
Displaying Co-occurrences of Patterns in Streams for Website Usage Analysis

Edgar H. de Graaf Joost N. Kok Walter A. Kosters

Leiden Institute of Advanced Computer Science
Leiden University, The Netherlands

edegraaf@liacs.nl

Abstract

One way of getting a better view of data is by using frequent patterns. In thispaper frequent patterns
are (sub)sets that occur a minimal number of times in a stream of itemsets.However, the discovery of
frequent patterns in streams has always been problematic. Because streams are potentially endless it is
harder to say if a pattern is frequent or not. Furthermore, the number of patterns can be huge and a good
overview of the structure of the stream is lost quickly. The proposed approach will use competitive neural
network methods to online model pattern co-occurrence in a stream of itemsets.

A model of the co-occurrence of patterns will give the user an improved view on the structure of the
stream. Some patterns might occur so often together that they should form a combined pattern. In this way
the patterns in the clustering will approximate the largest frequent patterns: maximal frequent patterns.
The number of (approximated) maximal frequent patterns is much smaller and combined with methods of
visualization using competitive neural networks these patterns provide a good view on the structure of the
stream.

1 Introduction

Effectively mining streams of data withfrequent patterns, i.e., patterns occurring at least a minimal number
of times, has always been a hard problem to tackle. The difficulty lies in the potential endlessness of the
stream; frequent patterns can suddenly become infrequent;and standard ways of pruning the search space
are harder to use. In this workpatterns are sets of items occurring in a record (also called transaction or
itemset) at a certain moment in time.

This work is motivated by a wish to view pages accessed together by users helping website analysts to
improve the website. To this end we will propose a method of modeling co-occurring patterns in a stream
of itemsets. Knowing how much patterns co-occur can provideinteresting structural information about the
stream in an online way. Note that the model is an approximation and due to this the frequent subsets are
also approximately maximal.

We will define our method of displaying co-occurring patterns in a stream of itemsets and show its use-
fulness. Our algorithm keeps track of a condensed and approximate representation of interesting patterns
within the stream, and allows for online visualization. This paper makes the following contributions:
— We use adynamic support estimation to determine the support of those itemsets we need, and do this
in an online way (Section 2.1).
— It will be explained how the distance between patterns is approximated by placing patterns closer
(pulling) or further away (pushing) depending on their co-occurrence. If this distance is large, patterns occur
almost never together, and otherwise they do have many common occurrences (Section 2.2).
— We will define when patternscan be merged and when they should be splitto form smaller patterns
and how this could be done (Section 2.3).
— Finally through experimentsthe effectiveness of our method is shownand efficiency is discussed (Sec-
tion 3).

We first mention related work, and in the next section we discuss the algorithm in full detail. Finally we
describe experiments and discuss these.

This research is related to work done on visualization of patterns in streams and visualization of website
usage using patterns as done in [4]. Also our work is related to (maximal) frequent pattern mining in streams

and large datasets.Maximal frequent itemsets are sets of items occurring often in the stream while there is
no frequently occurring bigger set of items containing these same items.

There are many algorithms for mining maximal frequent patterns, in “normal” datasets, in different
ways. We mention GENMAX discussed in [9] and MAFIA presented in [3]. Large datasets are different
from streams in that there is an end to the dataset. One approach to mining large datasets was proposed in
[7], where an extremely large dataset is mined for maximal frequent patterns by proceeding in parallel. Fur-
thermore clustering on large datasets was done in [12]. Muchwork has been performed on mining frequent
patterns in (online) data streams, e.g., in [5]. In [6] frequent patterns are mined by using sliding window
methods. However it must be said that our work is more concerned with co-occurrence and frequent patterns
are approximately maximal. Our work has little overlap withwork done on maximal pattern-based clustering
as discussed in [13] and [14] where objects basically are clustered by linking attribute groups with object
groups when attributes have a minimal similarity. Related research has been done on clustering on streams
in [1], where a study on clustering evolving data streams, (fast) changing data streams, is done. Clustering
categorical data was also done in [8] where also co-occurrence is used, but only for attribute values; the
authors propose a visualization where thex-axis is the column position and they-axis the distance based on
co-occurrence of values.

In this work a method of pushing and pulling points in accordance with a distance measure is used. This
technique was used before in [2] to cluster criminal careersand in [10] to cluster association rules. This
method of clustering was chosen because it enables us to limit the number of iterations in order to improve
online performance while still having results. Furthermore we only know the distance between two patterns,
where a low distance means frequent co-occurrence.

