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Summary. The tree languages accepted by (finite state) tree-walking automata
are known to form a subclass of the regular tree languages which is not known to be
proper. They include all locally first-order definable tree languages. We allow the
tree-walking automaton to use a finite number of pebbles, which have to be dropped
and lifted in a nested fashion. The class of tree languages accepted by these tree-
walking pebble automata contains all first-order definable tree languages and is
still included in the class of regular tree languages. It also contains all deterministic
top-down recognizable tree languages.

1 Introduction

One of the questions in tree language theory is whether a natural sequen-
tial automaton model exists for recognizing the regular tree languages. Of
course, by definition, they are recognized by the bottom-up finite tree au-
tomaton. But that automaton is essentially parallel rather than sequential:
the control of the automaton is at several nodes of the input tree simul-
taneously, rather than at just one. The top-down finite tree automaton is
also parallel and, moreover, its deterministic version does not recognize all
regular tree languages, which seems unnatural when compared to the case
of strings. For strings, the (1-way, on-line) finite automaton was generalized
to the 2-way (off-line) finite automaton, which also recognizes exactly the
regular languages, see [16,15]. Here the point of view has changed: the in-
put is not fed into the automaton (like money into a coffee machine), but
the automaton walks on the input string (like a mouse in a maze). Clearly,
this can be generalized to a sequential finite automaton on trees: the tree-
walking automaton, introduced in [1]. The finite control of the tree-walking
automaton is always at one node of the input tree. Based on the label of that
node and on its child number (which is i if it is the é-th child of its parent,
with ¢ = 0 for the root), the automaton changes state and steps to one of
the neighbouring nodes (parent or child). The tree-walking automaton of [1]
was equipped with an underlying context-free grammar and with an output
tape, to model syntax-directed translation from strings to strings. It did not
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need the test on the child number because that information could be coded
into the nonterminals of the context-free grammar. As shown in [14], without
the child number test the tree-walking automaton is not able to search the
input tree in a systematic way, such as by a pre-order traversal. For this and
other reasons the child number test is an essential feature of the tree-walking
automaton.

Unfortunately, it is an open problem whether the tree-walking automa-
ton recognizes all regular tree languages, and we conjecture that it does not,
cf. [9]. Assuming the conjecture, there are two natural questions. How does
the class TWA of tree languages accepted by tree-walking automata compare
to other well-known subclasses of the regular tree languages? Which natural
features can be added to the tree-walking automaton to obtain an automa-
ton that does recognize the regular tree languages? To start with the second
question, the main trouble with the tree-walking automaton seems to be that
it gets lost rather easily: in a binary tree of which all internal nodes have the
same label, all nodes look pretty much the same. One way of solving this is to
extend the tree-walking automaton with a synchronized pushdown, for which
pushing and popping is synchronized with moving down and up in the tree,
respectively. It is shown (implicitly) in [10] and (explicitly) in [14] that this
automaton recognizes exactly the regular tree languages. Another, classical
remedy against getting lost is to use pebbles. For instance, arbitrary mazes
can be searched by “maze-walking” finite automata with two pebbles, see
[5]. The main aim of this paper is to investigate the power of tree-walking
automata with pebbles. Obviously, the unrestricted use of pebbles leads to a
class of tree languages much larger than the regular tree languages, in fact
to all tree languages in NSPACE(logn). Thus, we restrict the automaton
to the recursive use of pebbles, in the sense that the life times of pebbles,
i.e., the times between dropping a pebble and lifting it again, are properly
nested. A similar, but stronger, nesting requirement is studied in [13] for
2-way automata on strings. We prove in Section 5 that our restriction indeed
guarantees that all tree languages recognized by the tree-walking pebble au-
tomaton are regular, but we conjecture that the automaton is not powerful
enough to recognize all regular tree languages. In Section 6 we generalize the
notion of pebble to that of a “set-pebble”, in such a way that the tree-walking
set-pebble automaton recognizes exactly the regular tree languages.

