is maigtle than this: apart from a clue being incorrect,
meaning that the Nonogram has no solution at all, it can aésthht adding one or more clues turns a non-
uniquely solvable puzzle into a uniquely solvable one, orengenerally decreases the number of solutions.
And clues often influence the difficulty. In a similar veingtehape of the puzzle grid can also be other than
rectangular. In fact, one can imagine directed graphs wheraodes represent the pixels, and where descriptions
infer restrictions on the pixels in paths in the graph. Itigaossible to provide clues during the puzzle solving
process: so-callednline cluesin this case a person that got stuck during solving, can heedehrough hints.

3. THE DIFFICULTY OF NONOGRAMS

We will distinguish between simple and non-simple Nonoggatime simple ones only using knowledge regarding
single lines. We recall some necessary material from (Bateyet al., 2009) in the next subsection.

3.1 Simple Nonograms

Most Nonograms that appear in puzzle collections can beeddby applying a series of local reasoning steps,
each involving just a single row or column. Recall that ther8_e operation as defined in Section 2 fills in
all unknown elements of a row or column that are uniquely @efiny the combination of the line description
and the set of known elements on that line. As tlEr8.E operation considers one line at a time, it can be
performed in parallel for all rows, or all columns respeety The operatiom-SWEEP(N) applies the 8TTLE
operation to all rows of the Nonograii: a horizontal sweep; and the operatiofSweepP(N) applies the 8T

TLE operation to all columns of the Nonograimi: a vertical sweep. The Nonogram that is returned by these
operations has fewer unknowns than the input Nonogramssimle entries could be deduced by using only in-
formation from a single direction (horizontal or verticd¥jote that4-SWEEP(H-SWEEP(N)) = H-SWEEP(N)
andv-SWEEP(V-SWEEP(N)) = V-SWEEP(N).

A NonogramN is calledsimpleif it can be (uniquely) solved by applying an alternatingsemce ofH-SWEEP
andv-SwEEPoperations. Equivalently, one can say thaimapleNonogram can be solved by applying a sequence
of SETTLE operations, each involving just a single line.

The total number of sweep-operations that must be perfotmsdlve a simplen x n Nonogram can be used as
a difficulty measure for simple Nonograms, as proposed itgfidaurget al., 2009), using the algorithmi8pPLE-
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SOLVER: it starts with aH-SWEEP operation and then alternates betwe&eBwWEEP and H-SWEEP operations,
until no further unknown entries are fixed by battBweerandH-SwEEP. The number of sweep-operations that
is needed to completely solve the Nonogram is then calleditfieulty; its value is between 1 andn + 1. By
definition, the SMPLESOLVER algorithm always terminates if the input Nonograynis simple. The algorithm
can also be used for non-simple Nonograms, in which case,dmrhaot all, unknown entries may be filled.

Note that SMPLESOLVER could start with a/-SwEEP operation instead of - SWEEP operation, which results

in a difficulty that differs from the one defined above by at imogOne could also take the average of these two
numbers, but we will use the first definition. An alternatiypeoach would be to compute the minimum number
of SETTLE operations needed to solve a given Nonogram. However, thiddAbe very hard to compute due to
extensive backtracking, especially when consideringuaites of a given size.

In (Batenburget al, 2009) a construction is given for an x n Nonogram of the simple type, that has a very

high difficulty. Indeed, it is shown that the proposed Noragrwithm = 8r + 2 for some integer > 1 and

n > 14 even) has difficultym + 2)(2n — 15) /4 4+ 10 ~ mn/2. Solving the Nonogram requires the consecutive
traversal of the so-called 5-strips, ending in a singlerp-sThese 5-strips are largely solved at a speed of only
one pixel per sweep, yielding a high difficulty. In the firsts$ of the solution process the 3-strips including the
so-called split rows are fixed, serving as a kind of sepatatween the different 5-strips and the final 2-strip.

