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Abstract 

Multi-dimensional scaling (MDS) is a widely used technique to show, in a low 
dimensional space, relations between objects—such as humans, documents, soil 
samples—that are defined by a large set of features. Key benefit is that it enables visual 
inspection of object relations in an intuitive way. One of the limitations is that different 
projections exist, leading to different graphical representations and therefore different 
interpretations of the data. This problem is made more significant in case of noisy data 
or heuristic approaches to MDS. We propose Object-Centered Interactive Multi-
Dimensional Scaling (OCI-MDS), a technique that allows a data expert to try 
alternative positions for objects by moving them around the space in real time. The 
expert is helped by several types of visual feedback, such as the proportional error 
contribution of the expert-controlled object. Here we show that this technique has 
potential in two different domains, namely the investigation of high-dimensional 
computer experiment configurations and biomedical data. 

1. Introduction 
The use of computers has enabled people to create large amounts of data. This is a trend 
that is not restricted to a specific domain. For example, policy makers write large 
numbers of reports, individuals publish personal web-pages, scientists do computer 
simulation experiments, and databases enable structured storage of large amounts of 
medical data. Extracting potential relations between data objects—i.e., an individual 
data element such as a document—is a current challenge. In machine learning, many 
techniques have been developed, such as data clustering, graph-mining and principle 
component analysis (PCA). In this paper we focus on one such technique, called Multi-
dimensional scaling [3, 7].  

Multi-dimensional scaling (MDS) is a widely used technique to show, in a low 
dimensional space, relations between objects—such as human subjects, documents, soil 
samples—that are defined in a higher dimensional space. If MDS is used to create a 2D 
visual representation of the high dimensional dataset, a key benefit of this technique is 
that it enables visual inspection of object relations in an intuitive way. This is important, 



especially when the users of the analysis (i.e., those interpreting the final 2D projection) 
are not machine-learning experts. One of its limitations, however, is that different 
projections exist, leading to different graphical representations and therefore different 
interpretations of the data. This problem is especially important in case of noisy data or 
heuristic approaches to MDS. First, noisy (or unstructured) data introduce variation in 
the high-dimensional distance between objects, and as such these variations will be 
reflected in the 2D projection. As this noise does not convey any information regarding 
the relation between objects, interpretation of the 2D projection is hindered by this 
noise. The algorithm does not know the underlying relation between objects, and as such 
cannot correct for it. An expert could. Second, heuristic approaches to MDS, such as the 
push-pull technique [2, 4] where the projection is constructed through repeated local 
comparison between pairs of objects, introduce suboptimality in the 2D projection and 
can converge to local minima. However, heuristic approaches can have important 
benefits such as reduced computational cost and scalability [8] and are therefore useful 
for solving MDS problems. 

In this paper we propose Object-Centered Interactive Multi-Dimensional Scaling 
(OCI-MDS), a technique that allows a data expert to propose alternative positions for 
objects by moving them around the 2D space in real time. The approach is compatible 
with (and helps) heuristic approaches to MDS. The expert is helped by several types of 
visual feedback, such as the proportional error contribution of the controlled object. We 
use the technique in a heuristic MDS approach and show that this technique has 
potential in two different domains: visualization of high-dimensional computer 
simulation experiment configurations [1] and raw biomedical data. 

As usual, heuristic approaches to MDS rely on several parameters, such as the 
annealing factor and stopping criterion, and also on random elements (which might 
cause, e.g., rotated variants). Where possible we have motivated why we use a certain 
parameter. However, the main aim of this paper is to show the interactive mechanism. 
We therefore do not motivate all our choices in detail here.  

Our interactive approach relates to other approaches, such as those by Stappers et al. 
[5]. They use interaction to enable exploration of data. Objects can be selected by the 
user, after which the algorithm clusters the newly selected object. Subsequently, a next 
object can be added (or removed). This approach is Object-Centered and allows expert-
controlled visualization of object-relations, but different in the sense that objects, once 
positioned, are not interactively movable to (a) generate alternative hypotheses about 
object relations, or (b) help the MDS mechanism. Further they focus on small amounts 
of objects (about 10). Other approaches include non Object-Centered ones, such as those 
that enable experts to direct computational resources at specific parts of the space in 
order to reduce computational resources needed for data projection [8], and those that 
enable experts to interactively change algorithm parameters (like noise) and to stop the 
algorithm [6].  

