
Visualizing Co-occurrence of
Self-Optimizing Fragment Groups

Edgar H. de Graaf Walter A. Kosters

Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands
email:edegraaf@liacs.nl

Abstract

In this paper we will use and extend a type of competitive neural network tovisualize the co-occurrence
of subgraphs in a dataset where molecules are considered as transactions or records.

We will adapt this algorithm, called push-and-pull, to plot each subgraph as a point in 2D space by
repeatedly changing its position based only on the relative distances. Instead of each fragment/subgraph
being a point ({x, y}-coordinate) in our visualization, we build a group for each point by “leaking” frag-
ments to a point linked to a more fitting group.

In this way we create a 2D visualization by knowing only the distances betweena user-defined number
of groups (points), improving runtime and overview. Practically it will allowus to improve the analysis
of co-occurring substructures, or fragments, within the molecules of the transactions, by improving the
visualization with less points (centroids) in comparison with traditional push-and-pull.

The algorithm is beneficial for any data mining task where one only knows the distances between
points, because the structure of the learning examples does not clearly allow for an input vector (e.g.,
graphs or trees), the dimension of the input vector grows exponentially or the input vectors are simply not
given.

1 Introduction

Unsupervised learning methods allow us to visualize all kinds of bio-chemical data. The motivation for this
paper is the search for co-occurring substructures in sets of molecules. These substructures are basically
connected subgraphs of the bigger connected graph, themolecule. In the context of bio-chemical data we
call these subgraphsfragments. A visualization of co-occurrence needs to handle many fragments, we seek
to improve scalability.

For a bio-chemist it is very interesting to know which fragments occur often together, for example in
so-called active molecules. This is because frequent co-occurrence implies that the fragments are needed
simultaneously for biological activity. Furthermore, pharmaceutical companies provide generated libraries
of molecules. A visualization of co-occurrences in molecule libraries gives a bio-chemist insight how the
libraries are constructed by the company.

In this paper we will use and extend a type of competitive neural network called thepush-and-pull
algorithm, as published in [9], to visualize the co-occurrence of subgraphs in a dataset where molecules are
considered as transactions. The push-and-pull algorithm is related to multi-dimensional scaling for which a
rich literature exists, e.g., Sammon et al. in [16], Bronstein et al. in [1], and the ISOMAP algorithm in [17].

We will adapt the push-and-pull algorithm, that plots each point in 2D space by changing its position
based only on the pair-wise relative distance. Apoint in this paper is defined as{x, y}-coordinate linked
to or belonging to a fragment. Instead of each fragment beinga point in our visualization, now we build a
group for each point. We call a point linked with a group acentroidsince the distance between groups is
decided by the average distance between members. Furthermore we make these groupsself-optimizingby
“leaking” fragments to a centroid with a more fitting group.

The goal of this research was to make the push-and-pull algorithm more scalable to the number of
fragments. An added benefit is that having less points improves the overview in the visualization. With
our algorithm we hope to combine the advantages of Self-Organizing Maps (see [8]), e.g., one neuron
for many similar points, with the advantages of push-and-pull, e.g., good intermediate approximations and
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visualization with only distance information. To this end,this paper makes the following contributions:
— We will define the “leaking” bi-dimensional centroids and show how they fit in the push-and-pull
algorithm.
— Furthermore we willpropose an algorithm that allows us to visualize the co-occurrence of fragments
(or subgraphs).
— We will empirically show that the algorithm can rediscover2D synthetical databased only on their
relative distance.
— Finally we will empirically showhow scalability improvesin comparison with traditional push-and-pull.

In theory we can create a 2D visualization by knowing only thedistances between a user-defined number
of groups (points), improving runtime and overview. Practically it will allow us to improve the analysis of
co-occurring fragments within the molecules of the transactions, by improving the visualization with less
points (centroids).

The algorithm is beneficial for any data mining task where oneonly knows the distances between points,
because the structure of the learning examples does not clearly allow for an input vector (e.g., graphs or
trees), the dimension of the input vector grows exponentially or the input vectors are simply not given. In
these cases more traditional algorithms, e.g., K-means in [11] and EM in [2], are harder to use (since we
know only the distance between instances and not their corresponding input vector).

