Displaying Co-occurrences of Patterns in Streams for Webt Usage Analysis

Edgar H. de Graaf Joost N. Kok Walter A. Kosters

Leiden Institute of Advanced Computer Science
Leiden University, The Netherlands
edegraaf @i acs. nl

Abstract

One way of getting a better view of data is by using frequent patterns. Ipdpisr frequent patterns
are (sub)sets that occur a minimal number of times in a stream of iterhk®t®ver, the discovery of
frequent patterns in streams has always been problematic. Bedeemms are potentially endless it is
harder to say if a pattern is frequent or not. Furthermore, the nunfipatierns can be huge and a good
overview of the structure of the stream is lost quickly. The proposetbapp will use competitive neural
network methods to online model pattern co-occurrence in a stream &fdtem

A model of the co-occurrence of patterns will give the user an imgteiew on the structure of the
stream. Some patterns might occur so often together that they shoul@ fmsmbined pattern. In this way
the patterns in the clustering will approximate the largest frequent patteasmal frequent patterns.
The number of (approximated) maximal frequent patterns is muchesmaad combined with methods of
visualization using competitive neural networks these patterns providedagew on the structure of the
stream.

1 Introduction

Effectively mining streams of data wifhequent patterns, i.e., patterns occurring at least a minimal number
of times, has always been a hard problem to tackle. The diffities in the potential endlessness of the
stream; frequent patterns can suddenly become infreqaedtstandard ways of pruning the search space
are harder to use. In this wopatterns are sets of items occurring in a record (also called traiwacy
itemset) at a certain moment in time.

This work is motivated by a wish to view pages accessed tegdth users helping website analysts to
improve the website. To this end we will propose a method ofl@ling co-occurring patterns in a stream
of itemsets. Knowing how much patterns co-occur can prowitiresting structural information about the
stream in an online way. Note that the model is an approxonand due to this the frequent subsets are
also approximately maximal.

We will define our method of displaying co-occurring patteima stream of itemsets and show its use-
fulness. Our algorithm keeps track of a condensed and ajpate representation of interesting patterns
within the stream, and allows for online visualization. § paper makes the following contributions:

— We use adynamic support estimationto determine the support of those itemsets we need, and glo thi
in an online way (Section 2.1).

— It will be explained how the distance between patterns is approximatkeby placing patterns closer
(pulling) or further away (pushing) depending on their amarrence. If this distance is large, patterns occur
almost never together, and otherwise they do have many conogrurrences (Section 2.2).

— We will define when patternsan be merged and when they should be splib form smaller patterns
and how this could be done (Section 2.3).

— Finally through experimentte effectiveness of our method is showand efficiency is discussed (Sec-
tion 3).

We first mention related work, and in the next section we dis¢he algorithm in full detail. Finally we
describe experiments and discuss these.

This research is related to work done on visualization digpas in streams and visualization of website
usage using patterns as done in [4]. Also our work is relatéchtiximal) frequent pattern mining in streams

and large datasetblaximal frequent itemsets are sets of items occurring often in the stream while there is
no frequently occurring bigger set of items containing éhesme items.

There are many algorithms for mining maximal frequent pattein “normal” datasets, in different
ways. We mention BNMAX discussed in [9] and MAFIA presented in [3]. Large datasetsdifferent
from streams in that there is an end to the dataset. One agptoanining large datasets was proposed in
[7], where an extremely large dataset is mined for maxingjdient patterns by proceeding in parallel. Fur-
thermore clustering on large datasets was done in [12]. Muark has been performed on mining frequent
patterns in (online) data streams, e.g., in [5]. In [6] frequpatterns are mined by using sliding window
methods. However it must be said that our work is more comzkwith co-occurrence and frequent patterns
are approximately maximal. Our work has little overlap withrk done on maximal pattern-based clustering
as discussed in [13] and [14] where objects basically arstetad by linking attribute groups with object
groups when attributes have a minimal similarity. Relatskarch has been done on clustering on streams
in [1], where a study on clustering evolving data streanast{fchanging data streams, is done. Clustering
categorical data was also done in [8] where also co-occoer&used, but only for attribute values; the
authors propose a visualization where thaxis is the column position and theaxis the distance based on
co-occurrence of values.

