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ABSTRACT 

In this paper we consider the symmetric space mentioned in the title. We give a compactification 
of this space X. Then the eigenspaces of the Laplace-Beltrami-operator on X are determined. 
Loosely speaking these are given in terms of Poisson-transforms of certain hyperfunction-spaces 
on the boundary of X in its compactification. In order to show that the Poisson-transform is 
iniective and surjective, an explicit inverse, the boundary value map, is constructed. Its existence 
relies upon the theory of Kashiwara and Oshima on regular singularities. 

The first part of the paper deals with the compactification and the boundary value map. 
In the second part the Poisson-transform is discussed. 

1. INTRODUCTION 

In this paper  we consider  the space X =  G/H,  where G =  SL(n, ~) and 

H=S(GL(1 )  × G L ( n - 1 ) ) ,  for n>__3. X can be provided with a G-equivar ian t  

p s e u d o - R i e m a n n i a n  structure.  The  cor responding  Laplace-Bel t rami-operator  

on  X is denoted  by I-1. We are interested in the spaces V~, where 

V~ = { f  hyper func t ion  on  X;  E~f=3.f} 

for  fixed complex 3.. We shall const ruct  the so-called Poisson- t ransform,  Which 

maps  a cer ta in  func t ion  space B into V~. For  the descript ion of  B we need a 

parabol ic  subgroup  P of  G, which is associated to H in a na tura l  way. B consists 

o f  hyper func t ions  on  G which have a certain t r ans fo rmat ion  property under  

r ight  t rans la t ion  by elements of  P ;  this proper ty  will depend on  3.. 

The  main  subject  of  this paper  is to show that  the Po isson- t rans form is an 
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isomorphism between the two spaces mentioned above. Therefore,  we construct 
an explicit inverse: the boundary value map. The existence of  this map relies 
heavily upon the theory of  Kashiwara and Oshima on regular singularities [8]. 

The analogous problem for Riemannian symmetric spaces of  the non 
compact type was solved by Kashiwara et al. [7], and for a large class of  non 
Riemannian symmetric spaces by Oshima and Sekiguchi in [13]. In [15] 
Sekiguchi deals with this problem for several so-called rank one spaces, like 
SO(p, q)/SO(p, q -  1). However, the space X mentioned before is not treated 
there. In [11] and [12] Oshima claims that for general symmetric spaces the 
Poisson-transform is a G-equivariant isomorphism between the appropriate 
spaces. Nevertheless, no proof  is given yet. 

Let us give a brief outline of  Oshima's approach, which we shall follow in 
this paper. First we give a compactification of  X; this is used to define the 
boundary value map. Then the Poisson-transform is defined. At that time we 
can state the main theorem: see Chapter 5. In the last two chapters one can find 
the proofs of two key-lemmas. The main problem, especially in the last two 
chapters, is the following: in contrast with the situation in [15], the set _h4t(tr) i 
as defined in [11], consists of  two elements. Therefore,  we need to examine a 
certain non-trivial representation of  SO(n), which causes a lot of  technical 
complications. As a consequence, we get two c-functions instead of  one like in 
[15]. This also explains the fact that the space B splits up into two subspaces, 
corresponding to certain representations of  SO(n). 

I wish to thank G. van Dijk and E.P.  van den Ban for many helpful dis- 
cussions and suggestions. 

The author was supported by the Netherlands Foundat ion for Mathematics 
SMC with financial aid from the Netherlands Organization for the Advance- 
ment of  Pure Research (Z.W.O.).  

2. D E F I N I T I O N S  A N D  P R E L I M I N A R I E S  

Consider the connected real semisimple Lie group with finite centre 
G = SL(n, JR), the n x n real matrices with determinant one, for n =>_ 3. Define an 
involutive automorphism tr of  G by tr(g) = JgJ (g e G), where 

j =  1 

The set of  fixed points of  tr is easily computed: it is equal to H =  S(GL(I, JR) x 
x G L (n -  1, ~)), where GL(m, •) is the group of  m x m real matrices with 
nonzero determinant. So we have: 

H =  {ge  0 ]a(g) =g} • ~--- E • 
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Note that H is not connected: it consists of  two connected components. We let 
X =  G/H;  X is a semisimple symmetric space. 

Besides o', we also consider the involutive automorphism 0 of  G, defined by 
O(g) = tg-l  (g ~ G). 0 is a so-called Cartan-involution and tT0 = 0o-. The set of  
fixed points of  0 is equal to K = SO(n, ~), the n × n real orthogonal matrices. 
G / K  is a Riemannian semisimple symmetric space of the non compact type. 

Let  g be the Lie algebra of  G: g = sl(n, IR), the n × n real matrices of  trace zero. 
The differentials of  t7 and 0, again denoted by t7 and 0, are involutive auto- 
morphisms of  g. One has o-(X) = J X J  and O(X) = - tX, for X e  g. Computing 
the eigenspaces of  a and 0 one obtains: 

flo  o... o) 
= { x e  g l a ( x )  = x }  = e 

q= { x e g j a ( x ) =  - x }  = -o- e 

t~= { X e  glO(X)=X} = {skew symmetric matrices in g} 

~= { X e g l O ( X ) =  - X }  = {symmetric matrices in g}. 

Now b is the Lie algebra of  H and f that of  K. We have: 

because a and 0 commute.  In ~NQ we choose a maximal abelian subspace a: 

Note that a is also maximal abelian in q. Define a0e  a*, the real dual of a, by 

We can diagonalize the action of  ad a on g: 

g = g(O) @ g(ao) @ g(2ao) ® fl( - ao)® fl( - 2ao), 

where we defined g(a) = {Xe  gl [Y, X] = a ( Y ) X  for all Ye a} (a e a*); g(O) is the 
centralizer of  a in g. Let gl[(m, R) denote the set of  m × m real matrices; then we 
have: 
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I I  ' ' "  
g(O)= C 

. • . 0 

s, t e ~; C e gI(n - 2, R); 2t + trace C = 

0 ( % )  = . 0 -  - 

X 

x, y e ~n-2 t .  