2 Model Realization

Our goal is to produce an algorithm that is capable of accepting a stream of records, each record being
an unordered finite set of items, meanwhile building a model of patterns and their co-occurrence. Wefirst
optimize this model by restricting the patterns to frequentpatterns, simply because we will have too many
otherwise. Oursecondoptimization is to restrict patterns to maximal frequent patterns. If we do not use
maximal frequent patterns then the model might have too manyfrequent patterns for a reasonable online
performance because all potentially frequent patterns need to be kept.

The algorithm we propose, called DISTANCEMERGESPLIT, starts with randomly positioningn points
in a 2-dimensional space, e.g., in the unit square. Note thatthe axes have no clear meaning. Heren is the
number of different items that appear in the dataset. Each ofthesen points represents one size 1 itemset,
where the size of an itemset is of course defined as the number of items it contains. Thesen points remain
present during the whole process, though their coordinatesmay change. While the records from the data
stream pass by, new points are created (by merging or splitting) and others disappear (by merging, or by
other reasons). Together these points constitute the evolving modelP, where points correspond with frequent
itemsets.

We will first explain how we use the stream of records to updatethe supports of the elements ofP, next
we describe how the coordinates of the elements change in accordance with the corresponding supports, and
finally mention our method of growing and shrinking the number of sets present inP: the merge and split
part of the algorithm.

2.1 Support

The algorithm will receive a possibly infinite stream of itemsets, the records:r1, r2, r3, . . . Each time an
itemset corresponding to a point in the space is a subset of a record, we observe an occurrence of this
itemset. We count the occurrences in thet records we have seen so far (and that can also be considered as
the lastt records), and define support:

support (p, t) =
t

∑

i=1

occurrence (p, ri) (1)

occurrence (p, r) =

{

1 if p ⊆ r
0 otherwise

Herep is the pattern, the itemset, for which support is computed, and r is a record. If a new record arrives
the support needs to be adapted accordingly. Rather than using the full support for all records, we will
make use of asliding window of sizeℓ ≥ 1, and we will not keep all data about the occurrences of the
patterns in the transactions of this window. Though this is not essential for our algorithm, it has a beneficial
influence on the runtime, which is especially interesting for an online algorithm. If we have seen less than
ℓ transactions (t < ℓ) then wedo use the previous formula to calculate support, in such case apattern is
called “young”. This method will also be used when we later create new patterns online, and is referred to as
“direct computation”. In the other case (t ≥ ℓ) a pattern is called “old” and we give an estimatesupport t(p)
for the support during the lastℓ records in the following way. When the itemsetp is not a subset of the
current recordrt we adapt the support as follows:

support t(p) = support t−1(p)/ℓ · (support t−1(p)− 1) (2)

+ (1− support t−1(p)/ℓ) · support t−1(p)

= (1− 1/ℓ) · support t−1(p) ≤ support t−1(p)

Indeed, when the first transaction of the window of sizeℓ contains the pattern then support should decrease
with 1. However, if the first record also does not containp, then support remains the same. It is impor-
tant to notice that the probability of a transaction containing p in a window of sizeℓ is estimated with
support t(p)/ℓ. If the new recorddoes contain the itemsetp then support is adapted as follows:

support t(p) = support t−1(p)/ℓ · support t−1(p) (3)

+ (1− support t−1(p)/ℓ) · (support t−1(p) + 1)

= (1− 1/ℓ) · support t−1(p) + 1 ≥ support t−1(p)

Now when the first transaction of the window of sizeℓ contains the pattern then support remains unchanged
as the window shifts. However, if it does not contain the patternp, then support will increase with 1. Both
formulasassume that occurrences are uniformly spread over the window of sizeℓ, but by using these for-
mulas to adapt support we do not have to keep all occurrences for all patterns in the 2-dimensional space.
Notice that0 ≤ support t(p) ≤ ℓ always holds.

We have now described how the stream of records influences thesupports of the itemsets that are cur-
rently being tracked, i.e., those inP. Note that the itemsets of size 1 are always present in the model P of
co-occurring patterns, for reasons mentioned in Section 2.4. Larger itemsets may appear and disappear as
the algorithm proceeds. Also observe that the supports are estimates, due to the application of equations 2
and 3.