In this work a method of pushing and pulling points in accomawith a distance measure is used. This
technique was used before in [2] to cluster criminal careeis in [10] to cluster association rules. This
method of clustering was chosen because it enables us taliennumber of iterations in order to improve
online performance while still having results. Furthermae only know the distance between two patterns,
where a low distance means frequent co-occurrence.

2 Model Realization

Our goal is to produce an algorithm that is capable of acogpi stream of records, each record being
an unordered finite set of items, meanwhile building a modflplatterns and their co-occurrence. Vifst
optimize this model by restricting the patterns to frequeatterns, simply because we will have too many
otherwise. Ouisecondoptimization is to restrict patterns to maximal frequenttgras. If we do not use
maximal frequent patterns then the model might have too nfi@guent patterns for a reasonable online
performance because all potentially frequent patternd teebe kept.

The algorithm we propose, called &YANCEMERGESPLIT, starts with randomly positioning points
in a 2-dimensional space, e.g., in the unit square. Notetligadixes have no clear meaning. Heris the
number of different items that appear in the dataset. Eathesfen, points represents one size 1 itemset,
where the size of an itemset is of course defined as the numiient it contains. These points remain
present during the whole process, though their coordinates change. While the records from the data
stream pass by, new points are created (by merging or splitiind others disappear (by merging, or by
other reasons). Together these points constitute theiagatvodelP, where points correspond with frequent
itemsets.

We will first explain how we use the stream of records to uptlaesupports of the elementsBf next
we describe how the coordinates of the elements changeanderee with the corresponding supports, and
finally mention our method of growing and shrinking the numbiesets present iff: the merge and split
part of the algorithm.

2.1 Support

The algorithm will receive a possibly infinite stream of itesis, the records:, o, 73, ... Each time an
itemset corresponding to a point in the space is a subset e€@d, we observe an occurrence of this
itemset. We count the occurrences in threcords we have seen so far (and that can also be considered as
the lastt records), and define support:

t

support (p,t) = Z occurrence (p,r;) Q)
i=1

1 ifpCr
occurrence (p,r) = 0 otherwise

Herep is the pattern, the itemset, for which support is computad,ras a record. If a new record arrives
the support needs to be adapted accordingly. Rather thag tis¢ full support for all records, we will
make use of &liding window of size¢ > 1, and we will not keep all data about the occurrences of the
patterns in the transactions of this window. Though thisoisassential for our algorithm, it has a beneficial
influence on the runtime, which is especially interestingdio online algorithm. If we have seen less than
¢ transactionst(< ¢) then wedo use the previous formula to calculate support, in such cgs#tarn is
called “young”. This method will also be used when we lateate new patterns online, and is referred to as
“direct computation”. In the other case¥ ¢) a pattern is called “old” and we give an estimatg@port,(p)

for the support during the lagtrecords in the following way. When the itemgets not a subset of the
current record-; we adapt the support as follows:

support,(p) = support,_1(p)/l - (support,_;(p) — 1) (2)
+ (1 — support,_(p)/t) - support,_(p)
= (1—=1/0) - support,_,(p) < support,_,(p)

Indeed, when the first transaction of the window of diz®ntains the pattern then support should decrease
with 1. However, if the first record also does not contgjrthen support remains the same. It is impor-
tant to notice that the probability of a transaction coritajrp in a window of size/ is estimated with
support,(p) /L. If the new recordloes contain the itemset then support is adapted as follows:

support,(p) = support, ,(p)/L - support, (p) 3)
+ (1 — support,_,(p)/L) - (support,_(p) + 1)
= (1=1/¢) - support,_(p) +1 = support, ,(p)

Now when the first transaction of the window of sizeontains the pattern then support remains unchanged
as the window shifts. However, if it does not contain thegratp, then support will increase with 1. Both
formulasassume that occurrences are uniformly spread over the window of sizé, but by using these for-
mulas to adapt support we do not have to keep all occurrences fpatterns in the 2-dimensional space.
Notice thatd < support,(p) < ¢ always holds.

We have now described how the stream of records influencesughports of the itemsets that are cur-
rently being tracked, i.e., those 7. Note that the itemsets of size 1 are always present in theehof
co-occurring patterns, for reasons mentioned in Sectidnlarger itemsets may appear and disappear as
the algorithm proceeds. Also observe that the supportsstimates, due to the application of equations 2
and 3.