Fast access of the distances is important for the push-and-pull algorithm as it is for any competitive
neural network algorithm. The algorithm will benefit from faster on-demand distance computation, since
storing all distances in memory or even on the disk becomes impractical as the number of data points grows.

The overview of the rest of the paper is as follows. In Section2 we start with a background discus-
sion and continue, in Section 3, with defining molecules and fragments as graphs and subgraphs and the
distance measure of co-occurrence for the fragments. In Section 4 we continue with the main contribution
of this paper when we define our model and the principle of leaking, introducing our extended algorithm
for visualization in Section 5. Finally, in Section 6, we discuss our experimental results. We conclude in
Section 7.

2 Background

This work is related to work done on competitive neural networks, more specifically involving the push-and-
pull algorithm. Furthermore, the work is related to work done on the analysis of molecular datasets.

Competitive neural networks in the area of biology are important because the dimensional reduction
property provides an important basis for any visualization. In general our work is related to SOMs as de-
veloped by Kohonen (see [8]), in the sense that SOMs are also used to visualize data through a distance
measure. ASelf-Organizing Map(SOM) is a type of artificial neural network that is trained toproduce a
low dimensional representation of the training samples. A SOM is constructed by moving the best matching
point and its neighbours (within a lattice of neurons) towards the input node.

SOMs have been used in a biological context many times, for example in [6, 12]. In some cases molecules
are clustered via numeric data describing each molecule; in[19] clustering such data is investigated.

Points in a SOM can not, beforehand, be linked with a single pattern or group of patterns, which makes it
less suitable for our purposes. Also by design a SOM needs to know the dimension of the input vector. In our
setting we do not know the input vector, but only the distancebetween points. One could use the distance
to other points as an input vector, but the number of dimensions will potentially be huge. With a more
scalable push-and-pull algorithm we will not have these disadvantages while still being able to analyse many
fragments. Furthermore the algorithm for a SOM needs time before neurons get into the neighbourhood of
the correct group of items. The intermediate picture of push-and-pull always approaches the situation with
different levels of quality.

Furthermore, our work is related to work done on the identification ofStructure Activity Relationships
(SARs) where one relates biological activity of molecules by analyzing their chemical structure [4, 7] in the
sense that in our work the structure of a graph is used to builda model. In [3, 14, 15] a statistical analysis
was done on the presence of fragments in active and inactive molecules. However, our work is not concerned
with the discovery of SARs, but with co-occurrence of subgraphs occurring in a collection of graphs. More
related is the work done by Lameijer et al. in [10]. This work is concerned with co-occurring fragments
discovered with a graph splitting. Graph splitting breaks molecules at topologically interesting points. A
frequency threshold is used to filter out some fragments after their generation, however no frequent pattern
mining techniques are used. Furthermore, they do not build aco-occurrence model or a similar visualization



of co-occurrence. Figure 1 shows two co-occurring subgraphs (fragments) discovered by Lameijer et al. in
their dataset of molecules. The algorithm presented in thispaper confirms these results.

Figure 1: An example of co-occurring subgraphs from [10] with an example molecule.

3 Molecules and Fragments

First we define what a fragment and a molecule are in the context of this work. LetG = (V,E) and
G ′ = (V ′,E ′) be connected graphs, whereV andV ′ are finite, non-empty sets of vertices andE andE ′

are non-empty sets of edges (links between pairs of vertices). The graphG ′ is a subgraphor fragmentof
the graph ormoleculeG if V ′ ⊆ V andE ′ ⊆ E. If G ′ is a subgraph of at leastminsupp graphsG in a
datasetD of graphs then we callG ′ a frequent subgraph, whereminsupp is a user-defined threshold for
frequency. Our algorithm is commonly used in the analysis offrequent fragments in order to minimize the
pattern space.