2.2 Distance

We now describe how the coordinates of the points change as their supports vary when the new records
from the stream come in. In our model fordistance (p1, p2) we take the Euclidean distance between the
2-dimensional coordinates of the points corresponding with the two patternsp1 andp2.

These points are pulled closer to one another if they occur inthe current transaction and they are pushed
apart if not. Furthermore nothing is done if both do not occur. In every time step a random selection of the
pairs undergoes this process.

To pull two points together we set thegoal distance to 0 (when their corresponding patterns co-occur)
and to push them apart the goal distance is

√
2 (when their corresponding patterns do not co-occur), which

is the maximum Euclidean distance between any two points in the unit square. These distances are then used
to update the coordinates(xp1

, yp1
) and(xp2

, yp2
) of the points corresponding with the itemsetsp1 andp2:

1. xp1
← xp1

− α · (distance (p1, p2)− γ) · (xp1
− xp2

)

2. yp1
← yp1

− α · (distance (p1, p2)− γ) · (yp1
− yp2

)

3. xp2
← xp2

+ α · (distance (p1, p2)− γ) · (xp1
− xp2

)

4. yp2
← yp2

+ α · (distance (p1, p2)− γ) · (yp1
− yp2

)

Hereα (0 ≤ α ≤ 1) is the user-defined learning rate andγ (0 ≤ γ ≤
√

2) is the goal distance.
Now the points in the model are moved so that their Euclidean distance corresponds to their measure

of co-occurrence (where distance0 means patterns occur always together). We not only use the distances

to place the patterns in the 2D space, but also todecide when to merge. Points may leave the unit square;
however, when presenting the results of the experiments, such points are projected on the nearest wall of this
square.

2.3 Merge and Split

Now we describe how we merge and split the itemsets of the model as time goes by. The modelP contains
points with corresponding itemsets. Two old patterns (itemsets) are assumed to occur many times together
when their distance is small due to them being pulled together. In some cases one itemset can be made that
represents two of them: the algorithm will try these combinations. For some combinations it is possible that
they turn out to be not so good, their frequency is smaller than minsupp, whereminsupp is a user-defined
threshold. This can happen when their combined frequency islower thanminsupp or suddenly frequency
drops belowminsupp. In either case we need to split the sizek itemset intok itemsets of sizek−1, all being
subsets of the original itemset. Later we will discuss splitting in more detail, we now first explain merging.

As transactions come in, some of the initial size 1 itemsets becomefrequent, meaning that the support
is higher thanminsupp. These sets can — under certain circumstances, see below — merge to itemsets of
size 2, and so on: wemerge two itemsetsp1 andp2 if (in the algorithm in Section 2.4 the following series
of conditions is referred to as “appropriate”):

• The patternsp1 andp2 are old enough: they exist inP for at leastℓ (the window size) records. (Note
that the supports of these sets are currently updated through equations 2 and 3 above.)

• The two itemsetsp1 andp2 currently are frequent, i.e., it holds that bothsupport t(p1) ≥ minsupp

andsupport t(p2) ≥ minsupp. (Note that this condition automatically holds for all (pairs of) itemsets
in P that have size larger than 1.)

• The itemsets are close together in the model, so they are assumed to occur often together as a subset of
transactions in the stream:distance (p1, p2) ≤ mergedist , wheremergedist is a user-defined upper
bound for the distance for which mergingp1 andp2 is allowed.

• The patternp2 has an itemip which is not in the patternp1, such thatp2 \ {ip} ⊆ p1. This condition
always holds ifp2 has size 1.)

First of all we merge the patternsp1 andp2 if they are of equal size, so we create the setp1∪p2 and add it
toQ, the collection of all newly formed patterns. Both originalpatterns are removed from the 2-dimensional
space except if their size is 1.

Thesecondtime we merge patterns is if patternp1 contains more items thanp2 andp2 \ {ip} ⊆ p1 for
someip ∈ p2 with ip 6∈ p1, then for each iteme ∈ p1 \ p2 we add an itemsetp2 ∪ {e} toQ. This enables
patterns to be merged with patterns that already were mergedbefore and disappeared from the model. The
smaller patternp2 is removed except if it is of size 1.