2.2 Distance

We now describe how the coordinates of the points changeeassthipports vary when the new records
from the stream come in. In our model fdistance (p1,p2) we take the Euclidean distance between the
2-dimensional coordinates of the points corresponding tié two patterng; andp,.

These points are pulled closer to one another if they occtlrdrturrent transaction and they are pushed
apart if not. Furthermore nothing is done if both do not octtuevery time step a random selection of the
pairs undergoes this process.

To pull two points together we set tigeal distance to 0 (when their corresponding patterns co-occur)
and to push them apart the goal distance/s(when their corresponding patterns do not co-occur), which
is the maximum Euclidean distance between any two pointssiunit square. These distances are then used
to update the coordinat¢s,, , y,,) and(x,,, yp,) Of the points corresponding with the itemsptsandp,:

1. Lp, < Tpy, — Q- (diStance (p17p2) - ’Y) ! ('rpl - IPQ)
2. Yp: < Yp, — - (distance (p17p2) - ’7) ' (ypl - ypz)
3. @p, — Tp, + - (distance (p1,p2) —) - (Tp, — Tp,)

4. Yp, — Yp, + - (distance (p1,p2) =) - Yps — Yp»)

Herea (0 < a < 1) is the user-defined learning rate ap < v < v/2) is the goal distance.
Now the points in the model are moved so that their Euclidéstanice corresponds to their measure
of co-occurrence (where distanGeaneans patterns occur always together). We not only use stendes

to place the patterns in the 2D space, but alsdetidde when to merge. Points may leave the unit square;
however, when presenting the results of the experimenth, goints are projected on the nearest wall of this
square.

2.3 Merge and Split

Now we describe how we merge and split the itemsets of the hasdéme goes by. The mod@l contains
points with corresponding itemsets. Two old patterns (#ets) are assumed to occur many times together
when their distance is small due to them being pulled togethesome cases one itemset can be made that
represents two of them: the algorithm will try these combores. For some combinations it is possible that
they turn out to be not so good, their frequency is smallen thénsupp, whereminsupp is a user-defined
threshold. This can happen when their combined frequeniopisr thanminsupp or suddenly frequency
drops belowninsupp. In either case we need to split the sizkemset intak itemsets of sizé& — 1, all being
subsets of the original itemset. Later we will discuss 8pgtin more detail, we now first explain merging.
As transactions come in, some of the initial size 1 itemset®mefrequent, meaning that the support
is higher thanminsupp. These sets can — under certain circumstances, see belowrge toetemsets of
size 2, and so on: waergetwo itemsetg; andp if (in the algorithm in Section 2.4 the following series
of conditions is referred to as “appropriate”):

e The patterng; andp, are old enough: they exist iR for at least/ (the window size) records. (Note
that the supports of these sets are currently updated threggations 2 and 3 above.)

e The two itemset®; andp, currently are frequent, i.e., it holds that botlpport,(p1) > minsupp
andsupport,(p2) > minsupp. (Note that this condition automatically holds for all (fzadf) itemsets
in P that have size larger than 1.)

e The itemsets are close together in the model, so they armasisio occur often together as a subset of
transactions in the streardistance (p1,p2) < mergedist, wheremergedist is a user-defined upper
bound for the distance for which mergipg andp, is allowed.

¢ The patterrp, has an itemi,, which is not in the patterp,, such thap \ {i,} C p1. This condition
always holds ifp; has size 1.)

First of all we merge the patterng andp, if they are of equal size, so we create theigetp, and add it
to Q, the collection of all newly formed patterns. Both origipalterns are removed from the 2-dimensional
space except if their size is 1.

Thesecondtime we merge patterns is if pattepp contains more items than, andp, \ {i,} < p; for
somei, € py With i, & p1, then for each itema € p; \ p» we add an itemset, U {e} to Q. This enables
patterns to be merged with patterns that already were mdrgfede and disappeared from the model. The
smaller patterm, is removed except if it is of size 1.

Next wesplit patterns, when they contain more than one item, if they dooatr often enough and they
have been in the model for at least a certain number of rectirdg are “old enough”). Split combinations
are generated by removing each item from the original pattece. The remaining items form one new
itemset, so in this way a siZeitemset will result ink combinations after splitting.

