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Abstract

In this paper we will use and extend a type of competitive neural netwatiktialize the co-occurrence
of subgraphs in a dataset where molecules are considered as ti@rsacrecords.

We will adapt this algorithm, called push-and-pull, to plot each subgrapd @oint in 2D space by
repeatedly changing its position based only on the relative distancesadrateach fragment/subgraph
being a point {z, y}-coordinate) in our visualization, we build a group for each point by ‘flegikfrag-
ments to a point linked to a more fitting group.

In this way we create a 2D visualization by knowing only the distances betweser-defined number
of groups (points), improving runtime and overview. Practically it will allog/to improve the analysis
of co-occurring substructures, or fragments, within the moleculeseofréinsactions, by improving the
visualization with less points (centroids) in comparison with traditional pushgaull.

The algorithm is beneficial for any data mining task where one only knoessligtances between
points, because the structure of the learning examples does not cléanyfa an input vector (e.g.,
graphs or trees), the dimension of the input vector grows exponentiatyednput vectors are simply not
given.

1 Introduction

Unsupervised learning methods allow us to visualize alfi&iof bio-chemical data. The motivation for this
paper is the search for co-occurring substructures in datsotecules. These substructures are basically
connected subgraphs of the bigger connected graptmthecule In the context of bio-chemical data we
call these subgrapieagmentsA visualization of co-occurrence needs to handle manynfiergs, we seek

to improve scalability.

For a bio-chemist it is very interesting to know which fragiteeoccur often together, for example in
so-called active molecules. This is because frequent caroence implies that the fragments are needed
simultaneously for biological activity. Furthermore, pimaceutical companies provide generated libraries
of molecules. A visualization of co-occurrences in moledilbraries gives a bio-chemist insight how the
libraries are constructed by the company.

In this paper we will use and extend a type of competitive alenetwork called thgoush-and-pull
algorithm, as published in [9], to visualize the co-occooe of subgraphs in a dataset where molecules are
considered as transactions. The push-and-pull algorisimelated to multi-dimensional scaling for which a
rich literature exists, e.g., Sammon et al. in [16], Broims& al. in [1], and the $omApP algorithm in [17].

We will adapt the push-and-pull algorithm, that plots eaompin 2D space by changing its position
based only on the pair-wise relative distancepdintin this paper is defined afe, y }-coordinate linked
to or belonging to a fragment. Instead of each fragment baipgint in our visualization, now we build a
group for each point. We call a point linked with a groupentroid since the distance between groups is
decided by the average distance between members. Furtteevmeaomake these grougelf-optimizingoy
“leaking” fragments to a centroid with a more fitting group.

The goal of this research was to make the push-and-pull itigprmore scalable to the number of
fragments. An added benefit is that having less points ingzdiie overview in the visualization. With
our algorithm we hope to combine the advantages of Selftizgay Maps (see [8]), e.g., one neuron
for many similar points, with the advantages of push-andl-pLg., good intermediate approximations and



visualization with only distance information. To this etlis paper makes the following contributions:

— We will define the “leaking” bi-dimensional centroids and show how they fit in the push-and-pull
algorithm.

— Furthermore we wilbropose an algorithmthat allows us to visualize the co-occurrence of fragments
(or subgraphs).

— We will empirically show that the algorithm can redisco&® synthetical databased only on their
relative distance.

— Finally we will empirically showhow scalability improvesin comparison with traditional push-and-pull.

In theory we can create a 2D visualization by knowing onlydistances between a user-defined number
of groups (points), improving runtime and overview. Preafly it will allow us to improve the analysis of
co-occurring fragments within the molecules of the tratieas, by improving the visualization with less
points (centroids).

The algorithm is beneficial for any data mining task whereamlg knows the distances between points,
because the structure of the learning examples does natycidlaw for an input vector (e.g., graphs or
trees), the dimension of the input vector grows expondntal the input vectors are simply not given. In
these cases more traditional algorithms, e.g., K-meanslihgnd EM in [2], are harder to use (since we
know only the distance between instances and not theirgmoraling input vector).