Figure 2 illustrates the construction for = n = 18. Full details can be found in (Batenbuzgal., 2009).
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Figure 2: Overview of the construction of at8 x 18 Nonogram with difficulty115. The construction can be
extended in the vertical direction by inserting conse@utigpies of the marked block (rows 9-16). Extension in
the horizontal direction is relatively straightforward &gding more “middle columns”.
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3.2 Non-simple Nonograms

Having defined a difficulty measure for simple Nonograms, we proceed to more complicated ones. If a
Nonogram is non-simple, IBPLESOLVER will leave a partially filled solution. We now introduce tffg, q)-
SOLVER for integerp andg, with 1 < p < m and1 < ¢ < n. In every step of the solving process we take
p rows andg columns. For alp - g intersections we consider every possibility of the unkngixels; any such
combination of pixels is referred to as a configuration. Hbpa- ¢ lines involved, we apply STTLE, and keep
track of those configurations that can be extended in eveey Ve then can fix the unknown intersection pixels
that are the same in all of them. If at least one pixel can be fiwe call this asuccessfulp, ¢)-intersection After
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that we can freely apply ®PLESOLVER. The order in which these operations are done, is of no impo# for
the final result: this will be the (partially) solved Nonogravhere no more progress can be made.

If eitherp or g is equal to 1(p, ¢)-SOLVER is nothing more thani®PLESOLVER. We observe thdlp, ¢)-SOLVER
“contains” all (p’, ¢')-SOLVERs withp’ < p andq’ < q. Therefore, the simplesp, ¢)-SOLVER that is stronger
than SMPLESOLVER is the (2, 2)-SOLVER, also referred to as theduRSOLVER: it considers four pixels at a
time, that are in rectangular position and unknown so farohdgram that can be solved by, ¢)-SOLVER, but
not by any(p’, ¢’')-SoLvER with p’ < p, ¢’ < gand(p’,¢’) # (p, q), is called(p, ¢)-hard. This leads to a partial
ordering of the solvers, whereMPLESOLVER is the least element, havingpEBRSOLVER immediately above
it. Allowing p or ¢ to be 0, yields only horizontal and vertical sweeps: thg))-SOLVER, or equivalently any
(p,0)-SoLVER with p > 1, would in fact just use single horizontal sweeps.

The time complexity of thép, ¢)-SOLVER can be large, but the operation in total takes polynomias tfifyp and

q are fixed). If all the pixels of a configuration are unknown, yle¢ére are? ¢ of these, but in general there may be
less. However, there a(gj) X (Z) sets of lines to consider, giving an enormous number of pisigs. If p = m
andq = n, this method in fact just tries all possibilities of the fillbnogram, and it will solve the Nonogram in
one successfulm, n)-intersection — provided it is uniquely solvable. IIMPLESOLVER could not fix a single
pixel, this just tries al™™ possibilities, showing that the method in this case coulddyesidered infeasible.

For (p, ¢)-hard puzzles it is possible to distinguish a difficulty lesalogous to the difficulty measure for simple
Nonograms. It seems natural to define thgy)-difficulty of a Nonogram as the minimum number of successful
(p, q)-intersections needed to solve the puzzle. Notice that autifficulty computation requires quite a lot of
backtracking, but a definition analogous to the one for tlffecdity of simple puzzles seems impossible. Again,
if the solver cannot fully solve the puzzle, the difficultydsfined asx. Clearly, all Nonograms that are not
uniquely solvable havép, q)-difficulty co. According to this definition, a simple Nonogram Hasq)-difficulty

0. And any uniquely solvable non-simple Nonogram pasn)-difficulty 1.

We now focus on the situation with= ¢ = 2. First we mention that, when considering two unknowns ima li
for which SETTLE cannot fix any more pixels, the following seven possib#itian arise:

e All four combinations0—0, 0-1, 1-0 and1—1 can occur; e.g., consider the two outmost pixels in a string

e Only the combinationi—0 is forbidden; e.g., consider the two leftmost pixels in angtr??1?? with
description 3.

e Only the combinatioro—1 is forbidden; e.g., consider the two rightmost pixels inrngt??1?? with
description 3.

e Only the combinatiord—0 is forbidden; e.g., consider the two outmost pixels in angtf???? with de-
scription 1 1.

e Only the combinationi—1 is forbidden; e.g., consider the two outmost pixels in engtf??? with de-
scription 2.

e Only the combinations—0 and1-1 are forbidden, which means that the two pixels must be d@iffere.g.,
consider the two pixels in a strirf? with description 1.

e Only the combination$—0 and0—1 are forbidden, which means that the two pixels must be thesarg.,
consider the two leftmost pixels in a strif@0?? with description 2.