Here x is a row-vector and y a column-vector. This notation will be used 
throughout the paper. (I° °! 

g(2ao) = -0- 

0 . . . 0  - 

~( - a0)  = a (0 (a0) )  = O(o(ao)) = ~ -  
- - X  

x, ye~n-21 

IIS0 O 
g( - 2%) = a(g(2ao)) = O(g(2ao)) = : -0- 

0 
- s  0 . . . 0  - 

Note that g(0)=a(~rn, where m is the centralizer of a in I). In this way we get 
a root system of type (BC)I, namely { +ao, +_2%}. Define n=g(ao)~g(2ao)  
and fi= f l ( - a o ) O g ( - 2 % ) ;  both are nilpotent Lie algebras. We give a table of 
the dimensions: 

'L ie  a l g e b r a '  g b q f p a pFIq m 

Dimens ion  n 2 - 1 (n - l )  2 2(n - l )  n ( n -  1) n(n + l )  l 1 n -  1 ( r t - 2 )  2 
2 2 

2n -- 3 

Because a is one-dimensional, (fl, b) is called a rank one symmetric pair. For any 
Lie subalgebra I of g, we denote its complexification by [c. The Killing-form 
B of  g is B(X, Y)=2n trace (XY) for X, Yefl. 
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Consider the connected Lie subgroups A, Nand Arof G defined by A = exp a, 
N= exp n and N'= exp ft. Then: 

f a  ICsh t 1 -0- 

-0- 1 
h t  

sh 1 
ch 

x 
1 -0- 

-ff 1 
X 1 

f I X zlI N = (x,y, z) = 
-0-  1 

- - x  1 

x,Y ~ ll~n- 2; z ~ IRI" . 

Note, that 

exp 
X 

-O- 
X 

i i l  = n(x,y,z + (x,y)), 

where (. ,-) is the standard inner product o n  [ ~ n - 2 .  One computes: 

at as = at + s; atn(x, Y, z)a_ t = n( etx, ety, eEtz) 

a,n(x,y, z)a_ t = n(e- % e- % e- 2tz) 

n(x, y, z)n(x; y', z') = n(x + x; y + y ;  z + z' + (x, y') ). 

In this last equation one can replace n by R. Now it is clear that N and N are 
Heisenberg groups. Define the Lie subgroup Mof G by M= {h ~ H IAd (h) Y= Y 
for all Y~a}. Then: 

( if0 !1 M= m(a, B) = B 

• , 0 

a e ~; B e GL(n - 2, IR); a 2 det B = 11 

M has two connected components and its Lie algebra is ra. One verifies: 

m( ct, B)n( x, y, z)m( a, B) - ' = n ( ctxB - ' , la By, z ) .  
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Define the element w of  K by 

W =  

-0 
- 1  

1 -0- 

-0- 1 

-, 

1 o 

Then Ad(w)Y= Y for all Y e a ;  however wq.H.  Using w we construct a 
parabolic subgroup P of  G, i.e. a Lie subgroup which has a conjugate con- 
taining the upper triangular matrices in G (these elements constitute a minimal 
parabolic subgroup of  G). Let M = M U w M ,  a Lie subgroup of  G. Then 
P = M A N  is a parabolic subgroup of  G as we shall see later on. We also need 
P =  M A N ,  which is not parabolic. This is in sharp contrast with the spaces 
treated in [Sekiguchi, 15]. There the subgroup P, constructed in the same 
manner, is already parabolic. As mentioned in the introduction this difference 
causes a lot of trouble. Furthermore, the reader should he aware of  the fact that 
f I A N  is not a Langlands decomposition of  P. 

For some of  our computations it is somewhat easier to use the so-called 
diagonal-form. Define C e K  by 

C =  

°; 
- I / x / 2  0 . . . 0 l / x / 2 ]  

and consider the automorphism g ~  C g C -  l of  G. This is the Cayley-transform; 
its differential is of  course an automorphism of  g. Note, that 

C I1 llc-l:I1 _ll. 
We shall denote C a C -  1 by a', etc. In this way we can consider a' as a subspace 
of  the standard maximal abelian subspace a~ of  p--!o', which consists of  the 
diagonal matrices of  trace zero; this is the reason why we used the word 
diagonal-form. 

Now we do some computations for the Riemannian symmetric pair (g, f); we 
use the diagonal-form. Let us agree to omit the primes, for simplicity. We get 
a root space decomposition 
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where ga = {X~ f l[Y,X] : a(Y)X for all Y~ ap} (a e a~', the real dual of %) and 
Z" is a subset of  %. a root system of type A n_ 1. For SL(n, ~) the root spaces 
are easily described. For fixed i , j  in {1,2 ..... n} define Eij to be the n × n  
matrix with only one nonzero element: the (i,j)-entry, which is equal to one. 
Define t~ij ~ O: by 

a(i • = a~- aj (at ~ ~). 
a 

Then [ Y, Eij] = aij(Y)Eij ( Y e  %; i, j e { 1,2 .. . . .  n}). So we have f~ij: {tEijlt ~ ~} 
for i ¢ j ,  and X= {a~jli, j= 1,2 .... , n ; i ~ j } .  Call aij positive if i< j ;  this gives 
an ordering of the root system X. Define 

nmin = ~ (~ flu" a~Z, ct>O 

If we define aoea*  to be positive, we get compatible orderings of the two 
root systems involved, i.e. if aea~ ,  a > 0 ,  alaV:0 then a]a>0. This is clear 
from the fact that alj 1, = aj, l, = ao (j  ~ {2 ... . .  n - 1 }) and al.[ = 2a0. Note that 

C n C -  1 IIo x il x, y ~ [~n- 2; S ~ [~l>" . 

All root spaces are one-dimensional. 
Define some special elements of %,c,* the space of C-linear maps from % c  

to C, by: 

o~(r)=½ trace (adrlnmin, C)=½ ~: a(Y)  ( rea~,c)  
a>0 

n - 1  
~)1 = Gin 

2 

2(s)=Q~+ (n s 1 -  1)Q . (s ~ C). 

Note that 2 ( n -  1)=Qp and o~10--(n- l)a0, which is the analogon of Op for a. 
For an element aeap, c we define a unique element H~ of %,c by B(H~, Y)= 
=a(Y)  for all Ye%,c. Then we can transfer the Killing-form from %,c to 
%,c. for let (a, f l)=B(H~,Hp).  For 2~%.c ,  define: 

aEZ" 

c(,~ ) =/(;O//(aO 

e(2) - ' - -  1-I r (½(-}+ (;~,a>\\_/,/,. ~- -~+ (2,a>'~'~ 

a'~.X 
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Here c(2) is Harish-Chandra's c-function, and e(2)-~ is its denominator. We 
have: 

LEMMA 2.1. S e C. Then 

PROOF. 

c ( 2 ( s ) )  = 

r(s)ds-n+3)' 
(n-2)!2 2-n ~-2/ \ "4 ") 

V~ if(S\ 2 / \ +l~F(s+n4-!)2" 

1(2)= l-I B(½, (2 ,aq)~ .  
1 ~ < l < j ' < .  (aij, Otij)) 

We compute (2,a 6) and (ao, ao). First note that 

1 
H % = ~  nl (Eii_Ejj), so (ao, aij)=--.n 

Furthermore 

#p( Y) = ½ 
i = 1  

for 

y= 

(n+ 1 -2i)h i, 

• i n  % , c .  