To answer the first question, we compare the TWA languages with the tree
languages that can be defined in first-order logic, see [19] for a survey. One
of the reasons that the regular tree languages are the natural generalization
of the regular string languages to trees, is that they are precisely the tree
languages definable in monadic second-order logic. This was, in fact, the
main motivation for the introduction of finite tree automata in [7,18]. Thus,
one way of investigating the power of several types of tree-walking automata
is to compare them to several types of logics on trees. We show in Section 3
that TWA contains all tree languages that are definable in locally first-order
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logic, where ‘locally’ means that the logic can talk about the parent-child
relation between nodes of the tree, but not about the ancestor relation. We
conjecture that it does not contain all first-order definable tree languages,
but show in Section 5 that they can be recognized by the tree-walking pebble
automaton. Note that TWA contains tree languages that are not first-order
definable, such as the set of all trees with an even number of nodes (cf. [19]).
As another answer to the first question, we conjecture in Section 4 that TWA
does not contain all deterministic top-down recognizable tree languages, but
show that they can be recognized by the tree-walking pebble automaton, with
one pebble only.

2 Preliminaries

In this section we recall some well-known concepts and results concerning
trees, logic for trees, and tree-walking automata. We use N = {0,1,2,...},
and for m,n € N, [m,n] = {i | m <i<n}.

Trees. For a ranked alphabet X, i.e., an alphabet X' together with a
function rank : X — N, the set of all trees over X' is denoted T'x;. A subset of
Ty is called a tree language. As usual, a tree ¢t over X' is viewed as a finite,
directed graph of which the nodes are labelled with symbols from X'. By V;
we denote the set of nodes of ¢t. Each node v € V; has k children where &
is the rank of the label of v. There is a linear order on these children which
allows us to speak about the i-th child of v, and there is an edge with label
1 from v to its i-th child (for 1 <4 < k). The child number of a node v is 4 if
it is the 4-th child of its parent, and 0 if v is the root of ¢. For nodes » and
v of t, u < v denotes that u is an ancestor of v, i.e., that there is a directed
(possibly empty) path from u to v. The yield of ¢ is the string obtained by
concatenating the labels of its leaves, from left to right. Finally, trees are
denoted by terms in the usual way: o(¢1,..., ;) is the tree of which the root
has label o (of rank k), with direct subtrees t1, ..., tg.-

Logic for Trees. We consider the same types of logic as in [19], viz.
monadic second-order (MsO) logic, first-order (FO) logic, and locally first-
order (LFO) logic. In [19] the latter two are called FO[<] logic and FO[S]
logic, respectively.

For a ranked alphabet X', we consider monadic second-order formulas
over Y that describe properties of trees over Y. This logical language has
node variables z,y, ..., and node-set variables X,Y,.... For a given tree ¢
over X', node variables range over the elements of V;, and node-set variables
range over the subsets of V;. There are five types of atomic formulas over X
lab, (), for every o € X, meaning that = has label o; edg;(z,y), for every
1 < the rank of a symbol in X', meaning that the i-th child of z is y; z < y,
meaning that x is an ancestor of y; x = y, and x € X, with obvious meaning.
The formulas are built from the atomic formulas using the connectives —,
A, V, =, and ¢, as usual. Both node variables and node-set variables can
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be quantified with 3 and V. We will use edg(z,y) for the disjunction of all
edg;(z,y) (meaning that x is the parent of y), root(z) for —Jy(edg(y, z)), and
leaf(z) for —Jy(edg(z,y)).

A first-order formula is an MSO formula that does not contain node-set
variables, and a locally first-order formula is an FO formula that does not
contain atomic formulas z < y.

For a closed formula ¢ over X and a tree t € Tx, t = ¢ denotes that
t satisfies ¢. If a formula ¢ has free variables, say, z,y, X, we also write
¢(z,y,X). Moreover, t = ¢(u,v,U) denotes that ¢ satisfies ¢ when z,y, X
have value u, v, U, respectively (with u,v € V; and U C V}). The tree language
defined by a closed formula ¢ over X' is L(¢) = {t € T'x | t = ¢}. L(¢) is called
an MSO definable tree language. If ¢ is first-order, or locally first-order, then
L(¢) is called an FO definable, or LFO definable tree language, respectively.
According to the classical result of [7,18] (first shown for strings in [6,8]) the
MSO definable tree languages are precisely the regular tree languages, i.e., the
tree languages accepted by (bottom-up or top-down) finite tree automata.
For more information on regular tree languages, see, e.g., [11,12].