Indeed, forbidding any other group of combinations woulddhalowed &TTLE to fix a pixel. When we consider

p = 2 rows andg = 2 columns, we only need to examine those situations where fhess intersect in foups.
We can encounter all the seven cases mentioned above aletiguthlines. Clearly, if for one or more of the
lines all combinations are allowed, we cannot draw any aich. However, if for all four lines one or more
combinations are forbidden, we might conclude that one aerobthe four pixels involved can be fixed. Indeed,
it is easy to construct a lookup table for the= 1,296 possible situations, exactly 512 of them leadingnte, o
two, three or even four pixels fixed; in any of these situaianleast 12 from th&?2 = 16 configurations are
forbidden. Note that in Nonograms that have one or moreisolsi32 of the situations cannot occur in practice;
for instance, if for three of the four lines involved the twixgis at the line must be the same, but the fourth
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line requires them to be different, no solution would be flesAny examination of two rows and two columns
requires 16 8STTLE operations and a single lookup, allowing for polynomialdigvaluation.

The concept of analyzing the relations between pairs ofipixe a single line is in fact a special case of the ap-
proach described in (Batenburg and Kosters, 2009), whidtida set of 2-SAT clauses that express the relations
that must hold between pixel values. There, instead of denisig two specific pixels (on the intersection points
of the two horizontal and two vertical lines), all such redats between two pixels within each horizontal and each
vertical line are collected and assembled into a larger 248Ablem. The resulting 2-SAT problem involves pix-
els from all rows and columns. Although that model is veryahie forsolvingNonograms, the present concept
of choosing specific rows and columns (in this case: 2 row2acmlumns) is more suitable for defining a diffi-
culty measure. Each pair of pixel values within one of the fmes that is not allowed forms a 2-SAT clause. The
invariant pixels in the solution set of the 2-SAT problemttresults from combining these clauses can be fixed,
whereas the pixels that can be either 0 or 1 cannot be infeased on th¢2, 2)-intersection. Determining the
possible subsets of pixel values that can occur for thesatdion points is equivalent to restricting the collection
of 2-SAT clauses in the algorithm from (Batenburg and Kast2009) to the intersection points of two rows and
two columns.

As the proposed difficulty measure can be computed effdgtiee small Nonograms (and sometimes for larger
Nonograms, as long as the difficulty does not become too hiigh)wvell suited for creating a series of benchmark
Nonograms that can be used for algorithm evaluation. In smcbvaluation, the algorithm from (Batenburg and
Kosters, 2009) would prove to be at le@8t2)-capable meaning that al(2, 2)-hard instances can be solved.
This concept can be used to rank algorithms by the highestudtfy for which all benchmark instances can be
solved successfully.

4. NONOGRAMSOF SMALL TO MEDIUM SIZE

We analyze small Nonograms using exhaustive enumeratioirgxamine medium size Nonograms by sampling.

4.1 Small Nonograms

In this subsection we first consider the set oPalP = 22° = 33,554,432 x 5 black and white images. For every
image we compute its line descriptions, and we examine ffieudiy of the corresponding Nonogram.

Data are presented in Figure 4. Note that there are symm@tvie@lved, using the dihedral group,: most puzzles
occur in groups of 8. The first column contains the difficutydl, while the second column has the number of
simple puzzles of this difficulty. The hardest puzzles of sheple type have difficulty 17; there are 4 of them.
Figure 3, first panel, has a representative of its symmetuivalgnce class (the other 4 in its symmetry class have
difficulty 16). The third column has the number of puzzled ten be solved by BURSOLVER, indexed by the
number of sweeps that were used hymBSLESOLVER until no further progress was made (including the last two
that did not fix any more pixels). An example is shown in FigBrsecond panel; for this puzzle 14 sweeps are
used, before a single successfl2)-intersection is needed. Out of the 317,944 puzzles of fassc 224,751
could be solved by involving one successff] 2)-intersection; these puzzles ha\a 2)-difficulty 1. Figure 3,
third panel, shows a puzzle with highgt, 2)-difficulty. The fourth column shows the number of puzzles fo
which FOURSOLVER could make some progress, but was not able to fully solve thémfifth (and last) column
has the number of puzzles for whicloBRSOLVER could not fix any pixel at all. In particular, there are 12418
puzzles where neither any lineESTLE could fix a pixel nor any successf(#, 2)-intersection could be found.