In Section 2 we describe some of the problems our approach addresses. In Section 3 
we introduce Object-Centered Interactive MDS. Section 4 presents experimental results 
contains all figures. Finally, we present our conclusion and some directions for future 
work in Section 5. 



2. Expert Interaction Helps Heuristic Projection 
A key motivation to use MDS for visualization of high dimensional data is its ability to 
give overview over a complete dataset. This is important in the exploratory phase of data 
analysis. For example, in the criminal investigation area, visualization of datasets 
supports police officials in their process of generating hypotheses about the relation 
between different criminal records [2]. In the computer simulation domain, such as 
simulation of adaptive behavior [1], scientists often repeat experiments with slightly 
different settings. It is important to avoid making errors in the configuration of the 
experiments and it is important to have a clear overview of the variations introduced in 
the parameters. Visualization of the relation between configurations of these 
experiments (not just the results) can therefore provide insight into both the 
completeness of a set of experiments as well as potential configuration mistakes. In the 
domain of biomedical data analysis, clustering, dimension reduction and visualization 
are used to, for example, find in a set of patients different variations of one disease, or 
find the most important factors underlying a certain disease. 

In all three domains, MDS can be used to cluster data by projecting the high 
dimensional data onto a 2D space (note that data is not really clustered, as explicit 
groups are not made). Visualization of that space enables domain experts to get an 
intuitive idea of the relation between the objects in high-dimensional space. Typically, a 
2D projection is constructed such that the least-square error is minimized (see Section 
3). However, an error of 0 is usually not possible, and, if the projection technique is 
heuristic, minimal error cannot be guaranteed. Another typical problem in heuristic 
approaches—that use incremental error minimization by inducing small changes to 
object locations in 2D—is that two objects that should be close to each other can be 
separated by a large cluster, because the large cluster pushes both objects away from 
each other (see Figure 2, Section 4). Standard incremental techniques cannot solve this 
problem. Thus, even though the solution is near optimal, large local errors can exist.  

However, domain experts can detect such local errors by looking at the object and 
comparing it with its neighbors. So, from an optimality point of view the ability to move 
objects and clusters of objects is a useful addition to heuristic approaches to MDS. For 
data interpretation it is also a useful addition, as interactive real-time movement of 
objects enables experts to test hypotheses of relations between objects directly in the 
clustering result. This means that, e.g., police officials are able to test if two criminal 
records are related just by moving the objects close to each other and observing, e.g., the 
clustering result.  Another advantage is the possibility to add new objects at user 
specified locations, and observe the trajectory of these objects in the projection as well 
as the influence of these objects on the projected location of other objects.  

To summarize, object-based interaction with MDS is useful, provided that users get 
feedback information so that they can (1) select objects to move, and (2) evaluate the 
result of the move.  



3. Object-Centered Interactive MDS 
We propose Object-Centered Interactive MDS (OCI-MDS). This allows experts to 
interactively manipulate the projection result produced by a heuristic MDS algorithm. 
We present our algorithm and the kind of user-feedback the system gives. In the next 
section we show that it is a useful technique in two domains: computer simulation 
experiments and biomedical data analysis. 

Analogous to standard MDS, four steps are needed to project m-dimensional data 
onto a low (2D) dimensional space. The first two are preparatory and the second two are 
iterative until some stop-criterion (usually reaching a minimal error, or stalled 
improvement for some fixed number of iterations). 

First, a distance matrix is constructed that captures the distances between n 
individual objects in m-dimensional space, where m typically is the number of features 
used to describe an object. If objects do not have the same number of features (i.e., 
objects in one set have different dimensionality) then the distance matrix must be able to 
cope with this. We assume we have such an n×n distance matrix D. 

Second, objects are randomly placed in a low dimensional space, in our case a 2D 
space. A vector O of size n represents the coordinates of all n objects. 