We will also consider “trips” on trees (cf. [2,3,9]). A ¢rip, or node relation,
over X' is a set of triples (¢,u,v) where t is a tree over X, and u,v € V;. The
trip defined by an MSO formula ¢(z,y) with two free node variables z and y,
is T(¢) = {(t,u,v) | t E ¢(u,v)}. T(¢) is called an MSO definable trip. In [9]
the Mso definable trips are called the regular trips.

Tree-Walking Automata. A tree-walking automaton, or tw automaton,
for short, is a (nondeterministic) finite state device that walks on a tree from
node to node, following the edges of the tree (in either direction). At each
moment of time the tw automaton is in a certain state, at a certain node of
the input tree (over some ranked alphabet X). In one step, it can test the
label and the child number of the current node, and move to the parent or to
one of the children of the node, changing state. A child can be specified by
its child number. The language L(A) accepted by a tree-walking automaton
A consists of all trees (over X) on which A has a computation that starts at
the root of the input tree in its initial state, and ends in a final state. L(A)
will be called a twa language.

Since the tw automaton can test the child number of the current node
(and hence, in particular, can test whether or not it is at the root), one
of its basic capabilities is to make a pre-order traversal of the input tree
(deterministically), starting and ending at the root: when entering a node v
for the first time (from above), it moves up if v is a leaf, and otherwise moves
down to v’s first child; when entering v from below, it knows the number of
the child w it just left (by testing u’s child number and storing it in its finite
control) and thus can move down to v’s next child, or move up if u was the
last child of v.

In [2,3] the tree-walking automaton is extended with logical capabilities:
a tree-walking automaton with MSO tests is a finite state device as described
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above, with the additional possibility of testing MSO properties of the current
node. An MSO property is an MSO formula ¢(z) with one free node variable;
for the current node u of the input tree ¢, the automaton can test whether
t = ¢(u). A given automaton can of course use only finitely many of these
MsO tests. The language L(A) accepted by such an automaton A is defined
as above, but the main concern in [2,3] is with the trip T(A) computed by
A: the set of all (¢,u,v) such that A can walk from v to v on t, starting in
its initial state and ending in a final state. The main result of [2,3] is the
following.

Proposition. A trip is MSO definable if and only if it can be computed by a
tree-walking automaton with MSO tests.

It is an immediate consequence of (the if-direction of) this result that
all tree languages accepted by tree-walking automata with MSO tests are
MSO definable: if T'(A) = T(4(x,y)), then L(A) = L(1p) where 1 is the
formula 3z,y : root(z) A ¢(z,y). In particular, all twa languages are MSO
definable and hence regular. However, as mentioned in the Introduction, it
is an open problem whether every regular tree language is a twa language.
Note that every regular tree language is a projection of a deterministic twa
language. This is because every regular tree language is a projection of the set
of derivation trees of a context-free grammar (cf. [12], Section 8), and every
such derivation tree language can obviously be accepted by a deterministic
tw automaton: the automaton traverses the input tree and checks for each
node whether the labels of the node and its children form a production of
the context-free grammar.

3 Locally First-Order Logic

As mentioned above, it is not known whether the tree-walking automaton can
accept all MsO definable tree languages. Here we show that it can accept all
locally first-order definable tree languages. The hard work for this has already
been done: the proof is based on the characterization of the LFO definable
tree languages as the so-called locally threshold testable tree languages ([19],
Section 4.2). Intuitively, a tree language is locally threshold testable if mem-
bership of a tree in the language can be determined by looking at local spheres
around all nodes of the tree, and count how many times these spheres occur,
up to some threshold. To explain this formally we need some terminology.
Let X' be a ranked alphabet. Consider a “radius” r € N. For a node u of a
tree t over X, we denote by sph,.(¢,u) the subgraph of ¢ induced by all nodes of
distance at most r to u (where distance is measured along undirected paths),
with u as a designated node. Define S, = {sph,.(t,u) | t € Tx,u € V;}. This
is a finite set because we do not distinguish between isomorphic graphs. Now
consider a “threshold” ¢ € N. Define F, ; to be the (finite) set of all partial
functions f : S, — [0, ¢]. For a tree t, define fﬁyq € F, 4 such that for every
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sphere 5 € S, f} (s) = #{u € Vi | sph,(t,u) = s} provided this number is
in [0, ¢]. Now, a tree language L over X' is locally threshold testable if there
exist ,qg € Nand F C F, , such that L={t € T | f}, € F}.