Define Yie a* by •,C 

• --_ h i . 
Yi "hn 

Then we have 

1 1 " 
Byi = ~ E i i -  ~ 2  j~=l Eli" 

Straightforward computation yields, with icj ,  

( 2  (s), a o ) 

(ai2, aij ) 

j - i  
if i ¢  1, j ~ n  

2 

S - -  if i = l , j = n  
2 

s - n - l + 2 j  
4 

s+n+ 1 -2i  
4 

if i= 1, jCn  

if i ¢ l , j = n .  
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This implies, with nonzero constants c I and c 2, independent of s: 

s+n+ 1 - 2 i )  2_ 
I(2(s)'=clB( ½' 2 )  ~; B(½, 4 

= c2 F~--~) F( s+ n 1) z" 

Using 09 = 2 ( n - 1 )  and the duplication formula for the F-function we derive: 

V~ 2 n-2 
I ( a ~ )  = C2 

(n - 2) ! " 

Now the proof is easily completed. 1 

LEMMA 2.2• seC, sCZ. Then e(2(s)):#0. 

PROOF. 
_ < 2 ,  

e(2) 1= ~>ol-I 2 -t<a'">/<~'~>) F ½+ (a,a) ' 

by the duplication formula. Using the computations from the previous proof 
and the fact that 1/F(z) has zeros exactly in { 0 , -  1 , - 2  . . . .  } one derives: if 
s ¢ { - 1, - 3 . . . .  } 13 { n - 5, n - 7 . . . .  }, then e(2(s)) *: 0, so in fact a better result is 
proved. [] 

Now we return to the minimal parabolic subgroup. We define A m i  n = exp %, 
Nmin=exp nmin and Mmin={kEKIAd(k)Y = Y for all Ye%}. Then Pmi,= 
=MminAmingmin is a minimal parabolic subgroup, by definition. Note that 

t 

Ami n = et tie ~; ti=O t 
i ~ l  

/~min=(I~" "i1 

t __ 
mmi n - ~i = +1; [I ei = 1~ ~ • 

i = l  

Consider the following function spaces on a real analytic manifold Q: C(f2), 
C~(I2), C~'(f2)=D(g2), A(O), D'((2) and B(f2) are the spaces of  continuous 
functions, C *° functions, C ~ functions with compact support, real analytic 
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functions, distributions and hyperfunctions, resp. For more information about 
hyperfunctions, the reader is referred to [Schlichtkrull, 14] and the references 
mentioned there. 

Let ©(G/K) be the space of G-invariant differential operators on G/K, i.e. 
those differential operators on G/K that commute with the left action of  G on 
the homogeneous space G/K. We have the same notion for G/H: D(G/H), the 
space of  G-invariant differential operators on G/H. Let us describe this space. 
Therefore we introduce the Laplace-Beltrami-operator [] of  G/H: identify q 
with the tangent space to G/H at eH and use the restriction of  the Killing-form 
to cl to give a pseudo-Riemannian structure on G/H. Standard differential 
geometry provides us with a G-invariant differential operator [] on G/H, the 
so-called Laplace-Beltrami-operator. It is also possible to construct •,  or a 
nonzero multiple of  it, by using the Casimir-element from the centre of  the 
universal enveloping algebra U(g) of  gc. This construction will be given in 
Chapter 4. It is well-known that D(G/H)= C [ • ] ,  so every G-invariant differ- 
ential operator on G/H is a polynomial in [ ] .  

Throughout  this paper dk will be the normalized Haar measure of  K: 
~ dk = 1. Let log denote the inverse of  the map exp: a~--+Amin . For )~ * ~ a p ,  C w e  

denote by X~ the corresponding homomorphism of D(G/K) into C, see 

t l* " [Kashiwara et al., 7]. Now define, for 2 ~ p,c. 

B(G/Pmin; L).) = { f  ~ B(G )lf(gman) = e (a - e,~0og a)f(g) 

for all g e  G, m ~Mrnin, aeAmin, n Egmin} 

A(G/K; M(Xa)) = { f~ A(G/K)IDf= xa(D)f for all D ~ D(G/K)} 

(~af)(g)= ~ f(gk)dk ( f  6B(G/Pmin;L;~),g6G) 
K 

~x is called the Poisson-transform. Note that both B(G/Pmin;L,O and 
A(G/K;M(x~)) are representation spaces for G: 

(rL~(g)f)(x)= f (g-  lx) (g,x ~ G; f ~ B(G/Pmin; La)) 

(~;t(g)f)(x) =f(g-ix) (g~ G;xe G/K;feA(G/K;M(x,O)). 

That  this last definition is a good one, follows from the invariance of  the 
differential operators involved. Now the main result in [Kashiwara et al., 7] is: 

THEOREM 2.3. I f  2ea~ .c  satisfies e(2)¢0,  then ~;. is a G-equivariant iso- 
morphism of  B(G/Pmin;La) onto A(G/K;M(x~)), so ~ .  zt~ = ~ .  ~ .  1 

In Chapter 5 we shall formulate an analogous theorem for the space G/H. 
Therefore,  we need similar function spaces as considered above. Write ~o = n - 1; 
define for s e C: 

B(G/P; s) = { f e  B(G)[f(gmatn) = e(S-~)tf(g) 

for all geG,  m e M ,  t e ~ ,  neN} .  
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Noting that  for f e  B(G/P;s) we have a decomposit ion 

f(g) = ½(f(g) + f(gw)) + ½(f(g) - f(gw)) 

it is clear that we get B(G/P;s)=BI(G/P;s)GB2(G/P;s), where 

BI(G/P;s) = {f~B(G/P;s)if(gw) =f (g )  for all g e  G}, 

B2(G/P;s) = { f  e B(G/P;s)]f(gw) = - f(g) for all g e G}. 

LEMMA 2.4• Let seC. Then BI(G/P;s)CB(G/Pmin;L~(s)). 

PROOF. In the diagonal-form, writing A '  instead of  CAC -1, etc., we have 
M'=M, 

W/= 

r 1 

-0- 

- 1  

-0- 

1 

1 
- 1  

I 

1 i e -  "II 1 
X 1 1 -0- 

-0- 1 
x,Y ~ ll~n- 2; s ~ lR t 

C a t C -  1 = I 1 
1 -0- 

-0- 1 

e -  

Then MminC (M' t . )w 'M') ,  A~ninCM'A' and N~ninC.M'N'. This last statement is 
¢ , proved in the following way: take n 6Nmin, then with appropriate  u, o ~ ~n-2, 

t ~ R and (n - 2) × (n - 2) matrix 
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we nave 

n =  

IlUll I0 IIau  
1 * 1 * 1 -0- 

. = . . ~ M ' N "  

-0 -  1 -O- 1 ~ -  1 

where 

o '=  ' .  O. 

