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1. NOTATIONS AND GENERAL REMARKS

Definitions and notations are as in :
G.van Dijk, Nilpotent orbits on the tangent space of a rank one
symmetric space, Report no.13, University of leiden, 1983.
This paper is referred ta as (D). In particular we shall use (D), pp.4—
17. Notice that (D), Chapter 5 is not quite correct. In fact, the orbit
H . $,e°+eq does admit a non-zero H-invariant measure {(cf. (D), p.21).
We shall return to this later on. Alsoc, formula (2) on p.5 of (D) needs

some minor corrections.

So in this paper G is a real connected simple Lie group, whose Lie
algebra is of type f . His a closed connected Lie subgroup of G,
which is a two-fold cosér of SO0 (6G,5).

Let X = G 7 H. We are interegted in the following items :
¢ 1 ) Give a (nice) model for X.

( 2 ) Determine D'X,H(X) far complex N . Here D.X,H(XJ consists of all
H-invariant distributions on X that satisfy [ T = W T, where [J
is the Laplace-Beltrami operator on X. Elements of this space are
called spherical distributions.

{ 3 )Y Determine a Plancherel formula for X. Tﬁjs means a specgral decam—
position of the self-adjoint extension [J of [0, from L (X} o
LZ(X). Here LZ(X) denotes the space of functions on X that are
square integrable with respect to a non—-zero G-invariant measure
dx on X. This measure is unique up to a scalar.

( 4 ) Interpretation of ( 3 }. Determine the (ir)dreducibility of the

discrete series, construct representations, compute c~functiaons
and so on.
In this paper we shall deal with (1 2, ( 2 ) and { 3 J. Proofs are not

agiven here. In the last chapter we will comment on ( 4 ) and mention

some of the problems that are to be expected.

2. THE MODEL

2
Let X' denote the manifold {‘{é J | trace ¥ = 1, ¥ = Y} . Here
r
J2 1 is the real 27-dimensional vectorspace of hermitean 3% 3 matrices
r *

with coefficients in 0 , the octonions (cf. (D}, p.5). G clearly acts

on X'. Indeed, one uses the fact that G is contained in the group of

automorphisms of J2 1. The action is even transitive and the stabilizer
0 1 00 !
of x = 8 8 g in G equals H. Therefore X and X' are diffeomorphic.

From now on we shall identify them.
Next we examineothe H-orbit structure on X. For that purpose we let
RQ{x) = trace {( X X ) = x (x €& X). Notice that Q is an H-ipvariant real

11
analvtic function on X, with Q(X) =JR and Q{x J} = lf\WPite for real c :



&

xte) = {xex | ety = ¢ }. We have :
LEMMA 1 ( i) If ¢ £ 0,1 then X(c) is a 15-dimensional H-orbit.
{ ii) X(0) consists of two H-orbits of dimension 8 and 15 resp..
(iii) X(1) consists of three H-orbits, namely {.xo} » A and B,
of dimension 0, 11 and 15 resp..

Because the H-orbit A plavs a central role in the following, let us give

its definitian :

= *

v X
88) | x»v€ 0 , (xix) = (yly) = xy =

X =

3. THE SPHERICAL DISTRIBUTIONS

iet dx be a fixed non—zero G-invariant measure on X. If f & D{(X) we

define the function Mf on R by
J.Xf(x) F(Q(x)) dx = f Mf(t) F(t) dt
for all FgC([RJ). One can show that M(D(X)) 3&, where

X {cp'f)cp N0, 1P P, ?’emm}

Here 'Y)O(’c) KR / 2 and "7 (t) ft-11 / 2 (tEMR). We gormalize 0 in
the following way : [ C(F . @ ) = (LF) . Q for all FEC (IR), where

It
i

(LFYC(t) = &GE(t-1) F*''"(t) + 16¢(3t-1) F'({t) (teRl.
We are led to the gifferential equation :
L S = (s - 121 ) S ( % )
on IR, for complex s. Define some special solutions of ( % ) by :
S E (¢(ll+s3s2, (ll-s)/2; 8; 1-%t) (t>1)
W (k) =42 1 »
0 (tg1d
s " F ((ll+s)rs2, (11-s53)/2; G; t) (<)
Vv (t) = 2 1 ’
o (£20)
r :
S (t) = F {(-r, 1l+r; 4; %) (r = 0,1,2,...3 t&R}.
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In the obvious way these functions are considered as elements of ¢&'. Now

we examine the following conditions :

H(E) = € W e+ ol () ® (t) loglt] (t near 0, t # 0)