It should be clear that every locally threshold testable tree language can
be accepted by a deterministic tw automaton. The automaton A traverses
the input tree ¢ in pre-order and for each node u of ¢ it computes the sphere
sph,.(¢,u) with centre u, in its finite control, by just searching systematically
the neighbourhood of u within distance r. Thus, counting the number of
occurrences of these spheres up to the threshold ¢, A can compute f}f’q and
check whether it is in F.

This shows that the deterministic tree-walking automaton can accept all
LFO definable tree languages.

4 One Pebble

We conjecture that the twa languages form a proper subclass of the regular
tree languages (cf. [9]) and propose the following tree languages L® and Li°
as counter-examples. Let ¥ = {o,a,b} where o has rank 2 and a,b have
rank 0. Let L; be the set of all trees ¢t € T'x; such that all root-to-leaf paths
of ¢t have even length, and let Ls be the set of all trees ¢ € T'x; such that
the yield of ¢ is in a*ba*. For i = 1,2, the language L:" consists of all trees
o(t,o(te,...o(tg,7)...)) with k > 0,7 € {a,b}, and t;,...,tx € L;. Thus, a
tree t in L?P consists of a spine, i.e., the path from the root of ¢ to its right-
most leaf, such that the first child of each node on the spine is the root of a
subtree which belongs to L;. It should be clear that Li® and L3P are regular
tree languages. We think that they cannot be accepted by a tw automaton.

Intuitively, the reason that no tree-walking automaton A can accept L:”
is the following. Let us say that a subtree of the input tree ¢ is a spine subtree
if its root is the first child of a node on the spine of ¢. Thus, A has to check
that every spine subtree of ¢ is in L;. One way of doing this would be to move
down node by node from the root along the spine, and for each node u on the
spine check the spine subtree s of u. To do this, A has to visit all the leaves
of s. But then A gets lost because it does not know when it has returned to
the spine, i.e., to u. The only way for A to find out whether a node v is on
the spine seems to be to move up as long as the child number is 2 and then
test whether it is at the root, but then of course A has also got lost because
it does not know how to return to v.

Note that it is not difficult to see that the complement of Li® can be
accepted by a tree-walking automaton: walk down nondeterministically to the
root of one of the spine subtrees and then walk down nondeterministically to
one of its leaves, checking that the path has odd length. Thus, if L}® cannot be
accepted by a tree-walking automaton, then the class of twa languages is not
closed under complement. Moreover, it would imply that the deterministic tw
automaton is less powerful than the nondeterministic one, because the class
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of deterministic twa languages s closed under complement. The latter follows
from the, maybe surprising, fact that every deterministic tw automaton can
be simulated by one that is always halting (see [17]).

As mentioned in the Introduction, one way of not getting lost is to use
pebbles. It should be clear that L;® can be accepted by a (deterministic)
tree-walking automaton with one pebble: the pebble is put on a spine node
while the automaton is checking the corresponding spine subtree. A one-
pebble tree-walking automaton (shortly, 1p-tw automaton) is a tree-walking
automaton that additionally carries a pebble. It can drop the pebble on the
current node, it can test whether or not the pebble is at the current node,
and it can lift the pebble from the current node (when it lies there, of course).
At the beginning and end of a computation the pebble should not be on the
input tree. A 1p-tw automaton A accepts a tree language L(A) in the usual
way, and L(A) is called a Ip-twa language. It is well known that 2-way finite
automata (on strings) with one pebble recognize the regular languages, see
[4,13]. Similarly, it is shown in (Theorem 10 of) [9] that all 1p-twa languages
are regular tree languages, see also the next section.

