
Internal Report 2011–04 August 2011

Universiteit Leiden

Opleiding Informatica

From Image to Nonogram:

Construction, Quality and Switching Graphs

Sjoerd Jan Henstra

MASTER’S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

abstract

Nonograms are logic puzzles in which a black and white image
must be reconstructed from two orthogonal projections. These
projections consist of the size and order of groups of black
pixels in each line.
In the first part of this thesis we describe a two step method to
automatically construct Nonograms. First, a grayscale image
is turned into a black and white image. Second, the black and
white image is repeatedly modified until it is a uniquely solv-
able Nonogram. Various options for both steps are presented.
We also describe ways to generate multiple Nonograms of
varying di�culty based on the same grayscale image.
In the second part of this thesis we study Nonograms with
multiple solutions. We compare Nonograms to a more gen-
eral discrete tomography problem and determine how di↵er-
ent solutions of the same Nonogram can be transformed into
one another by repeatedly applying simple switching com-
ponents. For some small examples, we describe generalized
switching components which relate to Nonograms as simple
switching components do to the discrete tomography prob-
lem. We present one possible measure of the complexity of
a Nonogram, based on the number of solutions and the way
switching components can be used to transform one solution
into another.

i

Acknowledgements

I wish to thank my supervisors, Joost Batenburg and Walter
Kosters, for their guidance and for showing me the interesting
problems hidden within a seemingly simple logic puzzle. I
want to thank Walter in particular for his many proofreads
and the invaluable feedback he supplied.
I also want to thank the many fellow students who, at di↵erent
times and in di↵erent ways, have kept me focused on my work
and provided both useful insights and wonderful company.
Most of all, I want to thank my family for their support. My
parents, for putting up with me, providing me with a great
environment to study and always encouraging me to do the
very best I can. And my sister, for her sage advice and for
helping me through a particularly rough final week.

ii

Contents

1 Introduction 1

2 Definitions 4

3 Constructing Nonograms from Images 8
3.1 Method . 8
3.2 Initialize . 9
3.3 Adapt . 11
3.4 Vary . 13
3.5 Other options . 15
3.6 Parameters . 16
3.7 Results . 19

4 Switching Components in Nonograms 27
4.1 Calculating distance . 28
4.2 Generalized switching components 30
4.3 Results . 32
4.4 Switching graphs and complexity 47

5 Conclusions 51
5.1 Future Work . 52

Bibliography 53

iii

Chapter 1

Introduction

A Nonogram is a logic puzzle where players try to reconstruct a black and
white image from row and column descriptions. These descriptions indicate
how many black cells there are in a given line (either a row or a column)
and how these cells are grouped together. For example, the description (2, 1)
means a line contains a group of two black cells, followed by one black cell.
These groups must be separated by at least one white cell. The first group
may be preceded by any number of white cells, or none at all. Likewise, the
second group may be followed by any number of white cells, or none at all.

Figure 1.1 shows that there are three lines of length five which fit this
description. Note that the second cell from the left is black in all lines that fit
the given description. Information gained this way from rows can be used to
solve columns and vice versa, allowing us to solve the Nonogram in Figure 1.2
even though none of the lines can be solved on their own.

Figure 1.3 shows an example of a Nonogram with multiple solutions. Such
Nonograms are generally not published as logic puzzles are generally assumed
to have one correct solution.

2,1

2,1

2,1

Figure 1.1: Three lines which fit the same description

1

CHAPTER 1. INTRODUCTION

2,1

2,1

1

1

1,1

1,2 2 1,1 2 1,1

Figure 1.2: Example of a Nonogram with a unique solution

1

1

2

1 2 1

1

1

2

1 2 1

Figure 1.3: Example of a Nonogram with two solutions

Nonograms became very popular in the 1990s and continue to be pub-
lished frequently to this day. Constructing a large number of puzzles by hand
for weekly or monthly publication takes a lot of time and constructing large
Nonograms is especially di�cult. The aim is to construct a puzzle that has
a single, unique solution, that is not too easy or di�cult to solve for hu-
mans and whose result is an image that can be recognized by humans. If
one wishes to automate Nonogram construction, it makes sense to start the
process with some kind of drawing or photograph. This way, there is some
hope of generating a puzzle whose result is somewhat recognizable.

However, simply converting an image to black and white is not enough, as
the other constraints are unlikely to be met this way. Thus, we try to create
an algorithm that generates Nonograms from images. The goal is to produce
Nonograms that are uniquely solvable and that resemble the input image
as much as possible. We also need some measure of a puzzle’s di�culty, to
determine whether the puzzle is suitable for human players, and some control
over how di�cult the generated puzzles will be.

2

CHAPTER 1. INTRODUCTION

In addition to constructing Nonograms, we also investigate Nonograms
with multiple solutions and how these solutions can be transformed into one
another using switching components. Switching components are collections
of cells whose values can be colored in di↵erent ways while still producing the
same Nonogram projections. In particular, we well look at simple switches,
collections of four cells with two possible colorings, and how simple switches
can be combined into generalized switching components. We also describe a
type of graph, containing all solutions of a given Nonogram, which can be
used as a measure of the complexity of that Nonogram.

Chapter 2 contains some definitions used throughout this paper. The
constructing of Nonograms from grayscale images is covered in Chapter 3,
with Sections 3.1 through 3.4 discussing the general method and its various
stages. Section 3.5 discusses several variations on the general method and
Section 3.6 lists all the parameters available in the final program. The results
for the construction of Nonograms are found in Section 3.7. Parts of Chapter 3
have been published in [BHKP09].

Chapter 4 covers the application of switching components to Nonograms.
Section 4.1 is about distances between Nonograms and how they can be cal-
culated. Generalized switching components are discussed in Section 4.2, Sec-
tion 4.3 contains results related to switching components. and in Section 4.4
we use those results to define a measure of a Nonogram’s complexity.

Finally, Chapter 5 contains conclusions and possibilities for future work.

3

Chapter 2

Definitions

A Nonogram is a set of descriptions that describe a black and white image.
We define such an image I as an m by n matrix containing the values 0
and 1, with 0 denoting a white cell and 1 a black cell. A Nonogram which
describes such an image consists of row descriptions and column descriptions.
These row and column descriptions are more generally referred to as line
descriptions. Each line description describes the number, size and order of
the groups of consecutive black cells in the line being described.

A line description d is an ordered list of positive integers (d1, d2, . . . , dk).
Each integer di is the number of consecutive black cells of a single group.
These groups must be separated by at least one white cell. The first group
may be preceded by zero or more white cells and likewise the last group
may be followed by zero or more white cells. Each black cell in a line must
be part of one of these groups, so the total number of black cells in the line
must equal

Pk
i=1 di. A line description d can describe a line which can also be

described with the regular expression 0⇤1d10+1d20+ . . . 0+1dk0⇤. Lines without
any black cells may be indicated with the special description (0).

A Nonogram N can then be defined as an ordered series of row descrip-
tions (r1, r2, . . . , rm), describing the rows of I in order from top to bottom
and an ordered series of column descriptions (c1, c2, . . . , cn), describing the
columns of I in order from left to right.

Clearly, for each black and white image there is only one Nonogram that
properly describes the image. However, a Nonogram may accurately describe
multiple black and white images. A requirement for most logic puzzles is
that they have precisely one correct solution. As such, a Nonogram is gen-
erally only considered a proper Nonogram if it describes precisely one black

4

CHAPTER 2. DEFINITIONS

and white image. We refer to this subset of Nonograms as uniquely solvable

Nonograms. As we try to construct a Nonogram from an image, our goal is
to construct a uniquely solvable Nonogram.

It is also possibly to construct Nonograms which do not describe any
black and white image. Such is the case when the sum of all numbers in the
row descriptions is not the same as the sum of all numbers in the column
descriptions. We are not interested in such Nonograms as they have no solu-
tions whatsoever. We will not refer to such Nonograms from now on. When
we talk about a Nonogram we mean a set of descriptions with one or more
solutions.

Given an m by n grayscale image G, we will try to generate one or more
uniquely solvable m by n Nonograms. Color images have to be converted to
grayscale first and large images should be resized before being turned into
Nonograms as large Nonograms are di�cult to construct and to solve.

A Nonogram solver is an algorithm that attempts to solve Nonogram
puzzles. Given a Nonogram N , it will generate a partial solution. A partial
solution P is an m by n matrix contains ones, zeroes and unknowns. An
unknown is a cell whose value a solver has not been able to determine. We
will mark unknowns as x throughout this paper. A partial solution P for
Nonogram N may only contain ones in cells which hold a one in every valid
solution for N and likewise may only contain zeroes in cells which hold a
zero in all valid solutions for N . If, for a given field, there exist solutions in
which it holds a one and solutions in which it holds a zero, that field must
be unknown in P .