Let f ~Bl(G/P;s) ,  g~ G, m e Mmin, a~-Amin, n 6Nmi n. Then f (gman)=f (ga)= 
= etats)-o,)0og a)f(g), using 

I ,i11 , . (2(s)-  ~o~) og e t = ( s -  ~o) 2 

In order to give a similar inclusion for B2(G/P;s), we need the character g of  
M m i n ,  defined by 

Let 

= Cl/~n, • E M m i  n . 

B(G /Pmin ; La ; X) = { f  E B( G)lf(gman) = x(m)e ta- e,)0og ~)f(g) 

for all geG,  mEMmi n, aeAmin, n~Nmin}. 

LEMMA 2.5. Let s t C .  Then Bz(G/P;s)CB(G/Pmin;L~s);X). 

P R O O F .  We only have to remark that for feB2(G/P;s) :  

f (gw) = - f (g) = X( w) f (g). 

The rest of the proof is an adaption of that of the previous lemma. [ ]  

It is clear, that during the proof of Lemma 2.4 we also showed that P is a 
parabolic subgroup of G, because PminCP. For n = 3  one sees, that P=Pmin. 
For n > 3 however P is neither minimal nor maximal. For example, P '  is 

contained in the parabolic subgroup 

I(o; o.) ol 
of G, which is strictly larger than t5,. 
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Now we introduce some notations from [Kosters, 9], Chapter 4. Define the 
f o l l o w i n g  n × n m a t r i c e s :  

- 0 - ;  -0- • -0- . 
--1 

For x,y  ~ gl(n, R), let P(x,y) = trace (xy). G acts on gl(n, E) in the obvious way: 
g. x = gxg-  l (g ~ G, x ~ gl(n, R)). Note that 

H =  { g e G l g . x ° = x  °} 

M N =  {g e G[g. ~0= ~0} 

M/V= {g e G Ig" C0 = ~o}. 

The orbit G . x  ° is equal to 

{xe gl(n, ~)lrank x = trace x = 1 } 

and can be identified with G/H.  Define Po(x)=P(x,~°),  for x e G / H .  Note 
that 

P o ( g ' x ° ) = ( g l l - g n l ) ( g { l l + g l ,  l) (let g~ql=(g-X)ll, etc.). 

We define the Poisson-kernels by 

PJ(g) = IP(g-x °, ~o)l(- s- a)/2 

pEs(g ) = i p(g "x o, ~0)1(- s - 0)/2 sgn(P(g, x °, ~0)) 

for s e C ,  g e G .  Then we have Pls(e)=P~(e)= 1; 

P~(matngh)=e(S+°)tpi(g) (i= 1,2; g e G ,  m e M ,  t e ~ ,  n e N ,  h e l l ) ;  

Pls(wg) = Psi(g); p2s(Wg) = - p2s(g) (g e G). 

We need several decompositions of G. First we have the generalized Cartan- 
decomposition. Let 

C = ( K \  G / H ) =  { f eC°~(G)] f ( kgh )=f (g )  for all k ~ K ,  g e G ,  h e H }  

C~en(A) = { f e  C°°(A) l f (a t )=f(a_t )  for all t e R} 

C[(A + ) = {atl t_ 0 }. 

THEOREM 2.6. G = K A H = K C I ( A + ) H .  I f  g ~ G ,  then there is a unique t>_O 
such that g ~ KatH. The set C~(K \ G / H )  is in bijective correspondence, via 
restriction to A,  with the set C~en(A ). 

PROOF. [Flensted-Jensen, 3], p. 118. [] 

THEOREM 2.7. Let  g e G. Then Po(g. x°) :~ O i f  and only i f  g e N A H U  wNAH,  
and Po(g" x°) > 0 i f  and only i f  g ~ N A H .  In this latter case, the elements n ~ IV, 
at ~ A,  h ~ H such that g =nath, are unique and t = - ½ log (Po(g" x°)). 
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Furthermore, the mapping (n,a,h)~nah o f  N × A  × H  onto N A H  is an 
analytic diffeomorphism onto this open subset o f  G. The same is true for  the 
mapping (n ,a ,h)~wnah o f  N x A × H  onto wNAH. The disjoint union 
N A H U  w N A H  is open and dense in G. 

PROOF. [Kosters, 9], p. 94 gives most of  this theorem. The fact that the 
mappings are analytic diffeomorphisms is proved as in [Oshima, Sekiguchi, 

13], p. 10. [] 

REMARK 2.7.A. If g=atnh (gaG,  n a N ,  t a B ,  h a l l ) ,  then a_tg.x°=n.x°;  
this guarantees an explicit calculation of  n (cf. Chapter 3). 

Next we give the Bruhat-decomposition of G. W 1 is a set, consisting of  
seven elements for n_>_4; for n = 3 ,  W 1 has six elements. W 1 will be given 
explicitly in Chapter 6. 

THEOREM 2.8. 1) G =  U p a p  (disjoint union). 
~ ' ~  W I 

2) I f  g a G, then g a ArMAN if  and only i f  P(g. ~o, ~o) > 0 and g E w N M A N  

i f  and only i f  P(g.(° , (°)<O. l f  g=at~mn (gaG, taR ,  ~alV, m e M ,  n a N ) ,  

then t = ½ log (¼P(g. G °, ~o)). 
Furthermore, the mapping (~, m, a, n) ~ ~man is an analytic diffeomorphism 

o f  N × M × A × N onto NMAN.  The same is true for the mapping (~, m, a, n) 
~.wfiman o f  N × M × A × N  onto wNMAN. The disjoint union N M A N U  
U w N M A N  (=/VAZ/AN=.~rP) is open and dense in G. 

PROOF. 1) For a more precise statement and the proof,  see Lernma 6.2. 
2) Note that for t~ a N, t a I~, m a M, n a N: 

t 

P(~atmn. G °, G ° ) = 4e 2t" 

In Chapter 3 we shall explicitly compute t~ when g=~matn (gaG, ~ a N ,  
m a M ,  t a IR, n E N),  so given such a decomposition t~ and at are unique. 
Because M N N = { e } ,  we derive that (~,m,a,n)~-,~man is injective. Using 
Lemma 2.8 from [Oshima, Sekiguchi, 13] we find that this mapping is also 
submersive in the neighbourhood of  e, from .N× M e × A × N to IVMeAN. Here 
Me is the connected component of  M containing the identity element e. 
Because N M A N  is the disjoint union of two diffeomorphic open sets, like 
~IMeAN, the proof  is easily completed. [] 

THEOREM 2.9. G=KMAN.  I f  gaG,  then g=kman for  some kaK ,  m a M ,  
a a A ,  n a N ,  where a is unique and k is unique modulo K N M .  Moreover, k 
depends analytically on g (k a K / K N M ) ;  the same is true for  a. 