Next wesplit patterns, when they contain more than one item, if they do notoccur often enough and they
have been in the model for at least a certain number of records(they are “old enough”). Split combinations
are generated by removing each item from the original pattern once. The remaining items form one new
itemset, so in this way a sizek itemset will result ink combinations after splitting.

Assume we have the patternp that is split into patternsq0, q1, . . . , q|p|−1 that are added toQ:

split : p = {i0, i1, . . . , i|p|−1} → q0 = {i1, i2, . . . , i|p|−1},
q1 = {i0, i2, i3, . . . , i|p|−1}, . . . , q|p|−1 = {i0, i1, . . . , i|p|−2}

Finally, the newly formed patterns inQ are united with those inP. Of course, when patterns occur
more than one time, only one copy — the oldest one — is maintained. And those patterns fromP that are
contained in a larger one inP are removed, unless — as stated above — they have size 1: we focus on the
maximal patterns.

2.4 The Algorithm

The algorithm works with the setP of patterns that are currently present, represented by (coordinates of)
points in 2-dimensional Euclidean space. The outline of thealgorithm DISTANCEMERGESPLIT is as fol-
lows:

initializeP with then itemsets of size 1
for t← 1 to∞ do
Q ← ∅
for all patternsp ∈ P do

computesupport t(p) using thetth recordrt,
either through updating (old patterns)
or by direct computation (young ones)

for a random subset of pairs of patterns inP do
update their distance according to their support

for all “appropriate” pattern pairs inP do
merge the pair, creating (new) pattern(s) inQ
mark the smallest of the pair,
or both if their sizes are equal

remove the marked patterns fromP
for all patternsp ∈ P do

if p is infrequent and old enoughthen
split p into (new) patterns inQ
removep fromP

P ← P ∪Q, joining duplicates
remove non-maximal frequent patterns fromP

DISTANCEMERGESPLIT

Note that itemsets of size 1 arenever removed fromP, not even when they are infrequent. The size 1
itemsets are always present, and play a special role: besides the fact that some of them are frequent, they also
serve as building blocks. In many cases they are not maximal.If they were removed, it could be impossible
to re-introduce single items after having become infrequent.

Patterns that are new inP are called “young”. When computing supports for these patterns, we use
equation 1, when updating the “old” ones we use equations 2 and 3. So, each pattern present inP also has
anage: patterns that have an age smaller than the window sizeℓ are “young”, the others are “old”.

On two occasions the algorithm introduces indeterminism: first, when the support computation is done
using the approximating updates for “old” patterns (savinga lot of time and memory) and second, when
pushing and pulling pairs of points representing a pattern,see Section 2.2.

3 Experiments and Discussion

The experiments are organized such that we first show the method at work in a few controlled synthetic
cases. Then we will use the algorithm to build a model for realdatasets, showing “real life” results. The first
synthetic experiment will be a stream with 10 groups of 5 items. Groups do not occur together, but all of
them occur often. This dataset is called the10-groups dataset. The second synthetic experiment will be a
stream where certain groups of items suddenly do not occur; instead another group starts occurring. We call
this dataset thesudden change dataset.

The first real dataset comes from Internet Information Server (IIS) logs for msnbc.com and news-
related portions ofmsn.com for the entire day of September, 28, 1999. The original dataset contained
sequences of 17 possible categories viewed by a user within 24 hours and was used before in [4]. For our
purpose we converted the dataset to itemsets. We removed users viewing only one or two categories to make
the problem more interesting. This dataset will be called theMSNBC dataset with 174,042 transactions.

The second real dataset is the Large Soybean Database used for soybean disease diagnosis in [11], we
call the dataset thesoybean dataset. This dataset contains 683 records with 35 attributes. First we removed
all missing values and we converted each record to a string ofn = 84 yes/no values for each attribute value.
In this research we do not deal with missing values, and each item represents an attribute value. We use this
dataset to analyze the performance of our algorithm with a real dataset with more than 50 items.

All experiments were performed on an Intel Pentium 4 64-bits3.2 Ghz machine with 3 GB memory. As
operating system Debian Linux 64-bits was used with kernel 2.6.8-12-em64t-p4.

Figure 1: Model after seeing 1,200 transactions of
the 10-groups dataset (n = 50, minsupp =
0.05, ℓ = window size = 300, mergedist = 0.1,
α = 0.1).

Figure 2: Model after seeing 4,500 transactions of
the 10-groups dataset (n = 50, minsupp =
0.05, ℓ = window size = 300, mergedist = 0.1,
α = 0.1).