Ideally, a solver will generate a partial solution that contains all ones and
zeroes that are common to all solutions of N and will only have unknowns
in places where some solutions of N have ones whereas other solutions have
zeroes. In the case of uniquely solvable Nonograms, that would mean an ideal
solver generates the complete solution. However, not all solvers are able to
produce such a complete partial solution.

To distinguish Nonograms that a given solver cannot solve from Nono-
grams that are not uniquely solvable, we introduce solver-specific terminol-
ogy. If a uniquely solvable Nonogram N can be solved by an algorithm called
SomeSolver, we say that N is SomeSolver-solvable. If a Nonogram is
not SomeSolver-solvable, it may still be uniquely solvable. In that case,
the SomeSolver algorithm was apparently not quite thorough enough to
solve this specific Nonogram.

In cases where there are multiple solutions for a Nonogram N , we will

5

CHAPTER 2. DEFINITIONS

refer to the partial solution for N which has the fewest possible number of
unknowns as the optimal partial solution.

A related problem to Nonograms is the discrete tomography problem of
constructing a (0, 1)-matrix from two projections in the form of row and
column sums [BK04]. That problem too can produce multiple solutions, more
so than Nonograms as there are no restrictions on the number of ones that
must appear consecutively in any row or column. In this discrete tomography
problem, all solutions can be constructed from any single solution through
the application of a limited number of interchanges, simple operations in
which two cells holding zeroes and two cells holding ones are exchanged
[Rys57]. This basic operation does not change row or column sums and as
such, applying an interchange to a solution always produces another solution.

Similar operations can be applied to Nonogram solutions in cases where
multiple solutions exist [BK09]. As Nonograms have more restrictions besides
the row and column sums having certain values, applying the same simple
interchanges to a solution for a Nonogram N may very well create matri-
ces which are not valid solutions for N . Further information about discrete
tomography and its applications can be found in [HK99] and [HK07]. The
fundamentals of computed tomography in general are covered in [Buz08] and
[Her09].

In this paper, we will use the term switching component. Given an m by
n (partial) solution P , a switching component is a set of four cells Pij, Pi`, Pkj

and Pk`, where 1 i < k m, 1 j < ` n and Pij = Pk` 6= Pi` = Pkj.
In other words, a switching component is a set of four cells in P which form
a rectangle with ones on two diagonally opposite corners and zeroes on the
other two corners. When a switching component is applied, the values of the
four corner cells are swapped, as shown in Figure 2.1.

�H H�
switch

Figure 2.1: A simple switch

Given the optimal partial solution P for Nonogram N , the flexible set

is the set of all unknowns. For each cell in the flexible set, called flexible

6

CHAPTER 2. DEFINITIONS

cells, there exists at least one solution in which it has value 0 and at least
one solution in which it has value 1. A generalized switching component is a
minimal subset of the flexible set for which the values of all cells are directly
related to each other.

Generalized switching components of di↵erent sizes and shapes have a
di↵erent number of possible fillings which are allowed by N . We will look
into various switching components and how they can be described as ordered
combinations of basic switching components. When multiple simple switches
are required to transform one solution for N into another, we will consider
how the cells involved in those switches can be described as a generalized
switching component.

We will also investigate how easily one partial solution can be transformed
into another. Given two images I1 and I2 which are accurately described by
Nonogram N , Distance (I1, I2) is the minimal number of switching compo-
nents that need to be applied to I1 to create I2. The distance between two
images is only defined for pairs of images that share the same Nonogram
description.

During this transformation, the intermediate images may no longer con-
form to the description N . We can also restrict the intermediate images to
those that are described by N . The NonogramDistance (I1, I2) is the min-
imal number of switching components that need to be applied to I1 to create
I2 such that each intermediate image is valid for N . If no such transforma-
tion exists, NonogramDistance (I1, I2) = 1. Clearly Distance (I1, I2)
can never be bigger than NonogramDistance (I1, I2), but the former may
very well be smaller.

Finally, the switching graph of a Nonogram N is a graph in which each
solution of N is represented as a vertex and each pair of vertices is con-
nected by an edge if and only if the two Nonogram solutions involved have a
Distance of 1.

7

Chapter 3

Constructing Nonograms from
Images

In this chapter, we describe the method we use to construct Nonograms from
grayscale images. This method, which is based on the method used in [Kos08],
was previously discussed in [BHKP09].

3.1 Method

Using the definitions from the previous chapter, we can describe the general
method we use to construct Nonograms based on grayscale images. As can
be seen in Algorithm 1, we initialize a candidate puzzle using the grayscale
image and then repeatedly adapt that puzzle until it is solvable by a chosen
solving algorithm. Any solver can be used on the condition that it does not
produce solutions or partial solutions with fixed values chosen for flexible
cells. We have chosen to use the solvers described in [BK09].

The first step in constructing a uniquely solvable Nonogram is construct-
ing a candidate puzzle. The function Nonogram (I) generates the Nono-
gram that describes image I. The initialization step focuses mainly on creat-
ing a black and white image that looks as much like the grayscale image G as
possible. Once this is done, we repeatedly adapt the puzzle one cell at a time
until the candidate puzzle is solvable by the solving algorithm we are using.
The strength of the solving algorithm can strongly influence the di�culty of
the resulting Nonograms. In adapting the puzzle, we need to strike a balance
between resembling G and making the candidate solvable more quickly.

8

CHAPTER 3. CONSTRUCTING NONOGRAMS FROM IMAGES

Algorithm 1: General method for Nonogram construction from a
grayscale image G.

function CreatePuzzle(G)
I InitializePuzzle (G)
N Nonogram (I)
while not IsSolvable (N) do

I AdaptPuzzle (I,G)
N Nonogram (I)

od
return N

3.2 Initialize

Grayscale images are generally stored as intensity maps, meaning a value of
0 indicates a black pixel and a value of 2n�1 indicates a white pixel, where n
is the number of bits per pixel. Values in between are used for various shades
of gray. As we want our puzzle to resemble the input image, we want cells in
our puzzle to have a value of 1 if the corresponding pixel in the input image
has a very low intensity value and a value of 0 if the corresponding pixel in
the input image has a very high intensity value.

To achieve this, we apply a threshold to the input image as described in
Algorithm 2. Given a threshold t, each cell Iij in our puzzle will be white if
the corresponding pixel Gij in the input image has an intensity greater than
or equal to t and black otherwise. The threshold can be chosen in several
ways. A fixed threshold can be applied to each image, but it is unlikely that
a single threshold would work well for many di↵erent input images.

A low threshold can be applied and then raised as needed until a solvable
puzzle is generated. In some cases this method, shown in Algorithm 3, will
yield uniquely solvable puzzles that resemble the input image, but in others
no suitable puzzles will be encountered at threshold levels that allow the
puzzle to resemble the input image.

This method is guaranteed to produce a uniquely solvable puzzle at some
point. When the threshold is raised beyond the intensity range of the input
image, the entire puzzle will be black. An entirely black puzzle is a valid
Nonogram, though it is trivial to solve and would clearly not resemble most

9

CHAPTER 3. CONSTRUCTING NONOGRAMS FROM IMAGES

input images. Using this method, one should also take care not to start with
too low a threshold as this leads to puzzles made up of mostly white cells.
These puzzles are often trivial to solve, causing the algorithm to stop, while
the puzzles may not resemble the input image yet.

Algorithm 2: Generate a black and white image by applying a
given threshold to a grayscale image.

function ApplyThreshold(G, t)
for all i, j do

if Gij t then
Iij 1

else
Iij 0

fi
od
return I

Algorithm 3: Construct a uniquely solvable puzzle in the initial-
ization step.

function InitializePuzzle(G)
t startingThreshold

I ApplyThreshold (G, t)
N Nonogram (I)
P Solve (N)
while CountUnkowns (P) > 0 do

t t+ 1
I ApplyThreshold (G, t)
N Nonogram (I)
P Solve (N)

od
return I

10

CHAPTER 3. CONSTRUCTING NONOGRAMS FROM IMAGES

Algorithm 4 is a simple method that works well with the algorithm de-
scribed in Section 3.1. It aims to fill a certain percentage of the cells in our
puzzle. Again, we start with a low threshold and increase that threshold until
the resulting puzzle satisfies a given condition.