PROOF. [Kosters, 9], p. 95; [Varadarajan, 16], p. 293. I 
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Due to this last theorem, we can identify B(G/P;s) and B(K/KMM),  by 
restriction (s e C; cf. [Kashiwara et al. 7], and Chapter 6). We also identify 

Bl (G/P;s) and 

B1 (K/KN M)  = { f e  B(K)If(km) =f (k )  for all k e K, m e KN A7/} 

and also B2(G/P;s) and 

B2(K/KA M) = { f e  B(K)l f (km) = g(m)f (k)  for all k ~ K, m E Kf)  AT/}. 

Here we defined Z by 

f 1 i f m E M  
g(m)= - 1  i f m e w M  

which corresponds to the character Z we introduced before. 
Finally we define, for technical reasons, the subgroup 

1~= * 
. ° °  0 

= wHw-  1 

of G. Let 

J= 1 = wJw- 1 

Then /~  is the set of fixed points of the involution ~ of G, defined by ~(g) = J g J  
( ge G ) .  Note that a is again maximal abelian in lafq/l (obvious notation). 
Everything stated for H also holds for H,  of course with the appropriate 
modifications. 

3. A COMPACqZlFICATION OF G / H  

In this chapter we shall construct a compact real analytic manifold X( in 
which G / H  is realized as an open set. The construction is similar to those in 
[Oshima, 10], [Oshima, Sekiguchi, 13] and [Sekiguchi, 15]. The main result is 
given in Theorem 3.7. 

Let X =  G × ~, provided with the product topology; )(  is a manifold. G acts 
analytically on ,~" by the formula g. (g', t)= (gg', t), for g, g ' e  G, t e ~. Define 
a(t) by a(t)=a_k log ]t], for t e ~ ,  t:~O. Consider the following equivalence 
relation on )?: (g, t ) -  (g', t') if and only if 

i) t>O, t '>O; ga(t)-g 'a(t ' )  mod H or 
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ii) t = t ' = 0  ; g=-g' mod P or 
iii) t < 0 ,  t ' <0 ;  ga(t)=-g'a(t ") mod/-I .  

Let X( = X  1 - ,  and n :,I?~ X( the projection. Provide k~ with the quotient 
topology, so n is continuous. G acts on ))(( by g(rc(g' , t ))=n(gg' , t )(g,g'eG; 
t e ~). For g e G, define 

Ug + = {rt(gn, t)lt~e_A r, t e ~ ,  t>0}  

(jOg = { lr(gfi, 0)In e/~r} 

Ug={Zt(gn, t ) l n e N ,  t e ~ ,  t<0} 

ug = u;  u u ° u u;  = 

Identify IR 2n-3 and .~ by sending (x,y,z) to ~(x,y,z), where x, y e  R n-2, z e  ~. 
Define a mapping qbg:rR2n-2~Ug, for fixed g e G ,  by q~g(X,y,z,t)= 
=n(g~(x,y,z), t). By definition, #g is surjective. 

LEMMA 3.1. For all g e G, ~g is injective. 

PROOF. Suppose that x(ga(x, y, z), t)= zr(gO(x',y',z'), t'). Then there are three 
cases: i) t , t ' > 0 ;  ii) t=t '---0; iii) t , t ' <0 .  

i) For some h e l l ,  O(x,y,z)a(t)=a(x',y' ,z')a(t ')h. Theorem 2.7, with N 
replaced by /~r, immediately implies ~(x,y ,z)=a(x ' ,y ' ,z ' )  and a(t)=a(t'), 
whence x = x', y = y' ,  z = z' and t = t'. 

ii) For some p e P ,  ~(x,y ,z)=~(x' ,y ' ,z ' )p.  Using Theorem 2.8 one easily 
derives x= x', y = y" and z = z'. 

iii) Analogous to i): replace H by/-I. III 

So ~g is bijective for all g e G. In order to show that X( is a manifold, we 
need the following crucial lemma (cf. [Oshima, Sekiguchi, 13], Lemma 2.8(iii), 
[Sekiguchi, 15], Lemma 3.3 and also [Kashiwara et al., 7], Lemma 4.1). 

LEMMA 3.2. For all gl, g2 e G the mapping 

~g] 1. t~g t . t~g~ l(Ug I n %:)-~ ~ I(Ug I n % )  

defines an analytic diffeomorphism between open subsets o f  fir× ~ (or 1"~2n-2). 

PROOF. Suppose that ( x ' , y ' , z , t ' )=~ l . q~g , (X , y , z , t ) .  Write g instead of 
g~-lg I. First let t >  0. We have: 

g~(x,y, z)a_¢ log t = ~(x',y , z')a_~ log c h 

for some h e l l .  Applying tr to both sides of  this equation we get: 

tr(g)n( - x, - y, z)a¢ log t = n ( - x ;  - y ' ,  z')a~ log c h. 

Call the left hand side d. In order to compute x ;y ' , z '  and t '  in terms of  x,y ,z  
and t, use Theorem 2.7 and Remark 2.7.A. A careful examination of the 
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matrices d.  x ° and n(-x;  -y', z')a~ Log c'X° -- for example, in order to obtain 

y ' ,  add the first and the last column - -  leads to: 

t ' =  1 / ( d l l - d ,  fl)(dH 1 + d~ I) 

y;= -dil/(dll -dnt) ( i=2  . . . . .  n -  1) 

x[=d~l/(d~l+d~ I) ( i=2  . . . . .  n - l )  

d~ ~ 1 + t '  d ~  ~ 1 - t '  

(d~l+d~ J) 2 (d~l+d~nl) ~ 2 

Straightforward computat ion yields, for i = 1,2 . . . .  , n: 

di l=a(g) i , (~+(z+½)~_) l  '~-' (x/t-+ ~t-) - ~- ~ a(g)ijyj + a(g)in -f (z-  ½) 
j = 2  

d~i I =a(g-l)li +(½-z+(x,y)) +~[ j=2 a(g-Z)JixJ+ 

+a(g- ' ) , i ( -~+(½+Z-(X,Y))~) .  

From these expressions x;y; z" and t '  can be explicitly computed.  Note that all 
denominators involved are nonzero, because of  Theorem 2.7. 