The distance function for calculating the distance betweentwo learning examples can be different for
each problem, however it needs to range between 0 and 1. In thecase of mining molecular datasets and
analysing co-occurrence, we take the distance measure given in [5]:

g dist(g1, g2) =
supp(g1) + supp(g2)− 2 · supp(g1 ∧ g2)

supp(g1 ∨ g2)
(1)

whereg1 andg2 are two subgraphs (or fragments) and thesupportfunction valuesupp(g) computes the
number of occurrences ofg as subgraph in the dataset of molecules. Heresupp(g1 ∨ g2) counts the occur-
rences of one of the two graphs andsupp(g1 ∧ g2) the occurrences of both graphs. For each molecule from
the dataset we count only one occurrence. Ifsupp(g1 ∨ g2) = 0 we defineg dist(g1, g2) = 1.

This distance measure is known as the Jaccard metric and was primarily chosen for its common use in
Bio-informatics (see [18]). It is also easy to compute, given the appropriate supports; it doesn’t make use of
complicated graph comparisons, that would slow down the process.

4 Leaking Centroids

We will visualize co-occurrence by positioning a user-defined numbern of centroids in a 2-dimensional area,
where the ordered set of all centroids is indicated withC. In this work a centroid is defined as a point linked
to a group of fragments instead of to one fragment. Each centroid has coordinates within this 2-dimensional
area consisting of a pair of two real numbers0 ≤ x ≤ 1 and0 ≤ y ≤ 1.

At first, as done in traditional push-and-pull, centroids are placed at random in the 2-dimensional area.
At each iteration a random pair of centroidsi andj (0 ≤ i, j < n) is selected and their relative position is
changed with the following formulas:

xCi
← xCi

− α · (eucl dist(Ci, Cj)−m dist(Ci, Cj)) · (xCi
− xCj

)

yCi
← yCi

− α · (eucl dist(Ci, Cj)−m dist(Ci, Cj)) · (yCi
− yCj

)

xCj
← xCj

+ α · (eucl dist(Ci, Cj)−m dist(Ci, Cj)) · (xCi
− xCj

)

yCj
← yCj

+ α · (eucl dist(Ci, Cj)−m dist(Ci, Cj)) · (yCi
− yCj

) (2)

Hereα (0 ≤ α ≤ 1) is the user-defined learning rate. It should not be chosen too big for not making too
large adaptation towards the pair-wise distance and never converging to a good approximation of distances



between all points. Anα of around0.1 was found to be a good choice in most cases. The functioneucl dist

calculates the Euclidean distance between centroid coordinates andm dist(ICi
, ICj

) is as defined below.
This is a kind of push-and-pull algorithm which yields a visualization in which the distances in 2D

correspond to distances in the pattern space. This approximation emerges due to the small adaptation of
pair-wise distances. In a post processing step values are scaled to fit in coordinates ranging from 0 to 1. Note
that in [9] the push-and-pull was shown to converge to an approximated 2D model of the relative distance
between points.

Note that we always have a visualization: the longer we run the algorithm, the better the Euclidean dis-
tances correspond to the distances between centroids in themodel. As is common to this type of algorithm,
one might converge to a local minimum. However, in practice this seems to occur hardly ever.

Now we further refine our notion of centroids:

1. Each centroidCi has one coordinate pair(xCi
, yCi

).

2. Each of them has a unique setICi
of learning examples (subgraphs in the molecular setting).TheICi

’s
are mutually disjoint.

The distance between centroidsCi andCj is decided by theaverage distancebetween the items ofICi

andICj
:

m dist(ICi
, ICj

) =

∑
a∈ICi

∑
b∈ICj

g dist(a, b)

|ICi
| · |ICj

|

Practically we store these distances in a|C| × |C| distance matrix where only|C|(|C| − 1)/2 distances
are stored, sincem dist(ICi

, ICj
) = m dist(ICj

, ICi
). In this way we save memory, in comparison with

push-and-pull where we have one point for each fragment. Each centroid has two-dimensional coordinates
andn-dimensional distance vector and that is why we call thecentroids bi-dimensional.