Algorithm 4: Initialize a candidate puzzle with a specified amount
of black cells.

function InitializePuzzle(G)
t 0
I ApplyThreshold (G, t)
while PercentageBlack (I) < fillTarget do

t t+ 1
I ApplyThreshold (G, t)

od
return I

It should be noted that unlike the previous method, this method does not
necessarily generate uniquely solvable puzzles. It generates candidate puzzles
that form the starting point of the method described in Section 3.1. When
applied to most grayscale images, the resulting puzzle candidate will have
only slightly more than fillTarget black cells. However, when applied to
black and white images, the result may still be an entirely black puzzle. The
advantage of this method is that it is not concerned with generating solvable
puzzles, but only with generating a black and white image that resembles
the input. The value used for fillTarget gives us some control over both
the way the puzzle looks and to some degree the expected di�culty of the
resulting puzzle.

Once an initial image has been created, some filters may be applied to it.
For example, edge detection algorithms may be used, or random noise added,
to generate very di↵erent puzzles which may still resemble the grayscale
image.

3.3 Adapt

After initializing a Nonogram, we need to repeatedly modify it until it is
uniquely solvable. This is done by turning one white cell black each time
using Algorithm 5, until the puzzle becomes uniquely solvable.

11

CHAPTER 3. CONSTRUCTING NONOGRAMS FROM IMAGES

Algorithm 5: Generate a black and white image by applying a
given threshold to a grayscale image.

function AdaptPuzzle(I,G)
min 1
N Nonogram (I)
P Solve (N)
for all i, j do

if Pij = x ^ Iij = 0 then
Iij 1
N Nonogram (I)
P Solve (N)
value Evaluate (I,G, P)
if value < min then

min value

k i

` j

fi
Iij 0

fi
od
Ik` 1
return I

The way we decide which cell is colored black each time has a large impact
on the algorithm’s performance, the di�culty of the resulting puzzles and
the similarity between the puzzles and the original images. The Evaluate

function should weigh all the factors we wish to optimize. The closer a puzzle
is to being solvable, the lower its return value should be. The larger di↵erence
between the input image and the current puzzle, the higher the return value
should be. Other factors may be included, which will be discussed later in
this section and in subsequent sections.

We know that the puzzle will become solvable at some point if we just
keep adding black cells to it, but there is no guarantee that the solving
algorithm gets closer to solving the puzzle with each added cell. Each time
our solver attempts to solve the puzzle, it will come up with some number
of unknowns. We can try to maximize the information gained by the solver

12

CHAPTER 3. CONSTRUCTING NONOGRAMS FROM IMAGES

with each new black cell by selecting cells that directly a↵ect rows or columns
that the solver cannot solve yet. An easy way to achieve this is to limit the
AdaptPuzzle function to unknowns.

Even the simplest of solvers should have no trouble determining the color
of a cell if that cell is the only unknown in a row or column. One can simply
count the number of black cells in the line and compare it to the sum of the
numbers in the line description. If those numbers are the same, the unknown
must be white. If the sum of the line description is one higher than the number
of black cells in the line, the cell must be black. As such, an unknown must
always be accompanied by another unknown in the same row and one in
the same column. This means that by changing an unknown cell from white
to black, we directly influence the amount of information that is available
regarding at least four cells that are currently unknown to the solver.

There is still no guarantee that the solver will be able to get closer to
solving the puzzle after switching a white unknown to black, but we are
more likely to this way than by picking just any white cell. Additionally, we
can now significantly reduce the number of cells we need to consider as a
candidate for switching during each iteration of AdaptPuzzle.

3.4 Vary

After constructing a uniquely solvable Nonogram, we can keep adding more
black cells to it to construct additional Nonograms that may be easier or more
di�cult to solve. Algorithm 6 generates a set M of up to depth additional
puzzles by adding depth black cells and checking whether the result of each
addition is a solvable Nonogram.

As the method starts with a Nonogram that is solvable, there are no
more unknowns and we need to evaluate all white cells. It is possible to
create unsolvable Nonograms by adding black cells, but in practice nearly
every iteration produces another uniquely solvable Nonogram. This method
uses a scoring method similar to that of AdaptPuzzle to create puzzles
that resemble the original image.

13

CHAPTER 3. CONSTRUCTING NONOGRAMS FROM IMAGES

Algorithm 6: Generate variations on a Nonogram by adding more
black cells.

function Vary(I,G, depth)
M ;
d 0
while d < depth ^ I has white cells do

min 1
N Nonogram (I)
P Solve (N)
for all i, j do

if Iij = 0 then
Iij 1
N Nonogram (I)
P Solve (N)
value Evaluate (I, P,G)
if value < min then

min value

k i

` j

fi
Iij 0

fi
od
Ik` 1
N Nonogram (I)
if IsSolvable (N) then

M M [{I}
d d+ 1

fi
od
return M

14

CHAPTER 3. CONSTRUCTING NONOGRAMS FROM IMAGES

3.5 Other options

As mentioned in Section 3.3, only evaluating unknowns, cells for which the
solver cannot deduce the correct value, can significantly improve the algo-
rithm’s e�ciency. Not only are there fewer cases to process, leading to fewer
calls of the solving algorithm, but by always switching unknowns, we add
more information to the puzzle in each iteration than if we were to switch
cells in areas of the puzzle which the solver can already easily solve.

However, there are downsides to limiting ourselves to unknowns. If most
of the unknowns in a candidate puzzle correspond to very bright pixels in the
input image, we will likely be adding black spots to our final puzzle in places
where the original image had none. This may not always be a problem. A few
stray cells may allow us to construct a uniquely solvable puzzle that more
closely resembles the input image. However, in other cases we may end up
adding a lot of black cells that make the input image almost unrecognizable.
This is always a possibility when the Evaluate function tries to not only
optimize the similarity between the puzzle and the input image, but also the
solvability of the puzzle. But when we strictly limit ourselves to unknowns,
we may be ruling out cells which could potentially bring the candidate puzzle
closer to being solvable without adding stray cells.

As such, we may want to include known cells in our evaluation. We can-
not do anything about the added cost of evaluating more candidate cells
during each iteration of the AdaptPuzzle function. The fact that switch-
ing unknowns adds more useful information needed to solve the puzzle can
be compensated for by heavily weighing the number of unknowns we would
have after switching a candidate cell, or even increasing the fitness value if
the candidate cell is unknown.

If we choose to limit ourselves to unknown cells because doing so leads
to shorter runtimes, we may run into a particularly clear case of the prob-
lem described above. If the initial candidate puzzle contains empty rows or
columns, those rows or columns will always remain blank as even the most
trivial solving algorithm should be able to deduce the cell values in those
lines. This may lead to puzzles in which lines or shapes are clearly split into
two by a blank row or column. If this is considered undesirable, we may add
one black cell to each empty row or column immediately after the puzzle is
initialized. By adding just one cell to an otherwise empty line, it becomes
possible for other cells in the same line to be, or later on become, unknown
and thus be considered in one or more iterations of Vary. This is a rather

15

CHAPTER 3. CONSTRUCTING NONOGRAMS FROM IMAGES

arbitrary decision, but in some cases it may allow the creation of puzzles that
more closely resemble the input image. As the initialization of the puzzle is
based solely on the gray values of the input image, it would make sense to
avoid empty lines by selecting the darkest pixels in these lines and making
them black in our candidate puzzle.

In addition to using Vary to generate multiple puzzles, we may want
to repeat the entire algorithm several times. By keeping track of all previ-
ously generated puzzles we can avoid generating identical puzzles in each
generation. This can be done by assigning a negative weight to cells in the
Evaluate function based on the frequency with which that cell has been
black in previously generated puzzles.

3.6 Parameters

We will now briefly discuss all the parameters available in our implementation
of the method described in previous sections. Some parameters will have
arguments listed between square brackets. If a parameter has a default value
which is used if that parameter is not explicitly included, that default value
is listed between parentheses at the end of the parameter description. Our
program uses the solvers described in [BK09]. Several parameters listed here
are used by those solvers, or used to determine which of those solvers to use.
The available parameters are:

minthresh [integer] The minimum threshold applied to the grayscale im-
age to produce a black and white image. (default: 0)

maxthresh [integer] The maximum threshold applied to the grayscale im-
age to produce a black and white image. (default: 255)

stepthresh [integer] The step size used to increment the threshold. (de-
fault: 1)

level [integer] The level parameter used by the solver. (default: 0)

nopng Do not produce png images. By default, each uniquely solvable Nono-
gram created by the program is saved as a png image.

nodescr Do not produce plain text Nonogram description files. By default,
each uniquely solvable Nonogram created by the program is saved as a
text file containing row and column descriptions.