Now let t = 0. We have 

g~(x, y, z) = a(x; y; z')p 

for somepeP. Call the left hand side f ;  let both sides act on G °. Theorem 2.8 
implies 

(fl~ + f~,,+ f,,~ + f,,,,)tf~sl _ A - ~ - f ~  ~ + f g ~ )  > 0, 

in particular this is nonzero. Furthermore,  

X[=(f~l--flTl)/(flsl--fl-nl--f~l+f~ l) ( i = 2  . . . . .  n - l )  

Y[=(fin+fil)/(fll +fln+fnl +f~,,) ( i = 2  . . . . .  n--  I) 

½ - z ' +  (x ' ,y ' )  = (f~S1-7"#1 ~)/(fl~ ~ -A-~ ~ - f ~  ~ + f L  ~). 

For example, x '  follows from addition of  the first and last row of  the matrix 
f .~0 .  Also, for i=  1,2 . . . . .  n: 

n - I  

fil =gn(z+ 1)+ ~ gijYj-ginz 
j=2 

n--I 

fin=gil(Z)+ ~, gijYj+gin(l-z) 
j=2 

flT~=g~(1-Z +(x,y)) - Y. gj~lxj+ g~ii(-Z +(x,y)) 
j = 2  

fm ~ =g~i~(Z-(X,y))+ ~, g~lxj+ g~il(1 + Z-(X,y)). 
j=2 
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Again, x', y '  and z '  can be explicitly computed in terms of  x, y and z. 
Finally, let t<0 .  Arguing as before, we get 

d(g)n(x,y, z)ak log Itj = n(x',y', z')ak Jog it'l/~ 

for some /~e/q. Note that 6(a(x,y,z))=n(x,y,z) .  Define .¢, for x e ~  "-2,  by 

(xl . . . . .  xn-2) ~= ( - x l , x 2  . . . . .  x,_2). Then 

a(wgw)n(:~, -.~, - z)ak log )t I = H(X', _ f i t ,  _ z)a½ log ]t'F h 

where h e l l .  Tedious calculations give the same formulas as in the case t > 0 ,  
with t replaced by - t .  In fact, the results for the case t > 0  can be applied to 
this la.,t equation. 

Note that, for i, j = 1,2 . . . . .  n :  tT(g)i  j -- gij (i, j ~: 1), o ' ( g ) i  1 = - -  g i l ,  o ' ( g ) l j  = - -  glj 
and tr(g)ll =g l l .  

After  all these preparations, the lemma can be proved. Take for example y[. 
The formulas derived above easily imply: (i e {2, .... n - 1 }) 

t 1 g i j y j _ g i n ( t + z _ l ~  g i l ( - 2 + Z + ' 2 )  + j=2"~l \ 2  2 /  y;'_- 

(gll+gnl) +Z+ + 2 (glj+gnj)Yj--(gln+gnn) +Z-- 
j=2 

for (x,y,z , t)  in n v 2) with t > 0 .  
Note however, that this formula is also valid for t = 0 and t < 0. This shows, 

that y[ is a rational, hence analytic function of  x, y, z and t. The crucial point 
here is the behaviour near t = 0, of  course. Similar computations can be given 
for xi' ( i = 2  . . . . .  n - 1 ) ,  z '  and t'. Note, that in particular it follows that 
(1)gl I l(Ug, ~ Ug2) is open. The details are left to the reader. I I  

Here we also completed the proof  of  Theorem 2.8, as was already mentioned 
there. If  g E G ,  g = ~ m a n  ( ~ N ,  m ~ M ,  a ~ A ,  n e N ) ,  we write HB(g) =log a. 
Then: 

COROLLARY 3.3. Notation as in the p r o o f  o f  Lemma 3.2. 

~tt]t= ° t'(g,x, y, z, t )  = e - 2a°(Ha(g{ 'g'n(x'y'z))). 

PROOF. From the proof  of  the previous lemma one gets: 

t" = t/(xfi-(all -- dnl))(V~(dfi 1 + dfnl)) 

where the denominator is analytic. Then it is easy to see that 

0 t ' (g ,x ,y ,z , t )=(denominator in t = 0 ) - z =  
~-t  t=0  

= 4/( f l  I +f l  n +fnl +fnn)(fll  I - f l ~  1 - f n ]  1 + f n ~  l ) = e - 2 t ° ,  

if ato = exp (HB(g i lg I R(x, y, Z))), using Theorem 2.8. II 
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COROLLARY 3.4. ~)g is a homeomorphism of  [~2n-2 onto the open subset Ug 
o f  ~ (for all g e G). 

PROOF. 1) ~g is continuous. Let i : N x  I~--,G x IR be defined by i(tL t )=  (~, t) 
and lg:GXR-,G×ff~ by lg(g',t)=(gg',t), for h e R ,  t e ~ ,  g,g'~G. Now 
t~g __-7['" [g" i is clearly continuous, being the composition of  continuous maps. 

2) ~g is open. (Cf. [Oshima, Sekiguchi, 13], p. 18). 
Let U C N x  It~ be open, g ~ G. We have to show that n-I(~g(U)) is open in 

X. Take an arbitrary point (go, to) in n-l(qbg(U)). From Lemma 3.2 one gets 
an open interval ( to-e,  to+ e) (e>0),  such that ~g  l~g ° (e, V)C U, relatively 
compact. If Y in ~ is sufficiently near 0, then ~ g ~ e x p  r go (e, V)C U. This 
shows the existence of an open set ~0Cfl, containing 0, with the property that 
n(exp ~o.go, V)C~g(U). So exp % . g o x V  is an open set in .~, containing 
(go, to) and contained in n-l(~g(U)). [] 

LEMMA 3.5. ~ is connected and compact. 

PROOF. It is obvious that ~( is connected, because ,~ has that property. 
In order to show that ~( is compact, it is sufficient to prove that 
)~( = 7t(K × [ - 1, 1]). Let g ~ G, t e ~. If t = 0 then there exists a k ~ K such that 
g ~ kMAN, because of Theorem 2.9; so n(g, 0) = rt(k, 0). If  t>0 ,  Theorem 2.6 
implies the existence of k E K and s > 0 with ga(t) ~ kasH; so ~z(g, t) = 7t(k, e -  2s). 
Note that e-2S_<l. If t<0 ,  a similar argument applies. So the lemma is 
proved. [] 

As a consequence, X( is second countable. 

LEMMA 3.6. ~ is a Hausdorffspace. 