From the puzzles whereduRSOLVER made some progress but was not able to fully solve them, gA308are

in fact uniquely solvable (an example is provided in FigurdoBirth panel); 1,192,994 puzzles can be solved
by SMPLESOLVER after adding one well-chosen clue (see the next paragréyiu).for those puzzles where
FOURSOLVER could not make any progress at all only 6,720 are in fact wetigsolvable (an example is given
in Figure 3, fifth panel); 6,124,630 puzzles can be solved ImpSE SOLVER after adding one well-chosen clue.
We conclude that out of the 333,064 uniquely solvable nampk Nonograms, 95.46% is (2,2)-hard; the total
number of uniquely solvable x 5 Nonograms is 25,309,575, with only 0.06% being not simpl@¢)-hard..

Clues that make a puzzle uniquely solvable, or make thenereasin be generated by just trying all pixels that
are unknown so far. Fixing such a pixel to the value it showadehin the solution, can either allow a particular
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Figure 3: Hardest simplé x 5 Nonogram (first panel)2, 2)-hard5 x 5 Nonogram of(2, 2)-difficulty 1 (second

panel),(2,2)-hard5 x 5 Nonogram of highe(2, 2)-difficulty (third panel), uniquely solvable Nonogram wker
FOURSOLVER could make some progress (fourth panel; note the 2-fold sstny) and uniquely solvable Nono-
gram where BURSOLVER could not make any progress (fifth panel). The corresporidieglescriptions can be

easily derived.

difficulty simple | (2,2)-hard| some progress by no progress by

Nonograms| Nonograms FOURSOLVER | FOURSOLVER

1 7,776 0 0 0
2 3,409,924 5,752 72,052 124,189
3 9,367,027 56,158 299,778 576,293
4 6,514,096 156,236 701,152 1,846,395
5 3,232,762 50,796 233,590 1,621,838
6 1,350,200 31,844 145,070 1,277,062
7 633,400 9,654 42,232 590,436
8 267,632 5,396 18,660 378,354
9 115,178 1,208 5,004 153,364
10 47,584 580 2,644 93,320
11 19,972 180 888 39,904
12 7,132 120 404 24,512
13 2,864 16 0 6,892
14 728 4 0 4,664
15 216 0 0 744
16 16 0 0 496
17 4 0 0 24
18 0 0 0 16
19 0 0 0 0
total 24,976,511 317,944 1,521,474 6,738,503
74.44% 0.94% 4.53% 20.08%

Figure 4: Statistics for thé x 5 images and the corresponding Nonograms.

solver to solve the puzzle, make it easier or have no effedtbrhaps one arrives at more fixed pixels when
solving); this also depends on the point in time that the edugrovided. It seems hard to devise a method to
find such clues without trying, though simple heuristicslddae conceived. The clues mentioned in the previous

paragraph were indeed found by just trying all possibsitie

For the set of al2®¢ = 236 =68,719,476,736 x 6 black and white images, results are presented in Figureo Fr
the puzzles whereURSOLVER made some progress but was not able to fully solve them, B/638 are in fact
uniquely solvable. And for those puzzles whe@URSOLVER could not make any progress at all 12,106,334 are
in fact uniquely solvable. We conclude that out of the 1,259,439 uniquely solvable non-simple Nonograms,
93.82% is (2,2)-hard; the total number of uniquely solvaibies Nonograms is 49,745,060,370, with only 0.14%

being not simple or (2,2)-hard.

4.2 Medium Size Nonograms

The numbers thus obtained suggest that most uniquely delpaizzles are simple, while there are also quite
many (2,2)-hard ones. There are just relatively few remaininiquely solvable puzzles. In order to assess this
issue, we now explore larger puzzles. However, due the emssmumber of images, we have to use sampling.