16

CHAPTER 3. CONSTRUCTING NONOGRAMS FROM IMAGES

verbose Produce extra output, such as the evaluation results of cells in
AdaptPuzzle.

keep going [integer] After producing a uniquely solvable Nonogram, keep
applying AdaptPuzzle to the image until the specified number of
uniquely solvable Nonograms has been constructed, or no more Nono-
grams can be constructed. (default: 0)

analyze Produce additional statistics regarding generated puzzles.

alpha [integer] The weight of unknowns in the cell evaluation function.
(default: 8)

beta [integer] The weight of gray value di↵erence in the cell evaluation
function. (default: 1)

gamma [integer] The weight of similarity to previous puzzles in the cell
evaluation function. (default: 1)

repeat [integer] Number of times the entire algorithm, including the keep going

loop, should be repeated after the initial run. (default: 0)

seed [integer] Optional random seed. (default: current POSIX time)

choose [method][method arguments] Method used to initialize the puz-
zle, with relevant arguments (default: solvable)

adapt [method][method arguments] Method used to add cells to the
puzzle, with relevant arguments (default: basic)

filter [method][method arguments] Filter applied to the puzzle after ini-
tialization, with relevant arguments (default: none)

fill lines [method] Method used to add black cells to empty lines. (default:
none)

Several methods are available for the last four parameters, some having
further arguments to determine the precise functionality of those methods.
We will now list each of those methods including any arguments.

17

CHAPTER 3. CONSTRUCTING NONOGRAMS FROM IMAGES

The di↵erent methods available for choose are:

choose solvable InitializePuzzle raises the threshold until the resulting
puzzle is uniquely solvable.

choose fill [integer] InitializePuzzle raises the threshold until the puz-
zle has at least the specified percentage of black cells.

The di↵erent methods available for adapt are:

adapt basic AdaptPuzzle only considers the gray values of individual
pixels when choosing a cell in AdaptPuzzle.

adapt area [integer] AdaptPuzzle considers the gray values of pixels
within the specified radius when choosing a cell in AdaptPuzzle.

The di↵erent methods available for filter are:

filter none No filter is applied.

filter contour At the end of InitializePuzzle, only keep the contours of
black shapes in the black and white image.

filter checker At the end of InitializePuzzle, apply a checkered pattern
to black shapes in the black and white image.

filter random [integer] At the end of InitializePuzzle, randomly keep
the specified percentage of black cells in black shapes in the black and
white image. Other cells are made white.

The di↵erent methods available for fill lines are:

fill lines none Empty lines are kept empty.

fill lines once Select one cell in each empty line and color it black. This
cell will be black throughout the entire run of the program, including
any repeat loops.

fill lines adapt Use AdaptPuzzle to add a black cell to each empty line.
A di↵erent cell may be selected during the initialization step if repeat
is used.

18

CHAPTER 3. CONSTRUCTING NONOGRAMS FROM IMAGES

3.7 Results

Given the algorithm described in this chapter, with the parameter options
listed in the previous section, we will perform several runs with di↵erent
parameters. We will include some of the Nonograms constructed this way
along with their respective di�culties. In these tests, we will use the image
of Alan Turing in Figure 3.1 as our base image. That image is 55 pixels wide
and 70 pixels high. As these dimensions are rather large for a Nonogram, we
first scale the image to 20 by 25 pixels, as shown in Figure 3.2.

Figure 3.1: Original image of Alan Turing

Figure 3.2: Original image scaled to 20⇥ 25

During the first run, we use the following parameters:

alpha 8

beta 1

gamma 64

choose fill 30

fill lines adapt

level 1

repeat 9

keep going 40

First, InitializePuzzle generates the image in Figure 3.3. The image
contains empty lines, which are filled di↵erently for each repeat. Figure 3.4
shows the first set of constructed Nonograms. The leftmost image has had a

19

CHAPTER 3. CONSTRUCTING NONOGRAMS FROM IMAGES

black cell added to each empty line, but is not yet a solvable Nonogram. The
second image is the first solvable Nonogram that has been generated. The
next four images are created by adding more pixels to the solvable Nonogram
using AdaptPuzzle until 40 more puzzles have been constructed. The four
puzzles shown are the 10th, 20th, 30th and 40th resulting Nonograms.

Figure 3.5 shows the second set of constructed Nonograms. Once again,
the leftmost image is the result of adding a black cell to each empty line. As we
use AdaptPuzzle to select these cells, the resulting image is di↵erent from
that in Figure 3.4. This Nonogram is also not solvable by our solver with the
provided parameters, so more cells are colored black until we find a solvable
Nonogram, which is the second image in Figure 3.5. The four images to the
right of it are the 10th, 20th, 30th and 40th solvable Nonograms constructed by
adding more pixels to the already solvable Nonogram. Towards the end, the
image becomes di�cult to recognize because the algorithm tries to construct
Nonograms that do not look like the Nonograms in Figure 3.4.

Figure 3.6 shows the initial solvable Nonograms constructed in six further
repeats and Figure 3.7 shows the final solvable Nonograms constructed in
each of those repeats through the use of keep going.

Figure 3.3: Result of InitializePuzzle

30 25 19 17 16
Figure 3.4: Initial Nonograms, from left to right: lines filled, first uniquely
solvable puzzle, keep going 10, 20, 30, 40 times

20

CHAPTER 3. CONSTRUCTING NONOGRAMS FROM IMAGES

26 15 22 32 18
Figure 3.5: First repeat, from left to right: lines filled, first uniquely solvable
puzzle, keep going 10, 20, 30, 40 times

27 30 36 32 30 35
Figure 3.6: From left to right: six more repeats, initial solvable Nonogram

33 18 21 23 32 31
Figure 3.7: From left to right: six more repeats, keep going 40 times

21

CHAPTER 3. CONSTRUCTING NONOGRAMS FROM IMAGES

During the second run, we use the following parameters:

alpha 8

beta 1

gamma 64

choose fill 35

fill lines adapt

level 1

repeat 9

keep going 40

Figure 3.8 shows the result of InitializePuzzle. Compared to Fig-
ure 3.3, this image has more black cells, because of the higher fill parameter.
Once again, this image contains empty lines which are filled di↵erently for
each repeat. Figure 3.9 shows the first set of constructed Nonograms. The
leftmost image has had a black cell added to each empty line and once more
the resulting Nonogram is not solvable by our chosen solver. The second im-
age is the first solvable Nonogram generated by adding black cells. The four
image to the right of that are 10th, 20th, 30th and 40th Nonograms constructed
through the use of keep going.

Figure 3.10 shows the second set of constructed Nonograms. Once again,
the leftmost image is the result of adding a black cell to each empty line. The
resulting image is the same as in Figure 3.9 despite our use of AdaptPuz-

zle to select these cells. Apparently the penalty for resembling a previously
constructed Nonogram does not outweigh other factors, such as similarity to
the input image and the number of unknowns in the resulting Nonogram.

The resulting Nonogram is also not solvable by out solver with the pro-
vided parameters, so more cells are colored black until we find a solvable
Nonogram, which is the second image in Figure 3.10. The four images to the
right of it are the 10th, 20th, 30th and 40th solvable Nonograms constructed
by adding more pixels to the already solvable Nonogram.

Figure 3.11 shows the initial solvable Nonograms constructed in six fur-
ther repeats and Figure 3.12 shows the final solvable Nonograms constructed
in each of those repeats through the use of keep going. Once again, later re-
peats tend to construct Nonograms which do not resemble the input image
as much as Nonograms constructed earlier.

22

CHAPTER 3. CONSTRUCTING NONOGRAMS FROM IMAGES

Figure 3.8: Result of InitializePuzzle

17 25 16 10 10
Figure 3.9: Initial Nonograms, from left to right: lines filled, first uniquely
solvable puzzle, keep going 10, 20, 30, 40 times

17 25 16 16 12
Figure 3.10: First repeat, from left to right: lines filled, first uniquely solvable
puzzle, keep going 10, 20, 30, 40 times

17 17 17 19 17 19
Figure 3.11: From left to right: six more repeats, initial solvable Nonogram

23

CHAPTER 3. CONSTRUCTING NONOGRAMS FROM IMAGES

12 23 13 24 18 24
Figure 3.12: From left to right: six more repeats, keep going 40 times

During the third run, we use the following parameters:

alpha 8

beta 1

gamma 64

choose fill 35

filter contour

fill lines adapt

level 1

repeat 9

keep going 40

During our third run, we use a filter. Other than that, all parameters
are the same as during the previous run. Figure 3.13 shows the result of
InitializePuzzle, which is identical to Figure 3.8. After a black cell has
been added to each empty line in this image, we apply a very simple filter
which colors all cells which are surrounded by black cells white. As we once
again the black cells added to empty lines are chosen separately for each
repeat, the filter must also be applied anew during each repeat.