We say that a centroid has a“leaking” opportunity if the learning examplesICi
have a chance to be

transferred to another centroid because it better fits with the items of this centroid. This requires an adaptation
of the distance matrix without recalculating the distancesbetween other items of each centroid; this is more
formally described in Section 5. The term “leaking” and “updating”, as seen in traditional clustering, have
some similarities. However “updating” is usually done using known input vectors to update the position of
the cluster. With “leaking” we move an instance to a better group and in the process the distance of this
group to all other groups changes.

5 The Algorithm

The basis of our algorithm is the random placement of the centroids and interchanging iterations of model
(distance) optimization and leaking of the centroids. For both iterations we can set the number of iterations,
however these should not be set too high. This is because centroids should get the opportunity to exchange
items and via pushing and pulling be able to adapt the model tothe new situation. Formally we define this
basis as Algorithm 1 (next page).

The affected distances are all distances between the centroidsC1 andC2 and all other centroids (including
the distance betweenC1 andC2). In Figure 2 we give an example distance matrix for a model of9 centroids,
where we only need to store the white area. E.g., if an item leaks from centroid 3 to 5 then the arrows indicate
which distance values need to be adapted.
We do not need to completely recalculate the affected distances, instead we can update the “old” distance.
Indeed, if the centroidCi losesan itema to a centroidCj then for each distance with another centroidCk,
wherek 6= i andk 6= j:

m dist(ICi
, ICk

)←
m dist(ICi

, ICk
) · |ICi

| −m dist({a}, ICk
)

|ICi
| − 1

(3)

m dist(ICj
, ICk

)←
m dist(ICj

, ICk
) · |ICj

|+ m dist({a}, ICk
)

|ICj
|+ 1

(4)



Algorithm 1 Leaking Centroid Algorithm: CENTROIDLEAK

Require: setC of centroids, databaseD of items
1: Divide all i ∈ D evenly among the centroids
2: for all 0 ≤ j < |C| do
3: Randomly choosexCj

andyCj
between 0 and 1

4: end for
5: for a user-defined number of interchanging iterationsdo
6: for a user-defined number of model optimizationsdo
7: Choose two random centroids
8: if Distance not in distance matrixthen
9: Calculate the distance between the centroids and store it

10: end if
11: Use Equation 2 on these two centroids
12: end for
13: for a user-defined number of “leaking” opportunitiesdo
14: Choose two random centroidsC1 andC2
15: Choose one itemi ∈ C1
16: if m dist({i}, IC1

\{i}) > m dist({i}, IC2
) then

17: Transfer itemi to centroidC2
18: Adapt the affected distances between the centroids using Equations 3 to 6
19: end if
20: end for
21: end for

Figure 2: The distance matrix for model with 9 centroids (each white box represents a distance value).

Finally we need to adapt the distance betweenCi andCj :

adaptation = m dist({a}, ICi
\{a}) · (|ICi

| − 1)−m dist({a}, ICj
) · |ICj

| (5)

m dist(ICi
, ICj

)←
m dist(ICi

, ICj
) · |ICi

| · |ICj
|+ adaptation

(|ICi
| − 1) · (|ICj

|+ 1)
(6)

Note, in lines 8 and 9 of Algorithm 1, that distances are only calculated when needed. The number of
distances to store is a little because of the user-defined number of groups, an advantage of CENTROIDLEAK.

6 Results and Performance

The experiments were done for two main reasons. Push-and-pull depends on the speed of the distance
function. For large databases theg dist function slows down. We want to show that CENTROIDLEAK can
better deal with large databases if we can not store the distances between all fragments (items) in the main
memory,scalability. We made no comparison with the SOM algorithm or any of the traditional clustering
algorithms, because the reasons discussed in Section 2 madeit less suitable for our purposes. Secondly we
want to show that the models made by the algorithm actually approaches the model we expect.

All experiments were performed on an Intel Pentium 4 64-bits3.2 GHz machine with 3 GB memory. As
operating system Debian Linux 64-bits was used with kernel 2.6.8-12-em64t-p4.