PROOF. Take x,x' in X(. Note that for fixed g e G, Ug and Ugw are two 
disjoint open sets in X(, both homeomorphic to the Hausdorffspace ~ ×  ~. 
That the sets are disjoint is proved in the following way: ghaH=gw~'a'H 
(~,~'elV, a,a'~A) contradicts Theorem 2.7 (with N replaced by ~r), and 
Theorem 2.8 deals with the equation gMAN=gwMAN. Define Gx= {ge G] 
x~ UgU Ugw} C G and the same notion for x'. It is easy to see that G x is open 
and dense in G. Indeed, suppose that t>0 .  For appropriate g'~ G, x= rr(g', 1). 
Then x~ UgU Ug~ if and only if g-l~ (NAHU w~[AH)g'-1, which is open and 
dense in G, according to Theorem 2.7. If t = 0 ,  x =  n(g',O) for some g ' e  G. Now 
x e  UgU Ug w if and only if g-i  ~(I~MANUw~IMAN)g,-I, which is open and 
dense in G by Theorem 2.8. Hence GxNGx,~O. Take geGxNGx,, then 
X, X'E Ug U Ug w. Now x and x'  are easily separated by open sets. [] 

THEOREM 3.7. ))~ is a compact connected real analytic manifold. G acts real 
analytically on ~ .  There are three G-orbits in ~ : 

x< + = U u ; ,  x<0= U uo, x<-= U Ug. 
g~G g~G gEG 
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)vZ, + is diffeomorphic to G/H, ~ 0 to G/P  and )~ - to G/1]. The mappings 
• g (g ~ G) give an atlas on ~ .  

PROOF. We only have to remark that for g e  G, 

rg : (x, y, z, t) ~ ga(x,y, z)a(t)H ((x,y, z, t) ~ ~2~- 2, t > O) 

establish real analytic diffeomorphisms from ~/× ~ onto open subsets of  G/H. 
The other statements have already been proved in this chapter. II 

REMARK. Using this theorem, we often identify )~ + and G/H. 

4. THE BOUNDARY VALUE MAP 

In this chapter we construct a differential operator [] on the manifold X(. 
This operator comes from the Casimir-element g2, which is in the centre of 
U(g). Using the special form of  [] in local coordinates on ~ ,  we are able to 
apply the theory of  Kashiwara and Oshima on regular singularities in order 
to define the boundary value map fls. The main result of  this chapter is 
Theorem 4.3. 

First we construct f2. For i~{2  . . . . .  n - I } ,  let ni=El l -2Ei i+Enn,  
no  =Enl +Eln, g i=Ei l -E in ,  Yi=Eli+Eni, Ui=Eil +El n, Vi=Eli-Eni,  
Xo=E11+En1-EIn-E,~ and Y o = E I I + E I , - E , I - E n , .  It is easily seen that 
{Eu, ni]i , j= 2 . . . . .  n - 1 ; i ~ j }  is abasis for m, {Ho} fora ,  {Xi, Yili= 2 , . . . , n - 1 }  
for g(a0), {Ui, Vili=2 . . . . .  n - I }  for g(-a0), {Xo} for g(2u0) and {Y0} for 
g( -2a0) .  An easy computation shows that modulo U(g)l): 

r t - ]  
1 ~ 2 

1 2 - - -  {~Ho+¼(XoYo+ YoXo)+½ • (XiVi+ ViXi+ YiUi + UiYi) }. 
2n ~=2 

For  a definition o f  (2, consult [Warner, 18], p. 168. Simple computations yield: 

t/--1 

4nI2-- H2 + Z(n - 1)H 0 -  Y z -  z ( n -  Z) Yo + 4 ~, ViU i (modulo U(g)t)). 
i=z 

As usual, we consider elements of  U(g) as left invariant differential operators 
on G: for Y~fl, f e B ( G ) ,  g e G  we let 

d] f (g  exp tX), (Yf)(g) = ~ ,:0 

which has a natural extension to U(g). From now on, identify B(G/H) and the 

set of  right H-invariant hyperfunctions on G. For u ~ B(G), write 

ug(x, y, z, t) = u(grt(x, y, z)a(t)) (a(0) = e) 

where g~ G; x,y,z, tE ~2n-2. We have: 

LEMMA 4.1. Let u~B(G/H)  and t > 0 .  Then." 

(4nE2u)g(x,y,z,t)= I4 ( t_~ t ) z_4 (n_  l)t a___t 2 02 
at -a-~z 2 + 

118 



PROOF. 

1) 

+4t  ~=2 ~] oXiOyi +2(n -2 ) t  + 4 t ~ z  i=2  Xi ug(x'Y'Z't)" 

=ds  s-o 0 g 
(Hou)(g~(x, y, z)a(t)) d u(g~(x,y, z)a(te-ZS)) = _ 2t ~ u (x,y, z, t). 

_ at 

2) (You)(g~(x,y,z)a(t))=dls=O u(gn(x,y,z)~(O,O,s))= 

= ~  ,=o a 
d u(ge(x,y,z+st)a(t))=t -~Z ug(x'Y'Z' t). 

3) (Viu)(grt(x,y, z)a(t)) = d i s=0  u(grt(x,y, z)n(s~i-e. O, O)a(t)) = 

=xf{ c9 ug(x,y,z,t), where ei=(0 . . . . .  0, 1,0 . . . .  ,0), ith entry is 1. 
axi 

4) (Uiu)(g~(x,y, z)a(t)) = d u(gn(x,y, z)n(O, s4-i-ei, O)a(t)) 
S = 0  

= d • = o u ( g n ( x ,  y + sx/ i -e i ,  z + s f i - x i ) a ( t ) )  = 

O 0 g 
= (x/t-x; ~zz + x/t-~y/)u (x,y,z,t). 

Substitution of 1), 2), 3) and 4) in the expression already obtained for 4nQ, 
completes the proof. [] 

Note that a similar computation for G/tTI gives the same result, with t < 0. 
In fact 

n - |  

4n f2 -H~+ 2 (n -  l )H0-  YZ + 2 ( n - 2 ) Y o - 4  Y. ViLli (modulo U(fl)~) 
i = 2  

and 

and 

Ho corresponds to - 2 t  0 O a 0s' ro to - t  Tz' to 

< to I I ~  (xi 0__+0__.'] 
az ayij 

Now we can define a global differential operator [] on X(. Use the charts 
(qig, Ug) as defined in Chapter 3. On Ug, [] is given by the expression in 
Lemma 4.1. However, this expression extends to Ug. Notice that the coeffi- 
cients are analytic in x, y, z and t. In this way, [] becomes a differential 

119 



operator on )~, such that its restriction to ~ +, again denoted by U], coin- 
cides with 4n£2. It is easy to see that D commutes with the G action on ~ .  
Indeed, it is sufficient to check this on the Ug (ge G), and for t:g0; there it 
follows from the invariance of ~2. 

L E M M A  4.2. Every G-invariant differential operator on )~ with real analytic 
coefficients is a polynomial in E3. 

PROOF. As remarked in Chapter 2, every G-invariant differential operator on 
G/H is a polynomial in U]lx< +. Notice, that a differential operator  on 
with real analytic coefficients is uniquely determined by its restriction to N + 
This follows from the fact that a real analytic function on f~,  which is zero on 

{(xl . . . . .  xn)~ ff~nixn>O}, is zero everywhere. IH 

Consider the following differential equation on ))(( (s ~ C, u e B()~))  

[ ] / g  = ($2 - -  02 ) / - /  (Ms) 

and let 

B(G/H;Ms) = { f c B ( ) ~  +) I f  satisfies (Ms)}. 