Figure 3.14 shows the first set of constructed Nonograms. The leftmost
image has had a black cell added to each empty, followed by the filter. The
second image is the first solvable Nonogram generated by adding black cells
to the first image. Thanks to the filter, this Nonogram is clearly very di↵er-
ent from all previously generated Nonograms based on the same grayscale
image. The following four images are the 10th, 20th, 30th and 40th Nonograms
constructed through the use of keep going. Most black cells added this way
are found in the portrait’s hair, which was made white by the filter. This is
no coincidence, as those cells are all very dark in the grayscale image.

Figure 3.15 shows the second set of constructed Nonograms. The leftmost
image is the result of adding a black cell to each empty line and applying a
filter. The resulting image is slightly di↵erent from that in Figure 3.14. The

24

CHAPTER 3. CONSTRUCTING NONOGRAMS FROM IMAGES

second image is the first solvable Nonogram generated by applying Adapt-

Puzzle. The remaining four images are once again the 10th, 20th, 30th and
40th Nonograms constructed thanks to keep going. These Nonograms are sim-
ilar to those from the set due to the Evaluate function’s optimization to-
wards Nonograms that resemble the grayscale image, though some small
di↵erences occur thanks to the optimization towards Nonograms that do not
resemble previously constructed Nonograms.

Figure 3.16 shows the initial solvable Nonograms constructed in six fur-
ther repeats and Figure 3.17 shows the final solvable Nonograms constructed
in each of those repeats through the use of keep going. Later repeats have
fewer black cells added to the hair part of the picture as a result of the high
gamma parameter and the final Nonograms constructed are increasingly dif-
ficult to recognize as the grayscale image.

It is also interesting to note that the di�culty levels in the third run tend
to be higher than those in the first run, which in turn tend to be higher
than those in the second run. This is largely due to the number of black
cells and the presence of large groups in the images. Nonograms with many
black cells tend to be easier than Nonograms with few black cells, especially
if those black cells are grouped together into large black areas. Adding more
black cells to a Nonogram with keep going also tends to generally lower the
di�culty of the Nonogram. By adding a significant amount of black cells
this way and repeating the entire procedure several times, we can usually
construct puzzles with a fairly large variety in di�culties.

Figure 3.13: Result of InitializePuzzle

25

CHAPTER 3. CONSTRUCTING NONOGRAMS FROM IMAGES

44 38 26 16 22
Figure 3.14: Initial Nonograms, from left to right: filtered, first uniquely
solvable puzzle, keep going 10, 20, 30, 40 times

42 42 30 25 17
Figure 3.15: First repeat, from left to right: filtered, first uniquely solvable
puzzle, keep going 10, 20, 30, 40 times

33 37 49 37 48 51
Figure 3.16: From left to right: six more repeats, initial solvable Nonogram

32 32 41 20 42 25
Figure 3.17: From left to right: six more repeats, keep going 40 times

26

Chapter 4

Switching Components in
Nonograms

The discrete tomography problem mentioned in Chapter 2 is very similar to
the problem of solving Nonograms. The only di↵erence is that where Nono-
grams specify groupings of black cells (i.e., cells containing ones) in lines, the
discrete tomography problem only specifies the total number of ones in lines.
Given an instance of that problem, any two solutions can be transformed into
one another through the use of switching components. In fact, by taking any
solution and flipping the values of a switching component inside the solution,
the result is guaranteed to also be a solution, as switching components do
not change the row or column sums [Rys57].

The same does not hold true for Nonograms. Because Nonograms place
more restrictions on the values in a matrix, activating a switching component
(i.e. changing the zeroes into ones and the ones into zeroes) is likely to result
in a matrix that is not described by the same Nonogram as before the switch.
In [BK09], the notion of more complex switching components, referred to as
generalized switching components, is introduced. Given a Nonogram with
multiple solutions, the various solutions may be transformed into one an-
other through the activation of generalized switching components, just as
solutions for the discrete tomography problem may be transformed into one
another through the application of simple switching components. It is impor-
tant to note that, unlike in the discrete tomography problem, the presence
of generalized switching components in Nonograms does not just depend on
the values of the flexible cells themselves, but also on the values of the cells
in between or directly adjacent to flexible cells.

27

CHAPTER 4. SWITCHING COMPONENTS IN NONOGRAMS

In an attempt to find and define di↵erent kinds of generalized switching
components, we will generate all solutions for some Nonograms that have
multiple solutions. We will then determine the flexible set, determine the
distance and NonogramDistance between pairs of solutions.

4.1 Calculating distance

We compute the distance between Nonogram solutions with a simple recur-
sive algorithm. Given puzzles p1 and p2, we find all switching components in
p1. For each switching component, we compute p01 in which the values of the
switching component have been switched. We then recurse and compute the
distance between p

0
1 and p2. If at any point, the two puzzles in question are

identical, the distance between them is 0.

By keeping track of the shortest transformation found so far, we can
recurse whenever the number of activated switches in the current transfor-
mation exceeds that in the shortest. We also keep track of all switches that
have been performed and disallow them from being repeated to avoid loops
in which a single switching component is repeatedly applied.

Most of the arguments are only used in recursive calls. In the initial call,
the only required arguments are the two solutions p1 and p2. The current
recursion depth d is 0 in the initial call and the set S of previously applied
switching components is empty. The best result found so far, min, can safely
be set to 1, though if we know some upper bound for the distance between
p1 and p2, it can be supplied during the initial call to avoid unnecessary work.

Each switch that is performed during the transformation from p1 to p2

changes four values from zero to one or from one to zero. If we define the
di↵erence between p1 and p2 as the number of (i, j) for which p1ij 6= p2ij,
each switch can change the di↵erence by any even number between �4 and
4. It might seem like only switches which reduce the di↵erence should be
performed, however there are cases where p1 can only be transformed into p2

by performing one or more switches which do not change, or even increase
the di↵erence. One example of such a case can be seen in Figure 4.1.

28

CHAPTER 4. SWITCHING COMPONENTS IN NONOGRAMS

Algorithm 7: Calculate the distance between two solutions

function ApplySwitch(p, i1, j1, i2, j2)
pi1j1 pi1j2

pi1j2 pi2j2

pi2j1 pi2j2

pi2j2 pi1j1

function Distance(p, q, d = 0,min =1, S = ;)
if d � min then

return1
else if p = q then

return d

fi
for i1 1 to m� 1 step 1 do

for j1 1 to n� 1 step 1 do
for i2 i1 + 1 to m step 1 do

if (pi1j1 = 0 ^ pi2j1 = 1) _ (pi1j1 = 1 ^ pi2j1 = 0) then
for j2 j1 + 1 to n step 1 do

if pi1j1 = pi2j2 ^ pi1j2 = pi2j1 ^ (i1, j1, i2, j2) 6⇢ S then
ApplySwitch (p, i1, j1, i2, j2)
S S [{(i1, j1, i2, j2)}
d

0 Distance (p, q, d+ 1,min, S)
if d0 < min then

min d

0

fi
ApplySwitch (p, i1, j1, i2, j2)
S S \ {(i1, j1, i2, j2)}

fi
od

fi
od

od
od
return min

29

CHAPTER 4. SWITCHING COMPONENTS IN NONOGRAMS

1,1

2

2

1,1

1,1 2 2 1,1

1,1

2

2

1,1

1,1 2 2 1,1

Figure 4.1: Example of two solutions of a Nonogram which require a switch
which does not decrease the di↵erence between the solutions to transform
one into the other

Once we know the distance using simple switching components between
all pairs of solutions for a given Nonogram without restricting ourselves to
the Nonogram solution space, we can easily determine the same while being
restricted to that space. All direct transformations between solutions through
a single simple switching component are reflected in the distance matrix by a
distance of 1. By setting all other distances to1 we ignore all transformations
that violate the Nonogram description. By then applying the Floyd-Warshall
algorithm we find the NonogramDistances between all pairs of solutions.

4.2 Generalized switching components

Figure 4.2 shows one possible generalized switching component consisting of
six flexible cells a, b, c, d, e and f . This particular type of generalized switching
component can be satisfied in two ways: a = d = f = 1 ^ b = c = e = 0, or
a = d = f = 0 ^ b = c = e = 1.

The cells adjacent to, but not enclosed by flexible cells should be 0. To
prove this, assume a case where such a cell is 1. Using Figure 4.2 as an
example, we will assume the cell to the immediate left of a is 1. Given that
the value of all cells to the left of a are independent of the value of a, we
can determine exactly what group the cell to the left of a is part of and how
many consecutive cells to the left of a are 1. If that number is the same as
the required size of that group, a must be 0. Otherwise, a must be 1. As we
cannot determine the value of a, the cell immediately to the left of a cannot
be 1.

