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Membrane Computing 
An Introduction 
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ISBN 3-540-42601-4 



recent books 

(2010) (2009) 



nature inspires 

nested compartments 
          - information 
membranes – communication 



Places & Tokens 

before that we had Petri nets 



petri nets 

free producer

start_production

end_production

wait consumer

start_consumption

end_consumption

product

circles   places + tokens   resources 
boxes     transitions       actions 

unbounded 

producer 
three units 

consumer 
two units 

finite state 



computing with petri net 

2 

{ (i,j) | j ≤ 2i } 

i 

j 



maximal strategy 

Burkhard – Ordered 
firing in Petri Nets, 
EIK 1981 

counter 

counter 



forced steps 

counter empty 

counter 
at least one token 

where is max par important? 



about counters 

counter automaton = 
register machine 

Minski, Fischer 
FRACTRAN 

 
states + instructions 

+A , -A , A=0 zero test 
 
 

petri net = 
‘partially blind’ counter automaton 

(no zero test) 
Greibach, Petri 

p 
+A q 

p -A q 

A=0 

r 



Membranes & Objects 



nested membranes 

objects 

 - strings 
 - unstructured 

rules 

 - communication 
     ac  baoutcin  
 - evolution 

   rewriting 

       (A  aAb)out 
   splicing 

 Membrane Computing  Păun 2000 JCSS 



membrane 

environment 

region Structure 

elementary 
region 

skin 
membrane in 

in 

in 

out 

communication 
• explicit addressing 
• relative in/out 
  non-deterministic 



what is generated? 

where is the input/output? 
 
objects inside membrane: 
(vectors of) natural numbers 
 
- acceptance of input (by halting) 
 
- generating output ‘enumerable’ 
 needs nondeterminism 



inspiration 

Carriers are usually saturable monomeric 
proteins, which bind the transported 
solutions with high specificity, and move 
them at low flow rates. Channels are 
usually  oligomeric complexes (with 
helical transmembrane domains or barrel-
shaped structures), which show less 
stereospecificity than carriers but larger 
transport rates. 
 
(p.38) Cell Biology for Membrane Computing 
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Carriers & Objects 

Carriers and Counters (DLT2002) 

P systems with Carriers vs. (Blind) Counter Automata 

pure communication 
maximal parallellism 



va1…ak  v[a1…ak]   attaching  

v[a1…ak]  in       carry in 

v[a1…ak]  out      carry out 

v[a1…ak]  va1…ak   detaching 

Rules 

Contents 

•objects 
   multiset symbols 
   infinite supply  
      in environment 

•carriers 
    finite number 

P systems with carriers 

Martín-Vide  Păun  Rozenberg 

P systems with carriers 



va1…ak  v[a1…ak] 

v[a1…ak]  in/out 
Computations 

evolving multisets 

infinite supply environment 

fixed carriers 

maximal parallellism 

halting by ‘blocking’ 

counting objects  

   ‘output’ membrane ℕkCPm(c,p)  
• membranes 
• carriers 
• passengers 

(here k=1) 



example P systems with carriers 

[pa] 

[] 

[p] 
[paa] 

v 

      E                R2             R1 
                 vpv[p]in    v[p]vp 
v[pa]vpa        v[pa]out     vpav[pa]out 
vpaav[paa]in  v[paa] vpaa 

[p] 

[pa] 

[pa] 

[paa] 

a 

a 

a 

p 

R1 

R2 

p 

a 

a 

p 

a 

infinite 
supply 



counter automata 

blind counter automata 

Minsky, Fischer 

Greibach 

q p 
 

     nil 
 +A   add one 
 -A   substract one 
 A=0  zero test 

ℕRE 

several counters 
acceptance by final state  

         & empty counters 

output counter 

Recursively Enumerable sets (of numbers) 

no zero test, 
except final test for acceptance 
Petri nets 

ℕBC 

(pq,) 



ℕRE = NCP*(*,1) 

ℕRE = NCP1(2,3) 

         = NCP1(*,2) 

ℕBC = NCP*(1,*)  

         = NCP1(1,3) 

1. single membrane 

ℕCPm(c,p)  
• membranes 
• carriers 
• passengers 

2. single carrier 

3. single passenger 

ℕRE = ℕCP2(3,3) 

MaVi-Pău-Roz ‘02 

DLT’02 paper 



A 

A 
A 

p 

pre 
counter A=3 

state p 

post 
counter A=2 
state q 

:(pq,-A) 

q 
 

p 
 

A 

A 
A 

q 

ℕRE  ℕCP1(2,3) 

v[q] v[pA] 

 
q 
A 

A 

q 

:(pq,A=0) 

infinite … 

1. single membrane 

[qA] 



P without parallellism  
carriers + objects 
P system halting:  
no applicable rules 

• va1…ak  v[a1…ak]  

• v[a1…ak]  in/out       

• v[a1…ak]  va1…ak 

blind counter aut. 
state + counters 
final state  
  & empty counters 

guess vector 
& test by zero 

acceptance 

2. single carrier 

v’a4b1v’[a4b1] 

va2b5v[a2b5] 



ℕBC = ℕCP1(1,3) 

ℕBC  ℕCP*(1,*)  

2. single carrier 

ℕRE  ℕCP1(2,3) 

forget about ‘zero test’  

ℕBC  ℕCP1(1,3) 

no parallellism ! 