In order to better understand larger puzzles, we first perfeempling for small images. Figure 6 shows results
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difficulty simple (2,2)-hard| some progress by no progress by
Nonograms Nonograms FOURSOLVER | FOURSOLVER
1 531,441 0 0 0
2 1,892,287,503 168,790,528 806,262,697 110,274,370
3 12,508,732,323 97,411,401 381,662,356 237,190,334
4 14,306,915,587 242,390,921 988,352,708, 1,927,512,716
5 9,524,244,629 201,850,110 892,360,826| 3,271,038,528
6 5,110,680,772 155,867,778 694,418,286| 3,243,954,226
7 2,645,426,982 84,706,478 382,676,366| 2,125,778,718
8 1,295,645,826 51,037,482 221,491,162 1,550,293,616
9 666,279,114 24,030,088 102,398,912 844,903,646
10 336,135,394 13,572,368 56,564,246 560,868,894
11 173,613,082 5,915,660 23,220,212 277,760,640
12 85,805,862 2,979,724 11,498,196 169,399,812
13 42,890,084 1,206,236 4,131,016 77,735,516
14 19,823,016 583,232 1,930,888 44,335,244
15 9,241,252 211,856 601,564 18,482,368
16 3,992,532 86,032 232,984 9,667,988
17 1,750,180 29,776 71,404 3,742,560
18 683,456 11,536 25,600 1,796,320
19 275,508 3,612 6,604 628,632
20 100,160 1,156 1,716 270,200
21 36,692 352 432 85,932
22 12,204 88 128 36,172
23 3,760 36 48 11,136
24 1,176 12 12 4,248
25 332 4 12 820
26 64 0 0 256
27 0 0 0 56
28 0 0 0 16
29 0 0 0 0
total 48,625,108,931 1,050,686,466  4,567,908,375 14,475,772,964
70.76% 1.53% 6.65% 21.07%

Figure5: Statistics for thes x 6 images and the corresponding Nonograms.

for 6 x 6 images, with percentage of black pixels ranging from 0 to. FafF every integer percentage 1,000
random images were generated, and the corresponding puzele examined. In the figure, the numbers of
simple and — cumulative — (2,2)-hard Nonograms are plotisds the number of puzzles where some (often
just a little) progress could be made bp BRSOLVER. When interpreting such a graph, one should keep in mind
that the actual number of possible Nonograms having a gieeceptage of black pixels varies enormously as a
function of that percentage, following a binomial disttilotm centered at 50% (see the right panel from Figure 6).
The relative number of Nonograms for which less than 40% aertttan 60% is black is negligible, even though
the absolute number of such puzzles can still be huge.

Due to the small image size férx 6 puzzles, specific behaviour can be observed in the graphgur&6. If
there are no black pixels, or just one, all puzzles are of itin@ls type. For the case of two black pixels (5.5%
black), two cases can arise. Either the black pixels arediiséime line horizontally or vertically (with probability
approximately 28%), in which case the puzzle is always sémi they are in different rows and columns. In the
latter case, we see the occurrence of a so-calidtthing componena subset of the pixels where interchanging
the zeros and ones results in a different Nonogram with antiichd description (see Figure 7). In this case,
there is no unique solution andBRSOLVER can also not make any progress. As the percentage of blaels pix
increases towards 50%, the number of possible patternsaédr lene increases as well. For a low percentage of
black pixels (around 20%), the#PLE SOLVER algorithm is only rarely capable of solving the puzzle, whhe
increased power of using the information from 2 rows and Brools simultaneously provides substantially more
information about the solution. As the percentage of blaigklp increases further,I8PLESOLVER becomes
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Figure 6: Left: results for randoné x 6 images/puzzles with varying percentage of black pixelsgea0—100;
right: binomial distribution.

increasingly more powerful, up to the point where each lias & large fraction of black pixels and solving the
Nonogram is either straightforward, or there is no uniquetsm. In these casesJURSOLVER can hardly make
a difference. Solvability seems to have a complicated, pp&eent, correlation with the percentage of black pixels

of the images.
11
i " u
1

Figure 7: Switching component in its simplest for:x 2 Nonogram with two solutions.