Fast access of the distances is important for the push-alh@lgorithm as it is for any competitive
neural network algorithm. The algorithm will benefit fronstar on-demand distance computation, since
storing all distances in memory or even on the disk becompsaatical as the number of data points grows.

The overview of the rest of the paper is as follows. In Sec#one start with a background discus-
sion and continue, in Section 3, with defining molecules aadrhents as graphs and subgraphs and the
distance measure of co-occurrence for the fragments. lticBet we continue with the main contribution
of this paper when we define our model and the principle ofitegkntroducing our extended algorithm
for visualization in Section 5. Finally, in Section 6, we diss our experimental results. We conclude in
Section 7.

2 Background

This work is related to work done on competitive neural nekspmore specifically involving the push-and-
pull algorithm. Furthermore, the work is related to work dam the analysis of molecular datasets.

Competitive neural networks in the area of biology are ingour because the dimensional reduction
property provides an important basis for any visualizationgeneral our work is related to SOMs as de-
veloped by Kohonen (see [8]), in the sense that SOMs are als0 10 visualize data through a distance
measure. ASelf-Organizing MagSOM) is a type of artificial neural network that is trainedpi@duce a
low dimensional representation of the training samplesOMSs constructed by moving the best matching
point and its neighbours (within a lattice of neurons) tadgathe input node.

SOMs have been used in a biological context many times, fimgke in [6, 12]. In some cases molecules
are clustered via numeric data describing each molecu[&9irclustering such data is investigated.

Points in a SOM can not, beforehand, be linked with a singteepaor group of patterns, which makes it
less suitable for our purposes. Also by design a SOM needsaw khe dimension of the input vector. In our
setting we do not know the input vector, but only the distapegveen points. One could use the distance
to other points as an input vector, but the number of dimemssisill potentially be huge. With a more
scalable push-and-pull algorithm we will not have thesadiiantages while still being able to analyse many
fragments. Furthermore the algorithm for a SOM needs tinfiereaeurons get into the neighbourhood of
the correct group of items. The intermediate picture of pastt-pull always approaches the situation with
different levels of quality.

Furthermore, our work is related to work done on the iderifan of Structure Activity Relationships
(SARs) where one relates biological activity of moleculgshbalyzing their chemical structure [4, 7] in the
sense that in our work the structure of a graph is used to buitebdel. In [3, 14, 15] a statistical analysis
was done on the presence of fragments in active and inactilecuoies. However, our work is not concerned
with the discovery of SARSs, but with co-occurrence of supbsaoccurring in a collection of graphs. More
related is the work done by Lameijer et al. in [10]. This woskcbncerned with co-occurring fragments
discovered with a graph splitting. Graph splitting breakslenules at topologically interesting points. A
frequency threshold is used to filter out some fragments #ftér generation, however no frequent pattern
mining techniques are used. Furthermore, they do not buitd@ccurrence model or a similar visualization



of co-occurrence. Figure 1 shows two co-occurring subgrgfsagments) discovered by Lameijer et al. in
their dataset of molecules. The algorithm presented inpdger confirms these results.
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Figure 1: An example of co-occurring subgraphs from [10hwveih example molecule.

3 Molecules and Fragments

First we define what a fragment and a molecule are in the cbofethis work. LetG = (V, E) and
G’ = (V'  E’) be connected graphs, whéreand V' are finite, non-empty sets of vertices alidand £’
are non-empty sets of edges (links between pairs of veytidée graphG’ is asubgraphor fragmentof
the graph omoleculeG if V! C V andE’ C E. If G’ is a subgraph of at leagtinsupp graphsG in a
datasetD of graphs then we callz’ a frequent subgraphwhereminsupp is a user-defined threshold for
frequency. Our algorithm is commonly used in the analysigaxfuent fragments in order to minimize the
pattern space.