ℕBC single object semilinear → regular 

     also with more objects   { (i,j) | j ≤ 2
i } 



[T] 

[T] 

[] 
[] 

[X] 

[T] 
Rp R 

Rq 

[T] 

[] 

[] 

[T] 

[X] 

[X] 

[T] 

[X] 

[X] 

[X] 

[] 

[X] 

[] 

[] 

X 

X 

X 

[A] 

v2 
v3 

v1 

:(pq,A=0) 

ℕRE  ℕCP*(*,1) 3. single passenger 

T T 

T 

A 

state p 

state q 

‘zero test’ 



two membranes is ok 

ℕRE = NCP2(*,1) 



Symport & Antiport 



abstract 

Uniport 
   
Symport             Antiport 

A                    A    B             A 

B 



(a1…ak,in; b1…b,out) antiport 

(a1…ak,in)           symport 

(a1…ak,out)  

Rules 

Contents 

•objects 
   multiset symbols 
   infinite supply  
      in environment 

P systems with symport/antiport 

Păun & Păun 

P systems with symport/antiport 



ℕRE = ℕPP1(1,2) 1. single membrane 

2. symport only 

ℕRE = ℕPP2(2,2) 

Pău-Pău ‘02 

WMC paper (& Frisco) 

membranes  

s
y
m
p
o
r
t
 

 

ℕPPm(s,a)  
• membranes 
• symport 
• antiport 



programming trick 

good vs. bad ? 
infinite 
blocking 

(p→q, A=0)    (p→r, +A’)  
(r→r’, ε)   
(r’→q, -A’) 

conflicting counters A & A’ 

max parallellism: forced move 

(#,in;AA’,out)  
(#,in;#,out) 

# 

counter aut    /   new             antiport 

ℕRE = ℕPP1(1,2) 



single membrane will do 

p 

p 

q 

A 

A 
A 

A 

A 

(p→q, +A) 
(p→q, -A) 

(qA,in;p,out)  
(q,in;pA,out) 

counter aut            antiport 

sadly enough 

# 

# 



antiport to symport 

p 

p 

q 

A 

A 
A 

A 

A 

(p→q, +A) 
(p→q, -A) 

(qA,in;p,out)  
(q,in;pA,out) 

counter aut            antiport              symport 

# 

# 

ρ 

(ρqA,in)(ρp,out)  
(ρq,in)(ρpA,out)  

technical: halting 
state (extra symbol) 

δ 

add a ‘carrier’ 



(a1…ak,in; b1…b,out) antiport 

(a1…ak,in)           symport 

(a1…ak,out)  

Rules 

Contents 

•objects 
   multiset symbols 
   infinite supply  
      in environment 

•traveller 

symport/antiport : following the traces 

Ionescu, MartínVide, Păun & Păun 

a 

b 

symport/antiport : following the traces 



RE = LP+1(0,2) 

RE = LP+1(3,0) 
1. two+ letters 

LPm(s,a)  
• letters 
• membranes 
• symport 
• antiport 

2. single letter 
   symport only 

1RE = 1LP2(2,2) 

Ion-MaVi-Pău-Pău ‘02 

WMC paper 

membranes  

s
y
m
p
o
r
t
 

 



carrier P systems    counter automata 
maximal parallellism    zero test          

conclusion  …  after WMC’02 …  

Petri nets! 
single membrane   RE 
single carrier    BC  
single passenger  RE 

P systems with unstructured objects 

• catalists & communicative    [ Sosík ] 

• P-automata   [ Csuhaj-Varjú & Vaszil ] 

• analysing systems  [ Freund & Oswald ] 

• with symport/antiport 

• following traces  



Neurons & Spiking 



neurons 

dendrite 

nucleus 

axon 

http://en.wikipedia.org/wiki/File:Neuron_Hand-tuned.svg


neuron features 

(a3/a3→a,4) 

• no longer nested structure 
• spikes a ~ tokens 
          (membrane potential) 
• delay: neuron closed 
• output neuron 
• time / synchronisation 
 
 astrocytes 
 neuron division 

neuron 

(a5/a4→λ,1) 

synaps 

spiking rules 



astrocytes 

nondeterminism 
through timing! 
 
no maximality, 
i.e.,asynchronous 

counter 

technical trick 

block signals 
at threshold 

ADD module 

small 
numbers 

pass 



module substract 

SUB module 

rules in ‘counter’- 
              membrane 
never really empty 
 
different instructions 
same counter    
          [conflict!?] 
 
not forced to clear up 
            may block 
 
acceptance by  
         ‘final state’ 



neuron division 

‘solving’ NP complete problems 
 
SAT satisfiability 
 
input spike train = formula 
 
transformed into neuron structure 
 
linear in time,  
            exponential in size 



initial system 

initial contents 

input: problem instance 
spike train 

regular! 

depends 
on size 

forgetting 

deterministic 

output 

label 



initial system 

dynamic structure 
neuron division rule 



neuron division 

[ E ]i → [ ]j ∥ [ ]k   neuron division   
 
E regular expression ‘test’ 
 
 children inherit synapses 
 + synapse dictionary  (based on label) 
 
 no initial spikes 

a3 ∅ ∅ 



satisfiability  and output 

f1f2f3 … fn t1t2t3 … tn 

evaluate clauses 1-by-1 

split when clause fails 



conclusion 

nature computes! 
 

how? 
what? 