It is also possible for generalized switching components to appear at the

30

CHAPTER 4. SWITCHING COMPONENTS IN NONOGRAMS

edge of a Nonogram, in which case there is no cell adjacent to a flexible cell
in some direction. As additional zeroes to the left or right of a line segment
does not change the description of that line segment, we will sometimes refer
to the zero to the left or right of a flexible cell regardless of whether there is
actually a zero to the left or right of that cell.

The value of the cells directly between two flexible cells should conform
to some pattern that ensures that the line description of the line involved is
the same for all solutions of the Nonogram.

Given two flexible cells a and b, themselves not enclosed by flexible cells,
which enclose a string S, the (partial) line description of 01S00 must be
identical to that of 00S10. The only two patterns for which this is always
the case are 1⇤ and (0+1)⇤0+. In the first case, given S = 1n where n = |S|,
the description of 01S00 = 0+1n+10+. The description of 00S10 = 0+1n+10+.
This is the case because in Nonograms, the number and grouping of ones is
important, but the number and grouping of zeroes is not. We only require
one or more zeroes between groups of ones.

In the second case, given S = (0+1)n0+, where n =
P|S|

i=1 Si, the de-
scription of 01S00 = (0+1)n+10+. The description of 00S10 = 0+1n+10+.
Once again, the description of 0aSb0 is identical whether a = 0 ^ b = 1 or
a = 1 ^ b = 0.

0 a

.

b

0
0

.

.

.

.

.

f

0
0..

e0
0

.

.

d

0
0..

c0
0

.

.

0

Figure 4.2: Example of a generalized switching component

As we are interested in all solutions for all m by n Nonograms, we can
easily generate all m by n images and split them into groups by generating
the Nonogram description for each of those images. Each group represents
a Nonogram N and the images inside that group are all solutions for N .
Groups consisting of one image are uniquely solvable Nonograms. Images that

31

CHAPTER 4. SWITCHING COMPONENTS IN NONOGRAMS

are placed in the same group can be transformed into one another through
switching components and we will look at those groups of images. For each
of these groups, we will construct the switching graph. We will then count
occurrences of di↵erent non-isomorph switching graphs.

4.3 Results

Figure 4.3 shows the number of 4 by 4 Nonograms with a certain number of
flexible cells, as well as the combined number of solutions of all Nonograms
with the same number of flexible cells. The number of Nonograms with a
certain number of flexible cells and the total number of solutions for these
Nonograms are not directly related, as the number of flexible cells itself is not
directly related to the number of solutions. The only two exceptions are the
first two lines in the table: Nonograms with zero flexible cells have only one
solution, thus the number of solutions is equal to the number of Nonograms,
and Nonograms with four flexible cells always have exactly two solutions,
thus the number of solutions is twice the number of Nonograms. Note that
this does not mean there are no Nonograms with two solutions and more
than four flexible cells. In fact, such Nonograms are fairly common. One
example is the Nonogram with the description 1, 1 for each line, which has
two checkerboard solutions.

flexible cells number of Nonograms total number of solutions
0 52 362 52 362
4 4 396 8 792
6 84 168
7 236 708
8 625 1 524
9 48 192
10 68 224
11 104 436
12 180 560
14 64 352
16 29 218

sum 58 196 216 = 65 536

Figure 4.3: Number of 4⇥ 4 Nonograms and solutions with given number of
unknowns

32

CHAPTER 4. SWITCHING COMPONENTS IN NONOGRAMS

Figures 4.4 and 4.5 contain the same information as Figure 4.3, but for 5
by 4 Nonograms and 5 by 5 Nonograms respectively.

flexible cells number of Nonograms total number of solutions
0 814 632 814 632
4 70 894 141 788
6 3 230 7 082
7 3 532 10 596
8 13 398 34 108
9 708 2 472
10 1 636 5 510
11 1 776 7 320
12 3 314 9 778
13 316 1 480
14 892 4 440
15 344 1 912
16 635 3 474
17 76 484
18 174 1 340
19 40 392
20 146 1 768

sum 915 743 220 = 1048 576

Figure 4.4: Number of 5⇥ 4 Nonograms and solutions with given number of
unknowns

Figures 4.6 and 4.7 show all the di↵erent switching graphs for groups
of solutions for 4 by 4 Nonograms along with the number of occurrences of
each graph. The first entry in the table, type 1, represents uniquely solvable
Nonograms. There are 52 362 di↵erent uniquely solvable 4 by 4 Nonograms.

Type 2 represents Nonograms with two solutions which cannot be trans-
formed into each other without leaving the Nonogram’s solution space, i.e.,
one solution cannot be transformed into the other through the application
of a simple switch. Nonograms of this type include checkerboards and Nono-
grams whose flexible set consists of a single generalized switching component
of the type show in Figure 4.2. As there are 654 4 by 4 Nonograms with this
switching graph and each of those Nonograms has two solutions, this entry
accounts for 1308 binary 4 by 4 images.

33

CHAPTER 4. SWITCHING COMPONENTS IN NONOGRAMS

flexible cells number of Nonograms total number of solutions
0 25 309 575 25 309 575
4 2 311 785 4 623 570
6 150 638 333 616
7 109 532 328 596
8 485 062 1 255 080
9 24 659 83 088
10 72 592 244 580
11 54 586 221 698
12 125 937 381 790
13 16 748 76 896
14 31 116 144 616
15 20 248 98 148
16 31 898 138 588
17 7 928 50 786
18 9 828 65 608
19 5 890 45 052
20 6 534 58 038
21 2 310 21 856
22 1 970 21 518
23 1 194 16 336
24 708 10 337
25 1 082 25 060

sum 28 781 820 225 = 33 554 432

Figure 4.5: Number of 5⇥ 5 Nonograms and solutions with given number of
unknowns

34

CHAPTER 4. SWITCHING COMPONENTS IN NONOGRAMS

type switching graph occurrences

1 ✓⌘
◆⇣

52 362

2 ✓⌘
◆⇣

✓⌘
◆⇣

654

3 ✓⌘
◆⇣

✓⌘
◆⇣

4 396

4 ✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

2

5 ✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

32

6 ✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

388

7 ✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

4

8 ✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

16

9 ✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

72

10

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

56

11

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

61

Figure 4.6: Solution switching graphs in 4 by 4 Nonograms

35

CHAPTER 4. SWITCHING COMPONENTS IN NONOGRAMS

type switching graph occurrences

12

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣ 20

13

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣
✓⌘
◆⇣

48

14

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣
✓⌘
◆⇣

48

15

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣
✓⌘
◆⇣

�������HHHHHHH
16

16

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

4

17 See Figure 4.8 16
18 See Figure 4.13 1

Figure 4.7: Solution switching graphs in 4 by 4 Nonograms continued

36

CHAPTER 4. SWITCHING COMPONENTS IN NONOGRAMS

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

�
��

@
@@

@
@@

�
��

Figure 4.8: Switching graph for a 4 by 4 Nonogram with 9 solutions

Type 3 represents Nonograms with two solutions which can be trans-
formed into each other without leaving the Nonogram’s solution space. This
means the flexible set of these Nonograms consists of a single simple switching
component.

Type 4, consisting of Nonograms with three solutions which each have a
distance greater than one to each of the other solutions, only occurs twice.
Both Nonograms, with their three di↵erence solutions, are shown in Fig-
ures 4.9 and 4.10. In both cases, all cells in the Nonogram are flexible. The
first solution of both these Nonograms, as listed below, is the complement of
the same Nonogram’s third solution. The middle solution of the two Nono-
grams are each other’s inverse.

1,1

2

2

1,1

1,1 2 2 1,1

1,1

2

2

1,1

1,1 2 2 1,1

1,1

2

2

1,1

1,1 2 2 1,1

Figure 4.9: A 4⇥ 4 Nonogram of type 4

Nonograms of type 12 have 5 solutions. Figure 4.11 shows a Nonogram of
this type. The solution on the left in the figure is the solution that can only
be transformed into one other solution. This is the only solution in which

37

CHAPTER 4. SWITCHING COMPONENTS IN NONOGRAMS

2

1,1

1,1

2

2 1,1 1,1 2

2

1,1

1,1

2

2 1,1 1,1 2

2

1,1

1,1

2

2 1,1 1,1 2

Figure 4.10: A 4⇥ 4 Nonogram of type 4

the bottom-right cell is empty. The partial solution on the right in the figure
shows what happens when the bottom-right cell is colored black. Cells with
an x in partial solutions are cells which can be either black or white, so when
the bottom-right cell is colored black in this Nonogram, eight cell values
remain unknown.