The first dataset, calledSyntheticSmall, is displayed in Figure 3. The dataset consists of 4 groups of
200 two-dimensional items. The second synthetic dataset, calledSyntheticLarge, is displayed in Figure 5.
The dataset consists of 11 groups of 500 two-dimensional items. Note that, contrary to the real-life datasets
below, we know the original 2D locations of all data points, from which we compute the distances. The
original coordinates are of course not employed by the algorithm, but can be used to verify the performance.

The first real-life dataset we use is the4069.no aro dataset, containing 4,069 molecules; from this we
extracted the 1,229 most frequent subgraphs usingGSPAN (see [20]). This dataset was provided by Lei-
den/Amsterdam Center for Drug Research (LACDR). Other datasets we use are datasets of the National
Cancer Institute (NCI), and can be found in [13]. One of thesedatasets contains 32,557 2D structures
(molecules, average size is 26.3 nodes) with cancer test data as of August 1999; we will call this dataset
theNCI.CAN.99 dataset.

The approximation ofSyntheticSmall displayed in Figure 4 shows the groups similarly positionedbut
slightly turned. The slight turn is caused by the algorithm only knowing the distance between points. Where
in traditional push-and-pull you would plot all 800 items in2D space, now we plot only 100 centroids
representing self-optimizing groups of examples. Note that less points make it easier to distinguish (groups
of) fragments that are co-occurring. This is essential for any user-interface that allows for further exploration
of these centroids (or groups).

Figure 3:SyntheticSmall: Synthetic data when
we also know the input vectors, 4 groups of 200
items.

Figure 4: The approximation ofSyntheticSmall
with n = 100 centroids (α = 0.1, 100 leaks, 10,000
model optimizations and 1,000 iterations).

In Figure 6 the algorithm approaches theSyntheticLarge dataset again with only 100 centroids instead
of 5,500 (11 groups of 500). Note that we can calculate for thetraditional push-and-pull, where we plot all
items in 2D space, that1/2 ·n(n−1) distances need to be stored and one will eventually run out ofmemory.
Having many more than 5,500 points will eventually be a problem for traditional push-and-pull.

Figure 5:SyntheticLarge: Synthetic data when
we also know the input vectors, 11 groups of 500
items.

Figure 6: The approximation ofSyntheticLarge
with n = 100 centroids (α = 0.1, 100 leaks, 10,000
model optimizations and 1,000 iterations).

For the4069.no aro dataset the model of Figure 7 was build. We link those centroids for which items



on average are co-occurring frequently and one can see theseare often closer in 2D space.

Figure 7: The approximation for the4069.no aro dataset withn = 100 centroids (α = 0.1, 100 leaks,
10,000 model optimizations, 1,000 iterations).

In Figure 8 it is shown how runtime for a large dataset grows worse for traditional push-and-pull as the
number of model optimizations increases. With Figure 8 we want to show that with “leaking” centroids the
push-and-pull algorithm becomes more scalable. Due to the grouping of fragments and the lazy updating of
the distance matrix there is much less need to count co-occurrence of the fragments.
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Figure 8: Runtime in seconds with variating model optimizations for theNCI.CAN.99 dataset withn = 100
centroids (α = 0.1, 100 leaks, 1,000 iterations).

7 Conclusions and Future Work

In this work we proposed an algorithm for improving the scalability of push-and-pull, a competitive neural
network algorithm. The algorithm was able to deal better with larger databases and a great amount of points
in the model. This was done by having a fixed amount of centroids where the items are evenly divided among
the centroids. Every few iterations certain items have the opportunity to “leak” to a more suitable group. We
have experimentally shown that expected models are found. With our algorithm we hope to combine the
advantages of Self-Organizing Maps, e.g., one neuron for many similar points, with the advantages of push-
and-pull, e.g., good intermediate approximations and visualization with only distance information. The new
method gives a better overview, using less points, it only employs intermediate distances, and is easy to
understand and to adapt.

In the future we want to make the updating of the distances more lazy, allowing for an even faster
algorithm and we want to analyse the biological findings withthe improved push-and-pull algorithm.
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