Assume we have the patteprthat is split into patterngo, g1, - . . , ¢;,|—1 that are added tQ:

Spht ‘p= {i()»ilv' e 7i|p|—1} — 4o = {i13i27' . 72'\[)\—1};
q1 = {i077;27i37 v 7i|p|—1}7 s qpl-1 = {i07i17 K 77;|p|—2}

Finally, the newly formed patterns i@ are united with those iP. Of course, when patterns occur
more than one time, only one copy — the oldest one — is maiathiAnd those patterns frofd that are
contained in a larger one iR are removed, unless — as stated above — they have size 1: ugdodhe
maximal patterns.

2.4 The Algorithm

The algorithm works with the sé® of patterns that are currently present, represented bydoaes of)
points in 2-dimensional Euclidean space. The outline ofalgerithm DSTANCEMERGESPLIT is as fol-
lows:

initialize P with then itemsets of size 1
for t — 1tooo do
Q10
for all patterng € P do
computesupport,(p) using thetth recordr,,
either through updating (old patterns)
or by direct computation (young ones)
for a random subset of pairs of patternsfirdo
update their distance according to their support
for all “appropriate” pattern pairs i® do
merge the pair, creating (new) pattern(s) ¢h
mark the smallest of the pair,
or both if their sizes are equal
remove the marked patterns fratn
for all patterng € P do
if pis infrequent and old enoughen
split p into (new) patterns i®
removep from P
P «— P U Q, joining duplicates
remove non-maximal frequent patterns frégm

DISTANCEMERGESPLIT

Note that itemsets of size 1 anever removed fromP, not even when they are infrequent. The size 1
itemsets are always present, and play a special role: Istsiddact that some of them are frequent, they also
serve as building blocks. In many cases they are not maxlfrtaby were removed, it could be impossible
to re-introduce single items after having become infrejuen

Patterns that are new iR are called “young”. When computing supports for these pagtewe use
equation 1, when updating the “old” ones we use equationsiZBaBo, each pattern presentfinalso has
anage: patterns that have an age smaller than the window/size “young”, the others are “old”.

On two occasions the algorithm introduces indeterminisrat, fivhen the support computation is done
using the approximating updates for “old” patterns (savanigt of time and memory) and second, when
pushing and pulling pairs of points representing a patsza,Section 2.2.

3 Experiments and Discussion

The experiments are organized such that we first show theoshethwork in a few controlled synthetic
cases. Then we will use the algorithm to build a model for daghsets, showing “real life” results. The first
synthetic experiment will be a stream with 10 groups of 5 gef@roups do not occur together, but all of
them occur often. This dataset is called iz gr oups dataset. The second synthetic experiment will be a
stream where certain groups of items suddenly do not oausiedd another group starts occurring. We call
this dataset theudden change dataset.

The first real dataset comes from Internet Information Sef\/8) logs for msnbc. comand news-
related portions ofrsn. comfor the entire day of September, 28, 1999. The original @atasntained
sequences of 17 possible categories viewed by a user withio@rs and was used before in [4]. For our
purpose we converted the dataset to itemsets. We removesiviseing only one or two categories to make
the problem more interesting. This dataset will be calledMBNBC dataset with 174,042 transactions.

The second real dataset is the Large Soybean Database useyliean disease diagnosis in [11], we
call the dataset theoybean dataset. This dataset contains 683 records with 35 atsbiirst we removed
all missing values and we converted each record to a string-eB4 yes/no values for each attribute value.
In this research we do not deal with missing values, and daohrepresents an attribute value. We use this
dataset to analyze the performance of our algorithm wittabdataset with more than 50 items.

All experiments were performed on an Intel Pentium 4 64-Big&sGhz machine with 3 GB memory. As
operating system Debian Linux 64-bits was used with kerr@B212-em64t-p4.

+012345

+101112131415

Figure 1: Model after seeing 1,200 transactions oFigure 2: Model after seeing 4,500 transactions of

the 10- gr oups dataset#{ = 50, minsupp = the 10- groups dataset{ = 50, minsupp =
0.05, £ = window size = 300, mergedist = 0.1, 0.05, { = window size = 300, mergedist = 0.1,
a = 0.1). a=0.1).