1

1

1,1

2

1 1 1,1 2

1,1

1

1,1

2

1 1 1,1 2

x x x

x x x

x x

Figure 4.11: A 4⇥ 4 Nonogram of type 12

Nonograms of type 17 are similar to those of type 12, in that they both
have one solution which can only be transformed into one other solution.
The possible transformations between the other eight solutions show a clear
structure. Figure 4.12 shows an example of such a Nonogram. The solution
which can only be transformed into one other solution is shown on the left in
the figure, while the partial solution on the right shows the cells that remain
flexible in the remaining eight solutions.

Type 18 consists of one Nonogram, in which each row and each column
contains exactly one black cell. The corresponding switching graph is shown
in Figure 4.13. This Nonogram is essentially the n-rooks problem on a 4 by
4 board. This leads to a highly regular set of solutions. There are 4! = 24
solutions. In each solution, any two black cells can be used to perform a

38

CHAPTER 4. SWITCHING COMPONENTS IN NONOGRAMS

1

1

1

1,1

1 1 1 1,1

1

1

1

1,1

1 1 1 1,1

x x x x

x x x x

x x x

x x

Figure 4.12: A 4⇥ 4 Nonogram of type 17

switch, meaning each solution is adjacent two 3 + 2 + 1 = 6 other solutions.
The maximum distance between any two solutions is 3.

The n-rooks problem occurs in all n by n Nonograms. Furthermore,
smaller versions of the n-squares problem occur multiple times in Nonograms
that are larger than n by n.

The Nonograms of type 15 all consist of instances of the n-rooks problem
for n = 3. In each case, there are 3! = 6 solutions, each of which is adjacent to
2+1 = 3 other solutions. The maximum distance between any two solutions
is 2. The 3-rooks problem can only occur in a 4 by 4 Nonogram if the unused
row and column are both empty. Any of the four rows and any of the four
columns can remain unused. As there are 16 row/column combinations, the
3-rooks problem occurs exactly 16 times.

Simple switching components can be seen as instances of the 2-rooks
problem. By looking at the many situations in which simple switching com-
ponents can occur, it becomes clear that the number of occurrences of smaller
instances of the n-rooks problem in larger Nonograms cannot be easily de-
scribed. Rows and columns not involved in the smaller n-rooks problems may
still contain some number of black cells, just as long as their value can be
determined (i.e., the cells are not flexible) and the black cells do not touch
the cells involved in the n-rooks problem.

Figure 4.14 shows some of the switching graphs for groups of solutions
for 5 by 4 Nonograms along with the number of occurrences of each of the
given graphs. There are 137 di↵erent types found in 5 by 4 Nonograms,
compared to just 18 in 4 by 4 Nonograms. Note that the type numbering is
di↵erent between di↵erent Nonogram sizes, so a 5 by 4 Nonogram of a given
type number will most likely have a di↵erent switching graph than a 4 by 4
Nonogram of the same type number.

39

CHAPTER 4. SWITCHING COMPONENTS IN NONOGRAMS

Figure 4.13: Switching graph for a 4 by 4 Nonogram with 24 solutions

40

CHAPTER 4. SWITCHING COMPONENTS IN NONOGRAMS

type switching graph occurrences

1 ✓⌘
◆⇣

814 632

2 ✓⌘
◆⇣

✓⌘
◆⇣

13 314

3 ✓⌘
◆⇣

✓⌘
◆⇣

70 894

4 ✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

160

5 ✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

1 500

6 ✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

7 328

7

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

@
@
@

622

8. . . 134 various 7 280
135 see Figure 4.13 5
136 see Figure 4.18 4
137 see Figure 4.19 4

Figure 4.14: Some solution switching graphs in 5 by 4 Nonograms

41

CHAPTER 4. SWITCHING COMPONENTS IN NONOGRAMS

The first six entries in the table for 5 by 4 Nonograms are the same as
for 4 by 4 Nonograms and the relative frequency of each is similar as well.

Nonograms of type 7 have three solutions, each of which can be trans-
formed into both of the other solutions through a single switch. An example
of this type of Nonogram, with all three solutions, is shown in Figure 4.15.
This type of Nonogram involves flexible cells in three non-adjacent rows or
columns and as such can only occur in Nonograms with a width or height
greater than four.

0

0

1

1,1

1 0 1 0 1

0

0

1

1,1

1 0 1 0 1

0

0

1

1,1

1 0 1 0 1

Figure 4.15: A 5⇥ 4 Nonogram of type 7

Nonograms of types 8 through 134 are not included. These types account
for 7 280 di↵erent 5 by 4 Nonograms with a combined total of 36 338 solutions.

The 5 by 4 Nonograms of type 135 are almost the same as the 4 by 4
Nonogram of type 18. They contain the 4-rooks problem, the di↵erence being
that there is a spare column which is not used at all. As any one of the five
columns can be left empty, leaving the remaining four to form the 4-rooks
problem, this type of Nonogram occurs five times.

Nonograms of type 136 are very similar to those of type 135. An example
of a Nonogram of this type is shown in Figure 4.16. The di↵erence with
Nonograms of type 135 is that instead of keeping one column empty, one pair
of adjacent columns must be matched to one specific row. There are four 5

42

CHAPTER 4. SWITCHING COMPONENTS IN NONOGRAMS

by 4 Nonograms of this type, each with the line description (2) assigned to a
di↵erent row. However, despite the similarities, the solutions of Nonograms
of type 136 cannot be transformed into one another the same way. While
each solution of a Nonogram of type 135 can be transformed into six other
solutions through single switches, solutions of Nonograms of type 136 can
only be transformed into four of five other solutions through switches, as can
be seen in figure 4.18.

1

2

1

1

1 1 1 1 1

Figure 4.16: One possible solution for a 5⇥ 4 Nonogram of type 136

An example of a Nonogram of type 137 can be seen in Figure 4.17. These
Nonograms have 36 solutions, the largest number of solutions possible in 5
by 4 Nonograms. This type of Nonogram occurs four times, each time with
a di↵erent row having the line description (1, 1).

1

1

1

1,1

1 1 1 1 1

Figure 4.17: One possible solution for a 5⇥ 4 Nonogram of type 137

Figure 4.20 shows some of the switching graphs for groups of solutions for
5 by 5 Nonograms along with the number of occurrences of each of the given
graphs. There are 1916 di↵erent types of 5 by 5 Nonograms when looking
only at switching graphs.

The first seven entries in the table for 5 by 5 Nonograms are the same as
for 5 by 4 Nonograms and the relative frequency of each is similar as well.

43

CHAPTER 4. SWITCHING COMPONENTS IN NONOGRAMS

Figure 4.18: Switching graph for a 5 by 4 Nonogram of type 136

44

CHAPTER 4. SWITCHING COMPONENTS IN NONOGRAMS

Figure 4.19: Switching graph for a 5 by 4 Nonogram of type 137

45

CHAPTER 4. SWITCHING COMPONENTS IN NONOGRAMS

type switching graph occurrences

1 ✓⌘
◆⇣

25 309 575

2 ✓⌘
◆⇣

✓⌘
◆⇣

491 418

3 ✓⌘
◆⇣

✓⌘
◆⇣

2 311 785

4 ✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

9 824

5 ✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

85 176

6 ✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

249 756

7

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

@
@
@

32 340

8. . . 1915 various 291 945
1916 5-rooks problem 1

Figure 4.20: Some solution switching graphs in 5 by 5 Nonograms

46

CHAPTER 4. SWITCHING COMPONENTS IN NONOGRAMS

Nonograms of types 8 through 1915 are not included. These types account
for 291 945 di↵erent 5 by 5 Nonograms with a combined total of 1 507 043
solutions.

The single Nonogram of type 1916 is another example of the n-rooks
problem. The Nonogram has 5! = 120 solutions. In each solution, any two
black cells can be used to perform a switch, meaning each solution is adjacent
to 4 + 3 + 2 + 1 = 10 other solutions. The maximum distance between any
two solutions is 4.

4.4 Switching graphs and complexity

Having defined switching graphs for Nonograms, we propose to use these
graphs as a measure of a Nonogram’s complexity. The notion of a Nono-
gram’s di�culty can be extended to the number of steps involved in finding
the optimal partial solution, which is the full solution for uniquely solvable
Nonograms. For Nonograms with multiple solutions, we are then left with a
flexible set which can be colored in several di↵erent ways to construct all the
di↵erent solutions of the Nonogram.

The number of solutions alone is not a satisfactory indicator of a Nono-
gram’s complexity as some Nonograms have a small number of solutions
which are di�cult to find and others, like n-rooks Nonograms, have a great
many solutions which can be determined very easily.