Figures 1 and 2 show how the cluster model changes as more transactions are coming in for the10-
groups dataset. The first group of this dataset consists of items 0 to5, the second has 5 to 10, etc. In Figure 2
we clearly see these patterns, whereminsupp is given as a percentage of the dataset size. Furthermore notice
that both the second and the first group contain the item 5, so there is a slight overlap. We see these itemsets
closer together because they are both close to the pattern{5}. In order to get a clear picture we did not
display the size 1 itemsets. Itemsets are plotted using+s, accompanied by the items they contain.

The second synthetic dataset, called thesudden change dataset, simulates a stream that completely
changes after seeing many transactions (i.e., 30,000). Theresults are displayed in Figure 3, where the labels
above each bar reveal the size of the itemsets. First the records in the stream always contain items 1 to 5.
Then after 30,000 transactions they only contain items 25 to30. Figure 3 shows how the first pattern appears
and how it slowly disappears in the middle. In the end the model contains only patterns with items 25 to 30.

Figure 3: The sudden change dataset, the
stream changes in the middle (n = 50, minsupp =
0.05, ℓ = window size = 300, mergedist = 0.1,
α = 0.1).

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400

Nr. of Transactions x 250

Avg. Relative Difference
|Max. Freq. in Model|/|Actual Max. Freq|

Figure 4: The model compared with the actual situ-
ation for theMSNBC dataset (n = 17, minsupp =
0.05, ℓ = window size = 1, 000, mergedist =
0.1, α = 0.1).

Figure 4 was made using the formula1|P| ·
∑|P|

i=1
abs(|pi| − |rmax (pi)|)/|rmax (pi)| for each modelP,

we call this value theaverage relative difference, where the most optimal value is0. Herermax gives the
itemwise nearest maximal frequent pattern withpi ∈ P as a subset. These maximal frequent patterns are
beforehand decided with a frequent itemset miner. In short this formula calculates how itemsets in the model
(itemwise) differ from the actual maximal frequent patterns. Figure 4 displays how the average relative
difference stabilizes around0.2. We also plot the number of maximal frequent patterns divided by the actual
number, where1.0 means they are equal in size. This value approaches1.0 especially when merging and
splitting is temporarily stopped after 50,000 transactions, suggesting a good fit.

Approximating supports well is important in order to know which itemsets should be split. In Figure 5

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20 40 60 80 100 120

S
qu

ar
ed

 R
oo

te
d

E
rr

or

Nr. of Transactions x 250

Figure 5: Root squared error between the real support and theapproximated support for theMSNBC dataset
(n = 17, minsupp = 0.05, ℓ = window size = 1, 000, mergedist = 0.1, α = 0.1), with a Bézier curve.

we show for all patterns in a computed model the error betweentheir approximated support and their real
support in the time window as the transactions from theMSNBC dataset arrive. The root mean squared error
of the supports for this model eventually approaches0.06. The error becomes more stable after temporarily
stopping itemset creation after seeing 10,000 transactions.

The processing time of the algorithm strongly depends on thesupport thresholdminsupp one chooses.
The lowerminsupp is chosen the more points the model will contain eventually and so processing time will
get worse. Figure 6 shows that the average processing time for each transaction gets worse as the model
contains more itemset points. However, Figure 7 shows that,for thesoybean dataset, the number of points
in the model eventually stabilizes. For each transaction weadapt the distances between points a number of
times. In the case of thesoybean dataset we randomly choose pairs 40,000 times in order to push or pull
them, depending on their co-occurrence. Obviously one way of speeding up processing is to make it less
than 40,000 times or one can skip adapting distances sometimes.

0

100

200

300

400

500

600

700

800

900

0 500 1000 1500 2000 2500 3000 3500 4000

A
vg

. P
ro

ce
ss

in
g

T
im

e
(m

s)

Avg. Nr. of Cluster Points

Figure 6: Transaction processing time in millisec-
onds for different model sizes for the real dataset
(n = 84, minsupp = 0.2, ℓ = window size =
300, mergedist = 0.1, α = 0.1).

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 2000 4000 6000 8000 10000

A
vg

. N
r.

 o
f P

oi
nt

s

Nr. of Transactions

Figure 7: Development of model size as transac-
tions of the real dataset are processed (n = 84,
minsupp = 0.2, ℓ = window size = 300,
mergedist = 0.1, α = 0.1).