Third, the first iterative step selects (e.g., randomly) an object i and adds random 
noise r to the coordinates of that object. Noise is added as follows: 

     steprndxOxO ii ×+← ()][][     

steprndyOyO ii ×+← ()][][      (1) 
where Oi[x] and Oi[y] are the coordinates of an individual object i, and rnd() a function 
giving a random number in [−0.5,  0.5]. The variable step is a noise size factor that is 
local-error, total 2D space span, and annealing dependent: 
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where, d is the largest distance between objects in O, and thus equivalent to max(DL) 
(see below), n is the number of objects, ei the local error associated with object i, e the 
global error (see below), and � an exponentially decreasing annealing factor. The local 
error ei is defined by: 
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where DL is the distance matrix of objects in 2D space. The motivation for our step 
factor is as follows. It expresses a normalized maximum step that depends on the error 
contribution of an object to the global error and the size of the space covered by all 
objects. This has the following two benefits. First, an object with a high local error is 
moved through the 2D space with high speed, in order to find a better location for it. 
This increases the probability that wrongly placed objects eventually find a suitable 
location with small local error. Second, if the 2D space that is occupied by the objects is 
large, the objects will also move quicker. This ensures that the algorithm is not 
dependent on the absolute distance between objects. Further, we decrease annealing 



factor � exponentially whenever for all objects i there has been no decrease in e. So, if 
the algorithm approaches a minimum, smaller steps can be used to better approach that 
minimum. 

Fourth, update the distance matrix DL
  (note that we use Euclidean distances for DL). 

Then evaluate the least-square error (LSE) between D and DL: 
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If the local noise added to object i decreases global error e, keep the new coordinates; if 
not, discard the change. Repeat step three and four until e is smaller then a threshold t, 
or until e has not decreased for a fixed number of steps s. If this criterion is met, the 
process is paused until the user interactively changes positions of objects. 

Objects are drawn in a two dimensional plane (e.g., Figure 1, Section 4). The user is 
able to, at any time, grab objects and place them at alternative positions. This enables 
the user to (1) help the heuristic MDS, and (2) experiment with potential clusters. The 
user is given two types of direct feedback. First, when objects are released, the 
projection mechanism restarts iteration of step three and four, so the user can directly 
observe the effect of the moved objects on the total distribution of objects. Second, 
objects are drawn in a color that represents the local error contribution of the object. 
This is non-trivial, as color changes need to be reactive enough to reflect small changes 
in local error but also reflect global changes in global error e. We used the following 
formula:   
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where n is the number of objects, ei the local error of object i and emin=min(es) for 
s=0,1,2,… where es is the global error at iteration s. The variable colori can be used to 
define, for example, drawing intensity or color of an object i. This color scheme was 
used to experiment with interactive visualization of simulation experiment 
configurations (Fig. 1), as well as interactive visualization of biomedical data (Fig.  3). 

We also experimented with a different coloring scheme where objects are colored 
using a per object measure that is relevant to the dataset, not the algorithm. This scheme 
was used to experiment with biomedical data visualization (Figure 2). The data 
consisted of about 400 objects with 10 features. The objects are patients. Every feature 
represents the severity of a disease in a different part of the body. The color represents 
the total severity calculated by averaging over the different features. This average is 
meaningful but somewhat arbitrary, as it is not clear that the average is actually a good 
representation of the global severity of the disease. However, as our focus is the 
visualization technique, not the dataset, we do not consider this to be a problem at this 
moment. For the same reason we do not specify the datasets in detail in this paper. 

4. Experimental results 
We have developed a Java application that allows us to test our approach. First we 
present results that investigated its use in visualizing simulation experiment 
configurations. The dataset consisted of 44 experimental configurations, all of which are 



used in research into the influence of emotion on learning using reinforcement learning 
[1]. The features of the objects consisted of 40 different learning parameter settings such 
as learning rate, exploration-exploitation settings, etc. This can be considered structured 
data. We have a vector representation of these configuration documents, and defined a 
distance measure based on the parameter type (boolean, string, double) and the range of 
values found for one parameter. We do not detail the distance measure here. Based on 
the measure we constructed the distance matrix D.  