The distance function for calculating the distance betweenlearning examples can be different for
each problem, however it needs to range between 0 and 1. lceaee of mining molecular datasets and
analysing co-occurrence, we take the distance measune igiy8]:

supp(g1) + supp(g2) — 2 - supp(g1 A g2)
supp(g1 V g2)

whereg; and g, are two subgraphs (or fragments) and slupportfunction valuesupp(g) computes the
number of occurrences gfas subgraph in the dataset of molecules. Hege (g1 V g2) counts the occur-
rences of one of the two graphs anghp (g1 A g2) the occurrences of both graphs. For each molecule from
the dataset we count only one occurrencaufip(g; V g2) = 0 we defineg_dist(g1,g2) = 1.

This distance measure is known as the Jaccard metric andrimaerity chosen for its common use in
Bio-informatics (see [18]). It is also easy to compute, gitlee appropriate supports; it doesn’t make use of
complicated graph comparisons, that would slow down thegs®.

g-dist(g1,g2) = 1)

4 Leaking Centroids

We will visualize co-occurrence by positioning a user-dafinumben of centroids in a 2-dimensional area,
where the ordered set of all centroids is indicated Witin this work a centroid is defined as a point linked
to a group of fragments instead of to one fragment. Eachaieltes coordinates within this 2-dimensional
area consisting of a pair of two real numbers x <1and0 <y < 1.

At first, as done in traditional push-and-pull, centroids placed at random in the 2-dimensional area.
At each iteration a random pair of centroidand; (0 < 4,j < n) is selected and their relative position is
changed with the following formulas:

xe, «— x¢; — a - (eucl_dist(C;,C;) — m_dist(C;,Cj)) - (xc — xc,

— m_dist(C;,C;)) - (ye
— m_dist(C;,C;)) - (x¢,

— m_dist(C;, C;)) - (ye, — ve,

ye, — ye, — o - (eucl_dist(C;, C;
xe, — x¢, + a - (eucl_dist(C;,C;

) )
) ye,)
) zc;)
Y, < Ye; + a - (eucl_dist(C;, Cy) ) (2)

Herea (0 < a < 1) is the user-defined learning rate. It should not be chosebig for not making too
large adaptation towards the pair-wise distance and nerefecging to a good approximation of distances



between all points. A of around0.1 was found to be a good choice in most cases. The funetioh dist
calculates the Euclidean distance between centroid quates andn _dist(Ic,, Ic,) is as defined below.

This is a kind of push-and-pull algorithm which yields a \d@fmation in which the distances in 2D
correspond to distances in the pattern space. This appatisimemerges due to the small adaptation of
pair-wise distances. In a post processing step values aleddo fit in coordinates ranging from 0 to 1. Note
that in [9] the push-and-pull was shown to converge to an@pprated 2D model of the relative distance
between points.

Note that we always have a visualization: the longer we rerethorithm, the better the Euclidean dis-
tances correspond to the distances between centroids imdtiel. As is common to this type of algorithm,
one might converge to a local minimum. However, in practide $eems to occur hardly ever.

Now we further refine our notion of centroids:

1. Each centroid; has one coordinate paitc;, yc,)-

2. Each of them has a unique ggt of learning examples (subgraphs in the molecular settiFfeg /¢,’s
are mutually disjoint.

The distance between centroidsand(; is decided by thewverage distanceetween the items afe,
andlc;:

Zaejci Zbelcj g-dist(a,b)
‘Ici : |ICJ"

Practically we store these distances if€ax |C| distance matrix where onli|(|C| — 1)/2 distances
are stored, sincen_dist(Ic,, Ic;) = m_dist(Ic,, Ic,). In this way we save memory, in comparison with
push-and-pull where we have one point for each fragmenth Eantroid has two-dimensional coordinates
andn-dimensional distance vector and that is why we calldbetroids bi-dimensional

