

Models of Computation

Utrecht 7 june 2012

Hendrik Jan Hoogeboom

LIACS / Computer Science Leiden

Membrane Computing

introducing

Leiden Center for
Natural Computing

understanding nature
as a computational process

bio inspired computing

natural computation

bio-informatics

bio hardware

neural netw &
genetic alg

DNA computing

dna sorting &
protein networks

gene finding

Membrane Computing

introducing some features
(almost) no formalisms

no (real) proofs

Gheorghe Păun

Membrane Computing
An Introduction

Natural Computing Series

Springer 2002

ISBN 3-540-42601-4

recent books

(2010) (2009)

nature inspires

nested compartments
 - information
membranes – communication

Places & Tokens

before that we had Petri nets

petri nets

free producer

start_production

end_production

wait consumer

start_consumption

end_consumption

product

circles places + tokens resources
boxes transitions actions

unbounded

producer
three units

consumer
two units

finite state

computing with petri net

2

{ (i,j) | j ≤ 2i }

i

j

maximal strategy

Burkhard – Ordered
firing in Petri Nets,
EIK 1981

counter

counter

forced steps

counter empty

counter
at least one token

where is max par important?

about counters

counter automaton =
register machine

Minski, Fischer
FRACTRAN

states + instructions

+A , -A , A=0 zero test

petri net =
‘partially blind’ counter automaton

(no zero test)
Greibach, Petri

p
+A q

p -A q

A=0

r

Membranes & Objects

nested membranes

objects

 - strings
 - unstructured

rules

 - communication
 ac  baoutcin
 - evolution

 rewriting

 (A  aAb)out
 splicing

 Membrane Computing Păun 2000 JCSS

membrane

environment

region Structure

elementary
region

skin
membrane in

in

in

out

communication
• explicit addressing
• relative in/out
 non-deterministic

what is generated?

where is the input/output?

objects inside membrane:
(vectors of) natural numbers

- acceptance of input (by halting)

- generating output ‘enumerable’
 needs nondeterminism

inspiration

Carriers are usually saturable monomeric
proteins, which bind the transported
solutions with high specificity, and move
them at low flow rates. Channels are
usually oligomeric complexes (with
helical transmembrane domains or barrel-
shaped structures), which show less
stereospecificity than carriers but larger
transport rates.

(p.38) Cell Biology for Membrane Computing

inspiration

Carriers are usually saturable monomeric
proteins, which bind the transported
solutions with high specificity, and move
them at low flow rates. Channels are
usually oligomeric complexes (with
helical transmembrane domains or barrel-
shaped structures), which show less
stereospecificity than carriers but larger
transport rates.

(p.38) Cell Biology for Membrane Computing

Carriers & Objects

Carriers and Counters (DLT2002)

P systems with Carriers vs. (Blind) Counter Automata

pure communication
maximal parallellism

va1…ak  v[a1…ak] attaching

v[a1…ak]  in carry in

v[a1…ak]  out carry out

v[a1…ak]  va1…ak detaching

Rules

Contents

•objects
 multiset symbols
 infinite supply
 in environment

•carriers
 finite number

P systems with carriers

Martín-Vide Păun Rozenberg

P systems with carriers

va1…ak  v[a1…ak]

v[a1…ak]  in/out
Computations

evolving multisets

infinite supply environment

fixed carriers

maximal parallellism

halting by ‘blocking’

counting objects

 ‘output’ membrane ℕkCPm(c,p)
• membranes
• carriers
• passengers

(here k=1)

example P systems with carriers

[pa]

[]

[p]
[paa]

v

 E R2 R1
 vpv[p]in v[p]vp
v[pa]vpa v[pa]out vpav[pa]out
vpaav[paa]in v[paa] vpaa

[p]

[pa]

[pa]

[paa]

a

a

a

p

R1

R2

p

a

a

p

a

infinite
supply

counter automata

blind counter automata

Minsky, Fischer

Greibach

q p


  nil
 +A add one
 -A substract one
 A=0 zero test

ℕRE

several counters
acceptance by final state

 & empty counters

output counter

Recursively Enumerable sets (of numbers)

no zero test,
except final test for acceptance
Petri nets

ℕBC

(pq,)

ℕRE = NCP*(*,1)

ℕRE = NCP1(2,3)

 = NCP1(*,2)

ℕBC = NCP*(1,*)

 = NCP1(1,3)

1. single membrane

ℕCPm(c,p)
• membranes
• carriers
• passengers

2. single carrier

3. single passenger

ℕRE = ℕCP2(3,3)

MaVi-Pău-Roz ‘02

DLT’02 paper

A

A
A

p

pre
counter A=3

state p

post
counter A=2
state q

:(pq,-A)

q


p


A

A
A

q

ℕRE  ℕCP1(2,3)

v[q] v[pA]


q
A

A

q

:(pq,A=0)

infinite …

1. single membrane

[qA]

P without parallellism
carriers + objects
P system halting:
no applicable rules

• va1…ak  v[a1…ak]

• v[a1…ak]  in/out

• v[a1…ak]  va1…ak

blind counter aut.
state + counters
final state
 & empty counters

guess vector
& test by zero

acceptance

2. single carrier

v’a4b1v’[a4b1]

va2b5v[a2b5]

ℕBC = ℕCP1(1,3)

ℕBC  ℕCP*(1,*)

2. single carrier

ℕRE  ℕCP1(2,3)

forget about ‘zero test’ 

ℕBC  ℕCP1(1,3)

no parallellism !