W satisfies ( * )
§ is an analytic solution of ( % J near 0; § {(0) = 1

W is analytic nearkﬂ; WI(B) = 1

1 o0
W (t) = Z”Z b (s5) & near 4
1 k=0 154
The numbers b (s), with kK = 0,1,2, and dﬁ(s) are uniquely determined.
Notice that b (s5) = 1. Similarly we conslder the condition :
~ 0 -7 &~
WO = (- W) +<=nLI (s) ¥ (t) 1ogit-1] (t near 1)
Fa'd
The power series expansion of W ardund 1 has coefficients ¢ (s) (k = 0,

1
1250233 ¢ (8),..., cé(s) and o (5} are uniquely determined. In fact

=

all these numbers ares easily computed. For complex s we let :
tk

s 2 )
E (@) = z::_ b (s) (0) 7 [ (k+1)
0 Y k=0 2-k ¢ !
E%¢ — e osr
) = ¢ (s) 1) / [ tk+1)
R k=0 6-k ? s ’
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where q) & ;e

EFinally we have the following theorems :

THEOREM 2 The H-orbit A carries a non-zero H-invariant measure, which

can be viewed as a sgherical distribution PL on X, with
eigenvalue =96 ( = 5 - 121 ).

THEQOREM 3 Let T be an H-invariant distribution on X. Then there exists
a complex number c¢ such that T - ¢ & = M'S for some Segl".

Here M' is the dual map from g ° to D'(XD).
From this, using our solutions of ( ¥ ), we deduce :
2 5

THEOREM 4 Let W= s - 121, s&€, Re s 3 O. Write B(s) =1!M‘(o{1(s) W+
-_— s s s

E ), M'( -od (s> VvV + E_ )}. Then :

1 G

(a) If s¢{5,11,13,15,...} , then B(s) is a basis of D'y (X).

r }H

(b) If s = 11 + 2r with r & {0;1;2....} y then '{M'S ;\J B{(s)

is a basis of le. (X).
s H

(c) B(5) w {p} is a basis of D'% H(X).

r
Notice that the situation is quite similar to the one in case of

Sp(n, R) 7 Spin—1, RIXSp(l, R), except for the measure }L of course.

finally we give the explicit formulas for ol (s) (J = 0,1) :
J
2 2 2
of (5) = —-(s —-25){(s —-69)(s —-81l) - 768 »
a
Z 2 2 2 Z 2 22 G 2

>
ol (s) = (s —-1) (s -9) {s -25)(s —49)(s -81) / 2 .3 5 .7 .

4. THE PLANCHEREL FORMULA

Now that we have determined the spherical distributions, it is a
g

matter of technique to compute the spectral decomposition of [J. We

first state the formula and then give some comments.

THEQREM 5 The measure «dx can be normalized in such a way {(and this

normalization can be explicitly described) that for all & D(X)

s
P fFix) | dx =
X

80 2 2
1 (z +13(z +9)((11+iz)/2)TT(11-1iz)/2) iz sin(x iz /2)
2T Jz=0 16 [(8)
1 iz iz _
. ML £ + W ) ( F # F ) dz +
ol (iz) 1
1
"
P (1) [C1142r+1) r 1 11+2p
= M'( S + E +
r=0 6 (r+1) (0,13 ol (1142r) O
1]

r+1
(-1 fla(r+8) E11+2r
r(B)r(r+4)c{1(11+2r) 1

) CF & F ) +
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5 11-2p 5 7 g -
M'( -720 Z=Z (11-2r) E +240 E -1680 E 6480 E ) CF £ Ff ) .
r=1 1 0 0 ¢
Here f # f denotes the convolution product of f and F, f being viewed as
a function on G (in the wusual wav).
Finally we give some comments :
( a } The continuous spectrum should be examined. It will probably
split into two parts, corresponding to certain irreducible unitary

representations of G, induced from a parabolic subgroup canoni-

cally associated with H.
( b ) The discrete spectrum corresponding to eigenvalues 2> 0, consists

of irreducible components. In fact, results of Oshima and Matsuki
imply irreducibility even for eigenvalues > -40. Alsco, Kengmana
has obtained results in this direction.

( ¢ ) The most difficult part will be to decide (irdreducibility for
eigenvalues < 0. In particular —-%6 will provide serious problems.
The others can probably be handled by using K-~finite functions.

{ d ) As is easilv proved, (G,H) is a so-called generalized Gelfand
pair. Therefore we can speak of the Plancherel formula, once {( a )
and ( ¢ ) are understood.

( & ) Of course; the "weight—-functions'! occurring in the Plancherel

formula should be rewritten in terms of appropriate c—functions.