We say that a centroid has‘aking” opportunity if the learning exampleg;, have a chance to be
transferred to another centroid because it better fits Wwélitems of this centroid. This requires an adaptation
of the distance matrix without recalculating the distanmetsveen other items of each centroid; this is more
formally described in Section 5. The term “leaking” and “afidg”, as seen in traditional clustering, have
some similarities. However “updating” is usually done gskmown input vectors to update the position of
the cluster. With “leaking” we move an instance to a betteugrand in the process the distance of this
group to all other groups changes.

m,dist([ci , ch) =

5 The Algorithm

The basis of our algorithm is the random placement of theroilst and interchanging iterations of model
(distance) optimization and leaking of the centroids. Fathhiterations we can set the number of iterations,
however these should not be set too high. This is becausmmnshould get the opportunity to exchange
items and via pushing and pulling be able to adapt the modbletmew situation. Formally we define this
basis as Algorithm 1 (next page).

The affected distances are all distances between the @siicandC, and all other centroids (including
the distance betweeRh andCs). In Figure 2 we give an example distance matrix for a modél eéntroids,
where we only need to store the white area. E.qg., if an iteksléam centroid 3 to 5 then the arrows indicate
which distance values need to be adapted.

We do not need to completely recalculate the affected distgrinstead we can update the “old” distance.
Indeed, if the centroid; losesan itema to a centroidC; then for each distance with another centr6id
wherek #£ i andk # j:

m_dist(Ic;, Ic,) - |1Ic;,| — m-dist({a}, Ic,)
|Ici -1

m_dist(I¢,, Ic, ) — 3)

m_dist(Ic;, Ic,) - |Ic,| + m_dist({a}, Ic, )
|ch‘ +1

m,dist(ch ) — 4)



Algorithm 1 Leaking Centroid Algorithm: ENTROIDLEAK
Require: setC of centroids, databage of items

1: Divide all: € D evenly among the centroids

2: forall 0 <j < |C|do

3. Randomly choosec, andyc, between O and 1

4: end for
5: for a user-defined number of interchanging iteratidas
6: for a user-defined number of model optimizatiatws
7 Choose two random centroids
8: if Distance not in distance matriken
9 Calculate the distance between the centroids and store it
10: end if
11: Use Equation 2 on these two centroids
12:  end for
13:  for a user-defined number of “leaking” opportunitis
14: Choose two random centroids andC,
15: Choose one iteme C;
16: if m_dist({i}, Ic,\{i}) > m_dist({i}, Ic,) then
17: Transfer itemi to centroidC,
18: Adapt the affected distances between the centroids usingttegs 3 to 6
19: end if
20:  end for
21: end for

o|N|lo|lu|ls|lw|(Nn|kr|o

Figure 2: The distance matrix for model with 9 centroids feabite box represents a distance value).

Finally we need to adapt the distance betwéeand(;:

adaptation = m_dist({a}, Ic,\{a}) - (|1c,

—1) —m_dist({a}, Ic;) - |1c,| (5)

m_dist(Ic,, Ic;) - |Ic,| - |Ic,| + adaptation
(He:l = 1) - (He; | +1)

Note, in lines 8 and 9 of Algorithm 1, that distances are omlicalated when needed. The number of
distances to store is a little because of the user-definedauaf groups, an advantage oELTROIDL EAK.

m_dist(Ie,, ch) — (6)

6 Results and Performance

The experiments were done for two main reasons. Push-dhdigpends on the speed of the distance
function. For large databases thelist function slows down. We want to show thaEEQTROIDLEAK can
better deal with large databases if we can not store thendistabetween all fragments (items) in the main
memory,scalability. We made no comparison with the SOM algorithm or any of thditicnal clustering
algorithms, because the reasons discussed in Section 2itheste suitable for our purposes. Secondly we
want to show that the models made by the algorithm actualtyagrhes the model we expect.

All experiments were performed on an Intel Pentium 4 64-2i2ssGHz machine with 3 GB memory. As
operating system Debian Linux 64-bits was used with kerr@B212-em64t-p4.