ℕBC single object semilinear → regular

 also with more objects { (i,j) | j ≤ 2
i }

[T]

[T]

[]
[]

[X]

[T]
Rp R

Rq

[T]

[]

[]

[T]

[X]

[X]

[T]

[X]

[X]

[X]

[]

[X]

[]

[]

X

X

X

[A]

v2
v3

v1

:(pq,A=0)

ℕRE  ℕCP*(*,1) 3. single passenger

T T

T

A

state p

state q

‘zero test’

two membranes is ok

ℕRE = NCP2(*,1)

Symport & Antiport

abstract

Uniport

Symport Antiport

A A B A

B

(a1…ak,in; b1…b,out) antiport

(a1…ak,in) symport

(a1…ak,out)

Rules

Contents

•objects
 multiset symbols
 infinite supply
 in environment

P systems with symport/antiport

Păun & Păun

P systems with symport/antiport

ℕRE = ℕPP1(1,2) 1. single membrane

2. symport only

ℕRE = ℕPP2(2,2)

Pău-Pău ‘02

WMC paper (& Frisco)

membranes 

s
y
m
p
o
r
t



ℕPPm(s,a)
• membranes
• symport
• antiport

programming trick

good vs. bad ?
infinite
blocking

(p→q, A=0) (p→r, +A’)
(r→r’, ε)
(r’→q, -A’)

conflicting counters A & A’

max parallellism: forced move

(#,in;AA’,out)
(#,in;#,out)

counter aut / new antiport

ℕRE = ℕPP1(1,2)

single membrane will do

p

p

q

A

A
A

A

A

(p→q, +A)
(p→q, -A)

(qA,in;p,out)
(q,in;pA,out)

counter aut antiport

sadly enough

antiport to symport

p

p

q

A

A
A

A

A

(p→q, +A)
(p→q, -A)

(qA,in;p,out)
(q,in;pA,out)

counter aut antiport symport

ρ

(ρqA,in)(ρp,out)
(ρq,in)(ρpA,out)

technical: halting
state (extra symbol)

δ

add a ‘carrier’

(a1…ak,in; b1…b,out) antiport

(a1…ak,in) symport

(a1…ak,out)

Rules

Contents

•objects
 multiset symbols
 infinite supply
 in environment

•traveller

symport/antiport : following the traces

Ionescu, MartínVide, Păun & Păun

a

b

symport/antiport : following the traces

RE = LP+1(0,2)

RE = LP+1(3,0)
1. two+ letters

LPm(s,a)
• letters
• membranes
• symport
• antiport

2. single letter
 symport only

1RE = 1LP2(2,2)

Ion-MaVi-Pău-Pău ‘02

WMC paper

membranes 

s
y
m
p
o
r
t



carrier P systems  counter automata
maximal parallellism  zero test

conclusion … after WMC’02 …

Petri nets!
single membrane RE
single carrier BC
single passenger RE

P systems with unstructured objects

• catalists & communicative [Sosík]

• P-automata [Csuhaj-Varjú & Vaszil]

• analysing systems [Freund & Oswald]

• with symport/antiport

• following traces

Neurons & Spiking

neurons

dendrite

nucleus

axon

http://en.wikipedia.org/wiki/File:Neuron_Hand-tuned.svg

neuron features

(a3/a3→a,4)

• no longer nested structure
• spikes a ~ tokens
 (membrane potential)
• delay: neuron closed
• output neuron
• time / synchronisation

 astrocytes
 neuron division

neuron

(a5/a4→λ,1)

synaps

spiking rules

astrocytes

nondeterminism
through timing!

no maximality,
i.e.,asynchronous

counter

technical trick

block signals
at threshold

ADD module

small
numbers

pass

module substract

SUB module

rules in ‘counter’-
 membrane
never really empty

different instructions
same counter
 [conflict!?]

not forced to clear up
 may block

acceptance by
 ‘final state’

neuron division

‘solving’ NP complete problems

SAT satisfiability

input spike train = formula

transformed into neuron structure

linear in time,
 exponential in size

initial system

initial contents

input: problem instance
spike train

regular!

depends
on size

forgetting

deterministic

output

label

initial system

dynamic structure
neuron division rule

neuron division

[E]i → []j ∥ []k neuron division

E regular expression ‘test’

 children inherit synapses
 + synapse dictionary (based on label)

 no initial spikes

a3 ∅ ∅

satisfiability and output

f1f2f3 … fn t1t2t3 … tn

evaluate clauses 1-by-1

split when clause fails

conclusion

nature computes!

how?
what?