Switching graphs can be used as is, but it is not easy to compare one
switching graph to another and say which indicates more complexity. As
such, one might define some function to compute a numerical complexity
given a switching graph. Our first proposal for such a function is

Complexity(G) = (|G|� 1) / log2(|Aut(G)|+ 1)

where Aut(G) is the automorphism group of switching graph G. In this func-
tion, the number of solutions for a given Nonogram forms the basis of its
complexity, but Nonograms with highly symmetric switching graphs will have
significantly lower complexities. For example, Nonograms which resemble the
n-rooks problem generally have many solutions, but those solutions are highly
regular and easy to generate, which is reflected in highly symmetric switching
graphs.

Figure 4.23 shows the graph size, the automorphism group, the size of
the automorphism group and the complexity for the di↵erent types of 4 by

47

CHAPTER 4. SWITCHING COMPONENTS IN NONOGRAMS

4 Nonograms as listed in Figures 4.6 and 4.7. Here G refers to the switching
graph as shown in those figures.

The automorphism group Aut(G) of a switching graph G is presented as
a direct product of three types of groups: Cn is the cyclic group of order n,
Sn is the symmetric group of degree n with order n!, and Dn is the dihedral
group of order 2n.

For example, take the switching graph of 4 by 4 Nonograms of type 11,
repeated with numbered nodes in Figure 4.21. The nodes in this graph can
be rotated into four di↵erent configurations without altering the structure
of the graph. Furthermore, the graph can be reflected and the reflection can
once again be rotated into four di↵erent configurations without altering the
structure of the graph. No further symmetries exist in this graph, which
means the automorphism group has order 8.

✓⌘
◆⇣
4 ✓⌘

◆⇣
3

✓⌘
◆⇣
1 ✓⌘

◆⇣
2

Figure 4.21: Switching graph for a 4 by 4 Nonogram of type 11

Another example, the switching graph of 4 by 4 Nonograms of type 15, is
repeated with numbered nodes in Figure 4.22. This is the complete bipartite
graph K3,3, a graph with two partitions of three nodes each where each node
is connected to all nodes in the other partition and no nodes in its own
partition. Using the numbering in Figure 4.22, each odd numbered node is
connected to all even numbered nodes and there are no edges between two
nodes which are both odd numbered or both even numbered.

As each node in a given partition is only connected to all nodes in the
other partition, nodes within the same partition can be switched without
altering the structure of the graph. There are |S3| = 6 possible configurations
of the odd numbered nodes and |S3| = 6 of the even numbered nodes. As
these configurations are completely independent from one another, switching
nodes within their respective partitions allows for 36 configurations with the
same graph structure. Furthermore, the graph can be reflected along a fixed
axis in any of these configurations, essentially switching the two partitions,
which means the automorphism group of this graph has order 72.

48

CHAPTER 4. SWITCHING COMPONENTS IN NONOGRAMS

✓⌘
◆⇣
4 ✓⌘

◆⇣
5

✓⌘
◆⇣
1 ✓⌘

◆⇣
2

✓⌘
◆⇣
6

✓⌘
◆⇣
3

�������HHHHHHH

Figure 4.22: Switching graph for a 4 by 4 Nonogram of type 15

type |G| Aut(G) |Aut(G)| Complexity
1 1 C1 1 0.000
2 2 C2 2 0.631
3 2 C2 2 0.631
4 3 S3 6 0.712
5 3 C2 2 1.262
6 3 C2 2 1.262
7 4 C2 2 1.893
8 4 C2 ⇥ C2 ⇥ C2 8 0.946
9 4 C2 2 1.893
10 4 S3 6 1.069
11 4 D4 8 0.946
12 5 C2 2 2.524
13 6 C2 2 3.155
14 6 C2 ⇥ C2 4 2.153
15 6 C2 ⇥ S3 ⇥ S3 72 0.808
16 8 C2 ⇥ C2 ⇥ C2 8 2.208
17 9 S3 6 2.850
18 24 - - -

Figure 4.23: Automorphism groups and complexities of 4 by 4 Nonograms

49

CHAPTER 4. SWITCHING COMPONENTS IN NONOGRAMS

The table in Figure 4.23 shows some clear examples of Nonogram types
which have a very low complexity compared to the number of solutions be-
cause their switching graphs have large automorphism groups. Type 15 stands
out in particular. These Nonograms are essentially the same as the 3-rooks
problem, which has six solutions which are very easily generated. Unfortu-
nately, we were not able to determine the structure of the automorphism
group for Nonograms of type 18. Nonograms of type 13 also have six solu-
tions, but these solutions appear to be much less structured. Types 12, 13
and 17 stand out as having small automorphism groups for the number of
valid solutions that exist for those Nonograms.

50

Chapter 5

Conclusions

We have presented an improved method to construct uniquely solvable Nono-
grams which resemble grayscale images. This method is flexible and provides
many options which can be used to improve performance in several ways,
including faster runtimes and increased similarity to the grayscale image.
We have also presented ways to generate multiple Nonograms, di↵erent from
one another, but still resembling the same grayscale image and often having
varying di�culty levels. The precise options and parameters used to generate
Nonograms should be adjusted to the image used as input as certain combi-
nations of parameters work very well for some images and badly for others.
It is particularly important to choose an initialization method that is suit-
able for the input image. Not all images can be turned into uniquely solvable
Nonograms that are recognizable as being based on the images used.

We have also described how switching components can be used to trans-
form multiple solutions of the same Nonogram into one another and how
they can be combined into generalized switching components. We have used
switching components to calculate the distance between Nonogram solutions
and to build switching graphs, which represent the structure of Nonogram
solution groups. These switching graphs can be used as a measure of the
complexity of a Nonogram and we have proposed a way to calculate a Nono-
gram’s complexity by combining the number of solutions with the order of
the automorphism group of the Nonogram’s switching graph.

51

CHAPTER 5. CONCLUSIONS

5.1 Future Work

There is still much room for new ideas and research into the automated
construction of Nonograms. The method described in this paper can generate
a great number of Nonograms and select some of varying di�culty, but there
may be ways to direct the di�culty of a Nonogram as it is being constructed.

Further research into generalized switching components could prove very
interesting. We have described generalized switching components and dis-
cussed how they can be found, but it might also be possible to identify
generalized switching components without first generating all solutions of a
Nonogram.

The measure of a Nonogram’s complexity defined in this thesis is but
a first attempt. We have not used this definition much, nor have we com-
pared the complexity of various Nonograms with the problems that Nono-
gram solvers run into when trying to solve those Nonograms.

Everything discussed in this thesis may also be applied to Nonogram
variations. For example, there are Nonograms made up of triangles instead
of squares, with line descriptions provided for three di↵erent directions. There
are also colored Nonograms, where only groups of the same color need to be
separated from one another by white pixels. In such Nonograms, a cell is no
longer a binary entity, which may have a significant impact on both solving
and construction algorithms. Additionally, having multiple colors available
changes the way in which a Nonogram’s solution may resemble an input
image.

52

Bibliography

[BHKP09] K.J. Batenburg, S.J. Henstra, W.A. Kosters, and W.J. Palen-
stijn. Constructing simple Nonograms of varying di�culty. Pure
Mathematics and Applications (Pu.M.A.), 20:1–15, 2009.

[BK04] K.J. Batenburg and W.A. Kosters. A discrete tomography ap-
proach to Japanese puzzles. In Proceedings of the 16th Belgium-

Netherlands Conference on Artificial Intelligence (BNAIC), pages
243–250, 2004.

[BK09] K.J. Batenburg and W.A. Kosters. Solving Nonograms by com-
bining relaxations. In Advances in Combinatorial Image Analysis,

Proceedings 12th International Workshop on Combinatorial Im-

age Analysis, volume 42, pages 1672–1683. Elsevier, 2009.

[Buz08] T.M. Buzug. Computed Tomography: From Photon Statistics to

Modern Cone-Beam CT. Springer Berlin/Heidelberg, 2008.

[Her09] G.T. Herman. Fundamentals of Computerized Tomography: Im-

age Reconstruction from Projections. Springer London, 2009.

[HK99] G.T. Herman and A. Kuba. Discrete Tomography: Foundations,

Algorithms, and Applications. Birkhäuser Boston, 1999.

[HK07] G.T. Herman and A. Kuba. Advances in Discrete Tomography

and its Applications. Birkhäuser Boston, 2007.

[Kos08] W.A. Kosters. Website Nonogram construction.
http://www.liacs.nl/

~

kosters/nono/, 2008.

[Rys57] H.J. Ryser. Combinatorial properties of matrices of zeros and
ones. Canadian Journal of Mathematics, 9:371–377, 1957.

53