The first dataset, calle®@yntheticSmall, is displayed in Figure 3. The dataset consists of 4 groups of
200 two-dimensional items. The second synthetic dataskg¢dSyntheticLarge, is displayed in Figure 5.
The dataset consists of 11 groups of 500 two-dimensiomakit&lote that, contrary to the real-life datasets
below, we know the original 2D locations of all data pointsnfi which we compute the distances. The
original coordinates are of course not employed by the #@lguar but can be used to verify the performance.

The first real-life dataset we use is th@69.no_aro dataset, containing 4,069 molecules; from this we
extracted the 1,229 most frequent subgraphs usiBegaN (see [20]). This dataset was provided by Lei-
den/Amsterdam Center for Drug Research (LACDR). Othersddisawe use are datasets of the National
Cancer Institute (NCI), and can be found in [13]. One of thdatasets contains 32,557 2D structures
(molecules, average size is 26.3 nodes) with cancer testadadbf August 1999; we will call this dataset
theNCI.CAN.99 dataset.

The approximation ayntheticSmall displayed in Figure 4 shows the groups similarly positiobed
slightly turned. The slight turn is caused by the algorithmyd&nowing the distance between points. Where
in traditional push-and-pull you would plot all 800 items 2D space, now we plot only 100 centroids
representing self-optimizing groups of examples. Noté l#ss points make it easier to distinguish (groups
of) fragments that are co-occurring. This is essential fgraser-interface that allows for further exploration
of these centroids (or groups).
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Figure 3:SyntheticSmall: Synthetic data when Figure 4: The approximation (fyntheticSmall
we also know the input vectors, 4 groups of 20@vith n = 100 centroids & = 0.1, 100 leaks, 10,000
items. model optimizations and 1,000 iterations).

In Figure 6 the algorithm approaches thewitheticLarge dataset again with only 100 centroids instead
of 5,500 (11 groups of 500). Note that we can calculate fotrditional push-and-pull, where we plot all
items in 2D space, thay/2-n(n— 1) distances need to be stored and one will eventually run auesfiory.
Having many more than 5,500 points will eventually be a peobfor traditional push-and-pull.

Figure 5:SyntheticLarge: Synthetic data when Figure 6: The approximation cfyntheticLarge
we also know the input vectors, 11 groups of 50With n = 100 centroids & = 0.1, 100 leaks, 10,000
items. model optimizations and 1,000 iterations).

For the4069.no_aro dataset the model of Figure 7 was build. We link those ceagréor which items



on average are co-occurring frequently and one can seedhesdten closer in 2D space.

Figure 7: The approximation for the069.no_aro dataset withn = 100 centroids & = 0.1, 100 leaks,
10,000 model optimizations, 1,000 iterations).

In Figure 8 it is shown how runtime for a large dataset growssedor traditional push-and-pull as the
number of model optimizations increases. With Figure 8 watw@show that with “leaking” centroids the
push-and-pull algorithm becomes more scalable. Due toritwgping of fragments and the lazy updating of
the distance matrix there is much less need to count co-wmme of the fragments.
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Figure 8: Runtime in seconds with variating model optinimag for theNCI.CAN.99 dataset withh = 100
centroids & = 0.1, 100 leaks, 1,000 iterations).

7 Conclusions and Future Work

In this work we proposed an algorithm for improving the sbélty of push-and-pull, a competitive neural
network algorithm. The algorithm was able to deal bettehwatger databases and a great amount of points
in the model. This was done by having a fixed amount of cergnataere the items are evenly divided among
the centroids. Every few iterations certain items have figoadunity to “leak” to a more suitable group. We
have experimentally shown that expected models are fouriith ®ir algorithm we hope to combine the
advantages of Self-Organizing Maps, e.g., one neuron foyrsanilar points, with the advantages of push-
and-pull, e.g., good intermediate approximations andaligation with only distance information. The new
method gives a better overview, using less points, it onlyleys intermediate distances, and is easy to
understand and to adapt.

In the future we want to make the updating of the distancesentemy, allowing for an even faster
algorithm and we want to analyse the biological findings i improved push-and-pull algorithm.
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