We now note that the language L3P is, in fact, a deterministic top-down
recognizable (dtr, for short) tree language, i.e., can be recognized by a de-
terministic top-down finite tree automaton (see, e.g., [11,12]). In fact, we
will show that every dtr tree language can be accepted by a (deterministic)
one-pebble tree-walking automaton. This is based on a well-known charac-
terization of the dtr tree languages (see, e.g., [11], Theorem I1.11.6) which
we now recall. For a ranked alphabet X, we define the (non-ranked) path
alphabet ITx; to consist of all symbols o; with 0 € X and 1 < 4 < rank(o),
plus all symbols of ¥ of rank 0. Thus, for the ranked alphabet X of L,
IIy;, = {01,02,a,b}. For a tree t, its path language path(t) C I is defined
recursively as follows: for 7 of rank 0, path(7) = {7}, and for ¢ of rank k > 0,
path(c(ty, ..., t)) = UL, 0i - path(t;).

The characterization is: a tree language L over X is a dtr tree language
if and only if there is a regular (string) language R over Iy such that L =
{t € Tx; | path(t) C R}. As an example, the regular language R for L, is
o3(aUbUor R') where R’ is the set of all strings of odd length.

Using this characterization, it is easy to see that all dtr tree languages are
deterministic 1p-twa languages. Let R be a regular language over Iy and
let M be an ordinary deterministic finite automaton that accepts the mirror
image of R. We describe a one-pebble tw automaton A that checks whether
all paths of the input tree ¢t are in R. The automaton A traverses ¢ in pre-
order and for each leaf u of ¢ it executes the following subroutine. It drops
its pebble on u and walks up to the root, simulating M on the corresponding
string in path(¢). More precisely, it starts with the initial state of M and feeds
M the label of u as input. For each node v on the path from u to the root,
A determines the child number ¢ of v, moves to the parent v’ of v, and feeds
M the symbol o; as input, where o is the label of v'. At the root, A checks
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that M has arrived in a final state. Finally, A returns to u by searching ¢ for
the pebble (traversing ¢ deterministically), and lifts the pebble from w.

This shows that all deterministic top-down recognizable tree languages
are accepted by deterministic tree-walking automata with one pebble.

We conjecture that the 1p-twa languages are still a proper subclass of the
regular tree languages. The proposed counter-example is the language L5
which is obtained from L = L5’ by substituting p(L) for each a and p(L°)
for each b, where p is a symbol of rank 1 and L€ is the complement of L.
Intuitively, to recognize a tree from Ly*” a 1p-tw automaton would need its
pebble to recognize the outer occurrence of a tree from L and thus would
have to behave like a tw automaton to recognize the nested occurrences of
trees from L and L. Note that it is easy to accept Ly°" with a tree-walking
automaton that uses two pebbles.

5 Nested Pebbles

Next we note that the language L3P of Section 4 is first-order definable (but
not locally). To define it, we use x <2 y to mean that < y and that all edges
on the path from z to y have label 2. The latter property is expressible by the
formula Vz',y' : (z < z' Aedg(z',y") Ay’ <y) — edgy(a’,y'). Now L3P = L(¢)
where ¢ is the formula Vz,y, z : (root(z) Az < y A edg;(y,2)) = ¢¥(z), and
¥(z) is Au : z < u Aleaf(u) A laby(u). Similarly, it is easy to show that the
language L5, discussed at the end of Section 4, is first-order definable too.

As observed in Section 4, LF can be accepted by a tw automaton with a
pebble, and L3 by one that uses two pebbles. Since we know from Section 3
that tw automata can recognize all locally first-order definable languages, this
suggests that tw automata with pebbles can recognize all first-order definable
languages. The key idea here is that a quantified variable corresponds to a
pebble. However, as mentioned in the Introduction, the unrestricted use of
pebbles leads out of the class of regular tree languages. Since quantifiers in
a formula are properly nested, it seems natural to require that the life times
of the pebbles are nested, where a life time of a pebble is the time between
dropping it on a node and lifting it again (note that a pebble, like a cat,
usually has more than one life). The obvious automaton for L3 indeed has
nested pebble life times.