4 Conclusions and Future Work

The algorithm presented in this paper will generate a co-occurrence model of approximately maximal fre-
quent itemsets. This gives the user a quick view on the patterns, frequent subsets, in the stream and how they
occur in the stream. In this way analysts can online see pagesaccessed together or not at all.

The co-occurrence distance of patterns is computed by pushing apart or pulling together patterns in a
2-dimensional space. Pushing was done when only one of the patterns occurs and pulling if they occur
together. This distance is used to merge sufficiently long existing patterns together if support is larger than
a user-defined threshold, because we want only maximal frequent itemsets (itemsets that are often a subset
of a transaction but they are never a subset of a bigger frequent itemsets) such that the model does not grow
too big. Finally points are split if they happen to occur lessthan expected. Splitting and merging is required
because the model cannot contain all patterns.

In the future we want to focus more on the applications of our algorithm and how it is best used in the
analysis of streams. Furthermore we like to examine the support estimates in more detail, and see how extra
parameters (e.g., to determine the threshold age for splitting) can be employed.

5 Acknowledgment

This research is carried out within the Netherlands Organization for Scientific Research (NWO) MISTA
Project (grant no. 612.066.304).

References

[1] C.C. Aggarwal, J. Han, J. Wang, and P.S. Yu. A framework for clustering evolving data streams. In
29th International Conference on Very Large Data Bases (VLDB’03), pages 81–92, 2003.

[2] J.S. de Bruin, T.K. Cocx, W.A. Kosters, J.F.J. Laros, andJ.N. Kok. Data mining approaches to criminal
career analysis. In6th IEEE International Conference on Data Mining Proceedings (ICDM 2006),
pages 171–177, 2006.

[3] D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: A maximal frequent itemset algorithm for transac-
tional databases. In17th International Conference on Data Engineering (ICDE’01), pages 443–453,
2001.

[4] I.V. Cadez, D. Heckerman, C. Meek, P. Smyth, and S. White. Visualization of navigation patterns on
a web site using model-based clustering. InKnowledge Discovery and Data Mining, pages 280–284,
2000.

[5] J.H. Chang and W.S. Lee. Finding recent frequent itemsets adaptively over online data streams. In9th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’03), pages
487–492, 2003.

[6] J.H. Chang and W.S. Lee. estWin: Online data stream miningof recent frequent itemsets by sliding
window methods.Journal of Information Science, 31(2):76–90, 2005.

[7] M. El-Hajj and O.R. Zaiane. Parallel leap: Large-scale maximal pattern mining in a distributed envi-
ronment. In12th International Conference on Parallel and Distributed Systems (ICPADS’06), pages
135–142, 2006.

[8] D. Gibson, J. Kleinberg, and P. Raghavan. Clustering categorical data: An approach based on dynami-
cal systems. In26th International Conference on Very Large Data Bases (VLDB’00), pages 222–236,
2000.

[9] K. Gouda and M.J. Zaki. Efficiently mining maximal frequent itemsets. InIEEE International Con-
ference on Data Mining (ICDM’01), pages 163–170, 2001.

[10] W.A. Kosters and M.C. van Wezel. Competitive neural networks for customer choice models.E-
Commerce and Intelligent Methods of Studies in Fuzziness and Soft Computing, 105:41–60, 2002.

[11] R.S. Michalski and R.L. Chilausky. Learning by being told and learning from examples: An experi-
mental comparison of the two methods of knowledge acquisition in the context of developing an expert
system for soybean disease diagnosis.International Journal of Policy Analysis and Information Sys-
tems, 4(2):125–160, 1980.

[12] A. Nanopoulos, Y. Theodoridis, and Y. Manolopoulos. C2P: Clustering based on closest pairs. In27th
International Conference on Very Large Data Bases (VLDB’01), pages 331–340, 2001.

[13] J. Pei, X. Zhang, M. Cho, H. Wang, and P.S. Yu. MaPle: A fast algorithm for maximal pattern-based
clustering. In3th IEEE International Conference on Data Mining (ICDM’03), pages 259–266, 2003.

[14] H. Wang, W. Wang, J. Yang, and P.S. Yu. Clustering by pattern similarity in large datasets. InSIGMOD
International Conference (SIGMOD 2002), pages 394–405, 2002.