Figures 1 and 2 show how the cluster model changes as mosattaons are coming in for the0-
gr oups dataset. The first group of this dataset consists of item&the second has 5to 10, etc. In Figure 2
we clearly see these patterns, wherasupp is given as a percentage of the dataset size. Furthermadce not
that both the second and the first group contain the item $iese is a slight overlap. We see these itemsets
closer together because they are both close to the pdtiérrin order to get a clear picture we did not
display the size 1 itemsets. ltemsets are plotted usisigaccompanied by the items they contain.

The second synthetic dataset, calledshelden change dataset, simulates a stream that completely
changes after seeing many transactions (i.e., 30,000).€Euéts are displayed in Figure 3, where the labels
above each bar reveal the size of the itemsets. First thededo the stream always contain items 1 to 5.
Then after 30,000 transactions they only contain items B®td-igure 3 shows how the first pattern appears
and how it slowly disappears in the middle. In the end the rhoaletains only patterns with items 25 to 30.

Nr.of Subsets
25 q

20 4 M
2 2
15
10 4
5 4
6 6 6
0 0
0

o S & & @
%o%oop@“@@@% N

q & 8
LSS

Avg. Relative Difference ——
Nr. of Transactions . . . IMax. Freq, in Model/|Actual Max. Freq| —-——-

[m¢0,1,2,3,4,5} m{25,26,27,28,29,30} | 0 50 0 wo o wm 200 0 w00

Figure 3: Thesudden change dataset, the Figure 4: The model compared with the actual situ-
stream changes in the middle £ 50, minsupp = ation for theMBNBC dataset{ = 17, minsupp =
0.05, £ = window size = 300, mergedist = 0.1, 0.05, { = window size = 1,000, mergedist =
a=0.1). 0.1, = 0.1).

Figure 4 was made using the formq% . lejl abs(|p;| — |rmaz(p;)|)/|rmaz(p;)| for each modeP,
we call this value the&verage relative difference, where the most optimal value s Herermazx gives the
itemwise nearest maximal frequent pattern withe P as a subset. These maximal frequent patterns are
beforehand decided with a frequent itemset miner. In shigformula calculates how itemsets in the model
(itemwise) differ from the actual maximal frequent patterfigure 4 displays how the average relative
difference stabilizes arourtd2. We also plot the number of maximal frequent patterns divioethe actual
number, wherd .0 means they are equal in size. This value approattiesspecially when merging and
splitting is temporarily stopped after 50,000 transactjsuggesting a good fit.

Approximating supports well is important in order to knowiethitemsets should be split. In Figure 5

Squared Rooted Error

0 20 40 60 80 100 120
Nr. of Transactions x 250

Figure 5: Root squared error between the real support arapihrximated support for tHd&SNBC dataset
(n = 17, minsupp = 0.05, £ = window size = 1,000, mergedist = 0.1, a = 0.1), with a Bezier curve.

we show for all patterns in a computed model the error betweein approximated support and their real
support in the time window as the transactions fromNB&BC dataset arrive. The root mean squared error
of the supports for this model eventually approadhés. The error becomes more stable after temporarily
stopping itemset creation after seeing 10,000 transaction

The processing time of the algorithm strongly depends orstipport thresholdninsupp one chooses.
The lowerminsupp is chosen the more points the model will contain eventuadty $o processing time will
get worse. Figure 6 shows that the average processing timeafih transaction gets worse as the model
contains more itemset points. However, Figure 7 shows filvathe soybean dataset, the number of points
in the model eventually stabilizes. For each transactiomeapt the distances between points a number of
times. In the case of theoybean dataset we randomly choose pairs 40,000 times in order to gugull
them, depending on their co-occurrence. Obviously one Wapeeding up processing is to make it less
than 40,000 times or one can skip adapting distances soe®tim

900

Avg. Nr. of Points

4500

4000

3500 -

3000 -

2500 -

2000 -

1500 -

1000 [

500 -

0 500 1000 1500 2000 2500 3000 3500 4000 0 2000 4000 6000 8000 10000
ns

Avg. Nr. of Cluster Points Nr. of Transactio

Figure 6: Transaction processing time in millisecFigure 7: Development of model size as transac-
onds for different model sizes for the real datasetions of the real dataset are processed=f 84,

(n = 84, minsupp = 0.2, £ = window size = minsupp = 0.2, £ = window size = 300,
300, mergedist = 0.1, « = 0.1). mergedist = 0.1, a = 0.1).