Now we use the theory of  Kashiwara and Oshima. As a reference we take 
[Oshima, Sekiguchi, 13], 2.2. where the results of  [Kashiwara, Oshima, 8] are 
stated in the way we need them. First note that the differential equation (Ms), 
containing the holomorphic parameter s, has regular singularities in the weak 
sense along )~ 0. This is a direct consequence of  Lemma 4.1. The characteristic 
exponents are the complex solutions of  the equation 4 2 2 -  4 0 4 - s  2 + 0 2 =  0, so 
they are ½(0 + s) and ½(0 - s). The difference of  these numbers equals s. In order 
to define the boundary value map, we have to make the change of  variables 
t =/-2. Then (Ms) becomes a differential equation with regular singularities in 
the strong sense, which means among other things that 

02 

3x2c)Y2 

occurs instead of  

3 2 
t - -  ax2Oy2" 

However, this is not a real analytic change of  coordinates near t =0.  Never- 
theless, the theory can still be applied. The characteristic exponents also 
change; they become 0 + s and 0 - s, so their difference turns out to be 2s. From 

now on, assume 2sCZ. 
Take ueB(G/H;Ms) and geG.  Consider ulu i .  Let ff be an extension of  

uj~yg, to Ug, with supp (t2)C Ug ~ t3 U ° and such that ~ satisfies (Ms) on Ug. Let 
sp(a) be the microfunction corresponding to ti. Then there exist certain micro- 
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differential operators Ri (i = 1,2) and hyperfunctions (Pi (s, x,y, z) on Ug ° (i = 1,2) 
such that: 

sp( a) = R 1 sp( Ol (s, x, y, z)t°+- s) + R2 sp( q)2(s ' x, y, z )i'°++ s). 

For these facts, the reader is referred to [Oshima, Sekiguchi, 13], 2.2. The ¢i 
( i= 1,2) are called the boundary values of u tw.  We denote them by: 

¢~(s, .)=/~u(.); ¢2(s,-)=/~g-su(-). 

Note, that the systems (Ms) and (M_s) coincide. Theorem 2.14 from [Oshima, 
Sekiguchi, 13] implies that this definition is independent of the choice of g, in 
fact (with g ' e  G): 

(flgu)(x, y, z)( dt)(u - s)/2 = (]~g'u)(x; y', Z')(dt')(o - s)/2 

defines a hyperfunction valued section in the linebundle T~0 X(, where the 
equality holds for rc(grt(x,y,z), t) = 7r(g'rt(x',y',z'), t'). If gl ~ G, gl 6I~[MAN, 
define nB(gl) and HB(gl) by 

g~r l~ (g l )M exp He(gl)N,  tTB(gl) e/~ r, /tB(gl) ~ a. 

Using Corollary 3.3, that states 

( I t  t -~- e -  2a°(HB(g'- ' gn)) d t  

we derive, that for a e N f l g - l g ' N P :  

(flgsU)(~) = (flg'u)(~s(g,- l g~)) exp ( ( s -  Q)ao(Hs(g'-  lg~))). ( . )  

Now we can define a hyperfunction on G: 

(flsu)(go) = (flffu)(~B(g- lgo) ) exp ((s - O)ao(Hs(g- lg0))) 

for go ~ g A P ,  which is open in G. We have to show, that this definition is 
independent of the choice of g. Therefore, suppose that g o ~ g N P f q g ' N P  for 
g , g ' e G .  An application of  (*) yields: 

(flsU)(go) = (~gs'u)(nB(g'- l gftB(g- l g0))) exp ((s-~O)ao(H~(g'-lgftB(g-lg0))) 

= (flg'u)(rtB(g'- Igo)) exp ((S- ~O)ao(HB(g'- lgo) ) 

proving our claim. (Note that r tB(g- lgo)~g- lg 'NP. )  It is easy to see, that 
fls u ~ B ( G / P ;  s), because 

(/3sU)(gomatn) = (flgu)(~B(g- lgo)) exp ((s - p)Oto(HB(g- lgo) + Hs(at) ) ) 

for m ~ M ,  t ~ ,  n e N ,  g, goeG,  goeg-NP. 
So fls is a linear map from B ( G / H ; M s )  into B(G/P;s ) .  It is called the 

boundary value map. 

121 



N o t i c e  tha t  b o t h  spaces  are  i n v a r i a n t  u n d e r  t h e  ac t i on  o f  G: 

(ns(g)f)(x) = f ( g -  Ix) (g e G, x e G/H;  f e B(G/H;Ms))  

(~s(g)f)(x) = f ( g -  Ix) (g e G, x e G/H;  f ~ B(G/P;s)). 

THEOREM 4.3.  Let 2s¢ Z. Then fls is a linear, G-equivariant mapping f rom 
B(G/H;Ms)  into B(G/P;s).  

PROOF. Le t  ue B( G/H; Ms) .  W e  have  to  s h o w ,  tha t  fo r  f ixed  g e G :  

(ffs(eXp r)flsU)(g exp  X)=fls(Zts(exp r)u)(g exp  X )  ( # )  

f o r  al l  X,  Y in Q su f f i c i en t ly  n e a r  0. T h e  lef t  h a n d  s ide  o f  ( # ), f o r  X,  Y such  t h a t  

e x p -  Y g exp X e  g:VP, is e q u a l  to  

(flgsu)(~B(g- l exp  - Y g exp  X ) )  exp  ((s - p)Cto(Hs(g- 1 exp  - Y g exp X ) ) ) .  

I t  is easy  to  see, t h a t  

flgs(zts(eX p Y)u)(a) = (fls exp- rgu)(~), 

b e c a u s e  fo r  b o t h  sides we  h a v e  to  c o n s i d e r  the  f u n c t i o n  

(x, y, z, t)  ~ u (exp  - Ygn(s, x, y)a(t)H). 

So  t h e  r ight  h a n d  side o f  ( # )  is equa l  to :  

e x p -  Y g  - - 1 ( f l~ u)(nB(g g exp  X ) )  exp  ( ( s - O ) a o ( H B ( g - l g  exp  X) ) ) .  

N o w  the  two  exp re s s ions  o b t a i n e d  are  equa l ,  b e c a u s e  we  can  use  f o r m u l a  (*) ,  

w h i c h  is va l id  fo r  X,  Y su f f i c i en t l y  nea r  0, a n d  s o m e  s imp le  p r o p e r t i e s  o f  ~B 

a n d  H B. [] 
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