A tree-walking automaton with nested pebbles (shortly, p-tw automaton)
is a tree-walking automaton that carries a finite number of pebbles, each with
a unique name. In one step, it can determine which pebbles are lying on the
current node, lift some of them, and drop some others. Initially and finally
there should be no pebbles on the input tree. Moreover, the life times of the
pebbles should be nested. This can be formalized by keeping a pushdown of
pebble names in the configuration of the automaton, pushing a pebble when
it is dropped and popping it when it is lifted. Note that since each pebble
name occurs at most once in the pushdown, the automaton may keep track



Tree-Walking Pebble Automata 9

of the pushdown in its finite control and thus “know” when it is allowed to
drop or lift a pebble. A p-tw automaton A accepts a tree language L(A) as
usual, and L(A) is called a p-twa language. We will also need the trip T'(A)
computed by A (cf. Section 2): the set of all (¢,u,v) such that A can walk
from u to v on t, starting in its initial state and ending in a final state (with
the above restrictions on pebbles).

In the remainder of this section we show that all first-order definable tree
languages are deterministic p-twa languages, and that all p-twa languages
are regular. The first proof is by induction on the structure of the formula.
For each first-order formula ¢ we construct a deterministic always-halting
p-tw automaton A that uses the (free or bound) variables of ¢ as pebble
names. Without loss of generality we may assume that no variable occurs
both free and bound in ¢. For a given input tree ¢, the automaton A finds
out whether or not ¢ is true for ¢t. More precisely, let the free variables of
¢ be in the set {z1,...,zx}, i.e., ¢(z1,...,2). For nodes uy,...,uy of t, A
receives as input the tree ¢ with the pebbles x1,...,z; lying on the nodes
ui,-- ., U, respectively, and starts its computation in its initial state at the
root of t. During its computation it is not allowed to lift or drop the pebbles
z; (but they can of course be tested); the life times of the other pebbles
should be nested. The computation of A should halt at the root of ¢ with the
pebbles x1, ...,z still lying on the nodes uq, ..., ur, and no other pebbles
lying on t. Finally, A halts in a final state if and only if ¢ = ¢(uy, ..., u).
The construction of A is easy for the atomic formulas. As an example, the
automaton for x < y searches the input tree for the node v with pebble z,
traverses the subtree with root u to see whether it contains the pebble y,
and returns to the root. In the induction step it suffices to consider negation,
conjunction, and universal quantification. For negation, just interchange final
and non-final states (note that the automaton is deterministic and always-
halting). For conjunction, just simulate the two given automata, one after the
other. Now consider a formula ¢ = Vz : ¢'(x) and let A’ be the automaton
constructed for ¢'. The automaton A for ¢ traverses the input tree in pre-
order and executes the following subroutine for every node u: it drops pebble
z on u, walks to the root, simulates A’, returns to pebble z, and lifts pebble
x from u.

This proves that all FO definable tree languages can be accepted by a
deterministic tree-walking automaton with nested pebbles. Note that the
automaton can be constructed in such a way that it uses k& pebbles where k
is the quantifier nesting depth of the formula.

Next we prove that all p-twa languages are regular. Let A be a p-tw
automaton over the ranked alphabet Y. We will show, by induction on the
number of pebbles, that the trip T(A) can be computed by a tree-walking
automaton M with MSO tests, i.e., T(M) = T(A). By the Proposition in
Section 2 and the argument following it, this implies that all p-twa languages
are MSO definable and hence regular. The basic idea is that a subcomputation
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of A that corresponds to the life time of a pebble on node u, can be replaced
by an MSO test on u. Without loss of generality we assume that the pebble
names of A are 1,...,n, and that at each moment of time pebbles 1,...,14
are lying on the input tree, for some 0 < ¢ < n. The induction is on n. For
n = 0, A is an ordinary tw automaton (and so we take M = A). Assume
now that the result holds for n — 1. Consider a subcomputation of A that
corresponds to a life time of pebble 1. Obviously, during this life time, A
behaves like a p-tw automaton with n — 1 pebbles on an input tree of which
one node is “marked”. Let X’ be the ranked alphabet ¥ U {0’ | ¢ € X},
where each ¢’ is a new (“marked”) symbol, of the same rank as o. Define
A’ to be the tw automaton with pebbles {2,...,n} that behaves in the same
way as A, interpreting a node with label ¢’ as a node with label o that
contains pebble 1; A’ has initial state p and final state ¢, where p and q are
the states of A at the start and end of the considered life time, respectively.
By the induction hypothesis and the Proposition in Section 2, T'(A") is MSO
definable, i.e., there is a formula ¢'(z1,22) over X' such that T(A") = T'(¢").
Let ¢(x1,22,y) be the formula that is obtained from ¢'(x1,x2) by changing
every atomic subformula lab, (z) into the formula lab, (z) A z = y and every
atomic subformula lab, (z) into lab, (z) A z # y. Then, for all nodes u;,us,v
oft € Ty, t |= ¢(u1,uz,v) iff A can walk from w; in state p to ug in state g
with pebble 1 on v (without lifting pebble 1). Consequently, the considered
subcomputation can be replaced by the MSO test ¢(x,z,z) on the current
node. Thus, A is turned into a tw automaton with MSO tests that computes
the same trip. For more details see Chapter 2 of [20] where this result is
shown for the special case of 2-way automata on strings.