4 Conclusions and Future Work

The algorithm presented in this paper will generate a cavweace model of approximately maximal fre-
quent itemsets. This gives the user a quick view on the pettérequent subsets, in the stream and how they
occur in the stream. In this way analysts can online see pageEssed together or not at all.

The co-occurrence distance of patterns is computed by pustpart or pulling together patterns in a
2-dimensional space. Pushing was done when only one of titerps occurs and pulling if they occur
together. This distance is used to merge sufficiently lorigtiexy patterns together if support is larger than
a user-defined threshold, because we want only maximaldreqtemsets (itemsets that are often a subset
of a transaction but they are never a subset of a bigger fregieensets) such that the model does not grow
too big. Finally points are split if they happen to occur ldsm expected. Splitting and merging is required
because the model cannot contain all patterns.

In the future we want to focus more on the applications of éagordthm and how it is best used in the
analysis of streams. Furthermore we like to examine the@tipgtimates in more detail, and see how extra
parameters (e.g., to determine the threshold age forisghittan be employed.

5 Acknowledgment

This research is carried out within the Netherlands Orgsium for Scientific Research (NWO) MISTA
Project (grant no. 612.066.304).

References

[1] C.C. Aggarwal, J. Han, J. Wang, and P.S. Yu. A frameworkdastering evolving data streams. In
29th International Conference on \Very Large Data Bases (VLDB'03), pages 81-92, 2003.

[2] J.S. de Bruin, T.K. Cocx, W.A. Kosters, J.F.J. Laros, aidl Kok. Data mining approaches to criminal
career analysis. 16th IEEE International Conference on Data Mining Proceedings (ICDM 2006),
pages 171-177, 2006.

[3] D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: A maximatdquent itemset algorithm for transac-
tional databases. Ih7th International Conference on Data Engineering (ICDE’01), pages 443—-453,
2001.

[4] 1.V. Cadez, D. Heckerman, C. Meek, P. Smyth, and S. Whitisuaization of navigation patterns on
a web site using model-based clustering Kimowledge Discovery and Data Mining, pages 280—-284,
2000.

[5] J.H. Chang and W.S. Lee. Finding recent frequent itesaeaptively over online data streams9th
ACM S GKDD International Conference on Knowledge Discovery and Data Mining (KDD’ 03), pages
487-492, 2003.

[6] J.H. Chang and W.S. Lee. estWin: Online data stream miafrrgcent frequent itemsets by sliding
window methodsJournal of Information Science, 31(2):76-90, 2005.

[7] M. El-Hajj and O.R. Zaiane. Parallel leap: Large-scal@imal pattern mining in a distributed envi-
ronment. In12th International Conference on Parallel and Distributed Systems (ICPADS 06), pages
135-142, 2006.

[8] D. Gibson, J. Kleinberg, and P. Raghavan. Clusteringgatcal data: An approach based on dynami-
cal systems. I126th International Conference on Very Large Data Bases (VLDB'00), pages 222—-236,
2000.

[9] K. Gouda and M.J. Zaki. Efficiently mining maximal frequétemsets. I EEE International Con-
ference on Data Mining (ICDM’01), pages 163-170, 2001.

[10] W.A. Kosters and M.C. van Wezel. Competitive neuralwaks for customer choice modeld€-
Commerce and Intelligent Methods of Sudies in Fuzziness and Soft Computing, 105:41-60, 2002.

[11] R.S. Michalski and R.L. Chilausky. Learning by beinddtand learning from examples: An experi-
mental comparison of the two methods of knowledge acqaisiti the context of developing an expert
system for soybean disease diagnosigernational Journal of Policy Analysis and Information Sys-
tems, 4(2):125-160, 1980.

[12] A. Nanopoulos, Y. Theodoridis, and Y. Manolopoulo$PCClustering based on closest pairs2Tih
International Conference on \Very Large Data Bases (VLDB'01), pages 331-340, 2001.

[13] J. Pei, X. Zhang, M. Cho, H. Wang, and P.S. Yu. MaPle: A &gorithm for maximal pattern-based
clustering. In3th IEEE International Conference on Data Mining (ICDM’03), pages 259-266, 2003.

[14] H. Wang, W. Wang, J. Yang, and P.S. Yu. Clustering bygratsimilarity in large datasets. B8\GMOD
International Conference (SGMOD 2002), pages 394-405, 2002.