The behaviour for larger instance’)(x 10 and 30 x 30) is shown in Figure 8. In both situations, it can be
observed that up to a certain percentage of black pixelsfa&0% for10 x 10, around 50% fo30 x 30),

less than 2% of the Nonograms are either simpl€2o2)-hard. The specific percentage at which a significant
fraction of the Nonograms starts being simple tends to ssb@size of the puzzle increases. Going up from this
percentage, there is a region where a substantial fractith 8)-hard puzzles can be found. We recall that due to
the shape of the binomial distribution, this region corgaitarge part of the complete set of possible Nonograms.
Further increasing the percentage of black pixels them&ateegion where the puzzles are typically either simple
or more difficult than(2, 2)-hard. With evidence being based on simulations, we specthat the non-simple
puzzles in this region do not have a unigue solution, andvarefore also not be solved bypBRSOLVER.

1000 . . . . 1000
900 | 900 |
800 | 800 |
700 |- 700 |-
600 |- 600 |-
500 |- soo |

400

number of puzzles
number of puzzles

300

200

100 |- y simple (bottom graph) —— 100 |- simple (bottom graph) —— |
(2,2)-hard (middle graph) ====--- (2,2)-hard (middle graph) =======

) | some progress (top graph) ++++++++ o o s ) )
20 30 40 50 60 70 45 50 55 60 65 70 75

percentage black percentage black

some progress (top graph) --------

Figure 8: Results for random images/puzzles with varying percentddplack pixels; left10 x 10, range 20-70;
right: 30 x 30, range 45-75.

Another interesting pattern in Figure 8 is revealed by thevewvhich tracks the number of Nonograms for
which some progress could be made by tltesRSOLVER method. After increasing initially the curve shows a
distinctive peak, followed by a region in which it decreasedeed, when the percentage of black pixels increases,
the FOURSOLVER method can recover the value of more pixels, as there isleeddm to shift the segments on
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each line. The ability to deduce the value of these pixelsiferSMPLESOLVER method lags behind, as it is less
powerful. From some point on, theNsPLESOLVER is also capable of making progress, after which the added
benefit of using the BURSOLVER drops, explaining the peak.

In the Nonogram solving tournament held during TAAI2011r{8utal., 2012) several carefully designgd x 25
puzzles were provided by the competitors to test the sthsratd weaknesses of the contributions by the other
contestants. Without exception these Nonograms are hdwae(2, 2)-hard, pushing the programs to their limits.

5. CONCLUSIONSAND FURTHER RESEARCH

In this paper, we have proposed, analyzed and discussecuttiffimeasures for Nonograms. The difficulty of
Nonograms follows a complex behaviour, ranging from simidd@mograms that can be found in puzzle books to
highly difficult ones that can only be solved by an exhaussarch, handling the underlying NP-hard combina-
torial problem. For simple Nonograms a difficulty measures @efined in (Batenburet al,, 2009). We proposed

a new general difficulty measure, which ranks the set of afjusly solvable (in general non-simple) Nonograms
by the number of rows and columns that must be involved in ailéémeous logical step to solve the complete
puzzle. The set of simple Nonograms corresponds to theésisnstances according to this difficulty measure,
using only logical steps within a single line. For Nonograshsizes up t80x 30, we performed computational
experiments to explore the space of all Nonograms, focusirtose that are either simple or &2e2)-hard. In
that case we only use information regarding two rows and onens simultaneously. The observed patterns
match well with intuitive explanations of Nonogram chasaidtics, but also provide more quantitative insights
into the transition of the difficulty of Nonograms from vetiynple ones to highly difficult instances.

Our future work will focus on a further stratification of thetsof non-simple Nonograms, exploring the diffi-
culty levels that go beyond the, 2)-hard Nonograms. The distribution of Nonograms over each®possible
difficulty levels is still to be revealed, e.g., for what vetuiofp andq do (p, ¢)-hard puzzles exist? For those
Nonograms that are not uniquely solvable, we want to chasisé basic structures of non-uniqueness in a similar
hierarchical ordering as the proposed difficulty measure.
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