 Figure 1a shows an initial 2D projection of a set of experiment configurations. The 
visualization clearly shows that there are 4 experiments that are special (bottom), and 
several groups of other experiments. The objects at the bottom are control experiments, 
and are indeed the control experiments with which the others are compared. The control 
experiment at the right is farther away from the other three (and farther away from all 
other experiments). Did our algorithm correctly place it here? The user can grab (Figure 
1b) the object, and while moving it, the local errors start to increase (objects color red). 
Apparently, the object should not be moved in that direction. After letting the object go, 
the algorithm projects the object back to a similar (but not necessarily equal) position. 
The object indeed belongs there. Other object clusters show a nice regular pattern, as a 
result of the distance function. The four top clusters (Figure 1c) all belong to one typical 
parameter value, while the middle four all belong to a different value on that same 
parameter. The clusters themselves are organized and correspond well to the actual 
configurations. This enabled us to verify that no configuration errors had been made in 
the course of these experiments. 

Second, we experimented with the biomedical data mentioned earlier. The projection 
resulted in a clustering that showed a trend from high severity to low severity, even 
though global severity is not a feature in the data (Figure 2a). Although the projection 
clearly does not give as much insight into the data as the projection of the structured 
experiment data shown before, several clusters appear to exist. For example, cluster 1 
represents a coupling of two severely affected body parts. Cluster 2 represent a coupling 
of two other severely affected body parts where the two parts of cluster 1 are not 
affected. This might indicate correlation between certain body parts and dissociation 
between others. Although the heuristic technique extracts some useful information from 
unstructured raw biomedical data, as it stands, the technique is clearly not usable for 
quantitative conclusions about the dataset, but only for explorative data analysis. 
However, the main topic of this paper is dataset exploration and interactivity. Interaction 
enabled us to relocate two items that appeared to be badly clustered due to the separation 
problem mentioned earlier, i.e., a cluster divides otherwise closely related objects 
(Figure 2b and c). After grabbing and relocating the two severe disease cases to an 
arbitrary position on the other side of the cluster consisting of non-severe disease 
objects, they were relocated by the algorithm at positions that better matched their real-
world relation, as could be observed from a comparison with the objects near to that new 
location. Finally, Figure 3 shows the variation in the distribution of local errors. Figure 
3a also shows one object (‘x’) with high local error positioned in between objects with 
small local errors. When grabbing and repositioning the object at a location in which it 
appears to have smaller local error, we were able to relocate it at a better place. 
Although the exact meaning of the projection is at this point unclear (and strongly 
dependent on the distance measure we used), our experiment shows that Object-
Centered interactivity is a useful method to explore object relations.  



 
Figure 1. Manipulating experiment configuration clusters (local error color). 
 

 
Figure 2. Manipulating biomedical data (severity color). 
 

 
Figure 3. Manipulating biomedical data (local error color). 

5. Conclusion and Future Work 
Our experiments show that Object-Centered Interactive MDS has potential. It can be 
used for direct manipulation of clustering results based on a heuristic MDS 
approximation. It can help in verifying the MDS result, and help to generate hypotheses 
about alternative object relations, that were not found, for example, because the MDS 
converged to a local optimum. However, currently its usefulness is somewhat limited on 
highly unstructured data. 
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Future work includes testing the mechanisms on criminal record datasets [2], adding 
multiple-object drag-and-drop, extensive user testing, and scaling mechanisms like those 
introduced by Williams and Munzner [8]. Also, relating the re-placement of single items 
with a high local error (a high contribution to the global error) to the change in the 
global error is important for the analysis of the proposed approach. Changes in the 
global error can be represented by a Boolean figure (higher or lower) or be represented 
by a (color-)scale during the process of human intervention. Future research can strive to 
find a relation between the decrease in local errors and the error made in the total image. 
If such a positive relation exists, automating the process of relocating those items with 
the highest local error can be an asset worth pursuing. This global optimization can be of 
interest in areas where the correctness of the image as a whole is more important than 
the relation between a small subset of individual items, like, for example, a clustering on 
customer behavior. 
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