This proves that all tree languages accepted by tree-walking automata
with nested pebbles are regular. We conjecture that they form a proper sub-
class of the regular tree languages, and that the number of pebbles determines
a proper hierarchy (by iterating the construction at the end of Section 4).

6 Set-Pebbles

It was shown in the previous section that the FO definable tree languages
can be recognized by tree-walking automata that use their pebbles to im-
plement the quantification of node variables. Thus, one naturally gets the
idea that all MSO definable tree languages (i.e., all regular tree languages)
can be recognized by an automaton that uses a generalized type of pebble by
which the quantification of node-set variables can be implemented. We will
call such a generalized pebble a “set-pebble”. Let us define a (nondeterminis-
tic) tree-walking automaton with set-pebbles to be a tree-walking automaton
that carries a finite number of set-pebbles (with distinct colours) that it can
drop, test, and lift. Dropping a set-pebble of a certain colour means that,
nondeterministically, a pebble of that colour is dropped on any number of
nodes of the input tree. Lifting a set-pebble of a certain colour means that
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all pebbles of that colour are lifted from the tree. The automaton can test
the colours of the pebbles that lie on the current node. Note that dropping
and lifting are independent of the current node. Finally, as for pebbles, we
require the life times of the set-pebbles to be nested.

Let us now argue that the tree-walking automaton with set-pebbles ac-
cepts exactly the regular tree languages. In one direction, it is well known
(see [19]) that every regular tree language is MSO definable by a formula of
the form ¢ = 3Xy,..., Xy : ¢'(X4,..., Xx) where ¢' is locally first-order (in
the sense that it does not contain 31X, VX, and z < y). Since, by Section 3,
LFO formulas can be accepted by tw automata, it should be clear that, to
implement ¢, it suffices to use set-pebbles with colours Xy, ..., Xy, dropping
them at the start of the computation, then simulating the tw automaton that
implements ¢', and lifting them at the end of the computation. In the other
direction we follow the proof in Section 5 that all p-twa languages are regular.
As in that proof, consider a subcomputation of A that corresponds to a life
time of the set-pebble with colour 1. Suppose that A drops the set-pebble in
state p when it is at node u, and lifts it again in state ¢ when it is at node v.
This means that there is a set of nodes U (the nodes that are covered by the
set-pebble) such that A walks from u to v behaving like a tw automaton with
n — 1 set-pebbles on an input tree ¢ of which the nodes in U are “marked”.
Thus, by the induction hypothesis and the Proposition in Section 2, there is
a formula ¢(z1, 22, X) that models this behaviour (for z1 = u, 2 = v, and
X =U). Hence t satisfies ¥(u,v), where 1 is the formula 3X : ¢(z1,z2, X).
In other words, (¢,u,v) is in the trip T'()). By the Proposition in Section 2
there is a tw automaton M with MsO tests such that T(M) = T'(¢). Conse-
quently, the considered subcomputation of A can be replaced by a simulation
of M. This turns A into a tw automaton with MSO tests.

We finally note that is not clear how one could define a deterministic
version of the tree-walking automaton with set-pebbles.

Acknowledgment. We are grateful to Jan-Pascal van Best for helping us
with the proof of the second result of Section 5.
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