
Latency, Energy, and Schedulability of
Real-Time Embedded Systems

Di Liu

Latency, Energy, and Schedulability of Real-Time
Embedded Systems

PROEFSCHRIFT

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus Prof.mr. C.J.J.M. Stolker,
volgens besluit van het College voor Promoties

te verdedigen op woensdag 6 september 2017 klokke 13:45 uur

door

Di Liu
geboren te Lijiang, China

in 1984

Promotor: Prof. Dr. Joost N. Kok Universiteit Leiden
Co-Promotor: Dr. Todor P. Stefanov Universiteit Leiden

Promotion Committee: Prof. Dr. Koen Langendoen Technische Universiteit Delft
Prof. Dr. Kai Huang Sun Yat-Sen University, China
Dr. Sebastian Altmeyer Universiteit van Amsterdam
Prof. Dr. Aske Plaat Universiteit Leiden
Prof. Dr. Thomas Bäck Universiteit Leiden
Prof. Dr. Harry A.G. Wijshoff Universiteit Leiden

Latency, Energy, and Schedulability of Real-Time Embedded Systems
Di Liu. -
Dissertation Universiteit Leiden. - With ref. - With summary in Dutch.

Copyright c© 2017 by Di Liu. All rights reserved.

This dissertation was typeset using LATEX in Linux and version controlled using Git.

ISBN: 978-94-6299-658-8
Printed by: Ridderprint, the Netherlands.

Contents

Contents v

List of Tables ix

List of Figures xi

List of Abberivations xiii

1 Introduction 1
1.1 Development Trends in Real-Time Embedded Systems 2

1.1.1 The Era of Multicore/Multiprocessor Systems 3
1.1.2 The Shift to Heterogeneous Multicore Systems 4
1.1.3 The Emergence of Mixed-Criticality Systems 5

1.2 Problem Statement . 6
1.3 Contributions of This Dissertation 9
1.4 Dissertation Outline . 11

2 Background 13
2.1 Cyclo-Static Dataflow (CSDF) Model 13
2.2 Real-Time Theories . 15

2.2.1 Real-Time Task Models 16
2.2.2 Real-Time Scheduling . 17
2.2.3 Multiprocessor Real-Time Scheduling 20

2.3 Hard-Real-Time (HRT) Scheduling of CSDF graphs 23

3 Resource Optimization for Real-Time Streaming Application 27
3.1 Background . 28
3.2 Related Work . 29
3.3 Motivational Example . 30
3.4 Proposed Approach . 30

v

vi CONTENTS

3.5 Evaluation . 34
3.5.1 The effectiveness of our DM approach 35
3.5.2 The time complexity of solving our DM problem 36

3.6 Discussion . 38

4 Energy Optimization for Real-Time Streaming Applications 41
4.1 Related Work . 42
4.2 Background . 43

4.2.1 System Model . 43
4.2.2 Energy Model . 45

4.3 Proposed Mapping Algorithm . 48
4.3.1 Processor Type Assignment 49
4.3.2 Task mapping . 52
4.3.3 Remapping . 53
4.3.4 The FDM Algorithm . 58

4.4 Evaluation . 59

5 Energy Optimization for Real-Time Tasks 67
5.1 Related Work . 68
5.2 Background . 70

5.2.1 System Model . 70
5.2.2 Task Model . 70
5.2.3 Energy Model . 71
5.2.4 C=D Task-Splitting . 71

5.3 Motivational Example . 72
5.4 C=D Task-Splitting on Heterogeneous Multiprocessor Systems . . . 74

5.4.1 Task Splitting . 74
5.4.2 Subtask Allocation . 75

5.5 Allocation and Split on Heterogeneous Multicore Systems (ASHM) 76
5.5.1 Allocation and splitting of E-tasks 77
5.5.2 Allocation and Splitting of NE-tasks 78
5.5.3 The SPLIT function . 80
5.5.4 Computing the minimum frequency 83
5.5.5 The ASHM Algorithm . 84

5.6 Evaluation . 85
5.6.1 Experimental Setup . 86
5.6.2 Experimental Results . 87

5.7 Discussion . 91

CONTENTS vii

6 Schedulability Analysis of Imprecise Mixed-Criticality Systems 93
6.1 Related Work . 94
6.2 Preliminaries . 95

6.2.1 Imprecise Mixed-Criticality Task Model 95
6.2.2 Execution Semantics of the IMC Model 97
6.2.3 EDF-VD Scheduling . 97
6.2.4 An Illustrative Example 98

6.3 Schedulability Analysis . 98
6.3.1 Low Criticality Mode . 98
6.3.2 High Criticality Mode . 99

6.4 Speedup Factor . 105
6.5 Experimental Evaluation . 112

6.5.1 Comparison with AMC [BB13] 113
6.5.2 Impact of α and λ . 115

7 Summary and Future Work 117
7.1 Summary and Conclusions . 117
7.2 Future work . 119

7.2.1 The real convergence of data-flowmodels and real-time theories119
7.2.2 Themulti-objective mapping of heterogeneous multicore sys-

tems . 120
7.2.3 Practical and flexible MC model 120

Bibliography 121

Appendix 129

List of Publications 135

Index 137

Samenvatting 138

Acknowledgements 141

Curriculum Vita 143

List of Tables

1.1 Criticality levels in the DO-178B/C standard [Nor] 3
1.2 Comparison betweenARMCortexA57 andARMCortexA53 [ARM16] 5

2.1 Task models considered in the dissertation’ chapters 17
2.2 Scheduling algorithms considered in each chapter 22

3.1 Tasks Parameters 1 . 31
3.2 Tasks Parameters 2 . 31
3.3 Characteristics of application benchmarks 35
3.4 Latency Constraints . 35
3.5 The execution time of our DM approach (in second) 38

4.1 The difference from [KYD11] and [CKR14] 43
4.2 The ’uncore’ power consumption 46
4.3 The estimated parameters . 46
4.4 The parameters of H.263 . 49
4.5 Different processor type assignments for the H.263 decoder 50
4.6 Different mappings for H.263 decoder 52
4.7 The Streaming Applications . 61
4.8 Cluster Heterogeneous MPSoC configurations 61
4.9 Summary of Figure 4.5 . 62
4.10 Summary of Figure 4.6 . 63
4.11 Summary of Figure 4.7 . 64

5.1 Power parameters for different core types 72
5.2 The original task set . 72
5.3 Split subtasks . 73
5.4 Energy consumption . 73
5.5 Split Example . 74

ix

x LIST OF TABLES

6.1 Illustrative example . 98
6.2 The speedup factor w.r.t α and λ 111

List of Figures

2.1 CSDF graph G . 15

3.1 Production and consumption curves on edge eu = (τi, τj) 33
3.2 Global scheduling with L0 constraint 36
3.3 Global scheduling with L1 constraint 37
3.4 Global scheduling with L2 constraint 37

4.1 An example of a cluster heterogeneous MPSoC 44
4.2 Power model validation of PE (big) cluster 47
4.3 Power model validation of EE (LITTLE) cluster 48
4.4 H.263 Decoder . 49
4.5 Comparison between FDM and CKR 62
4.6 FDM vs. Algorithm 2+KYD . 63
4.7 FDM vs. KYD on homogeneous MPSoCs 64

5.1 Varying U on platform with 2 PE cores and 2 EE cores 89
5.2 Varying U on platform with 2 PE cores and 3 EE cores 89
5.3 Varying U on platform with 3 PE cores and 2 EE cores 89
5.4 Varying the number of tasks on platform with 2 PE cores and 2 EE

cores . 90
5.5 Varying the number of tasks on platform with 2 PE cores and 3 EE

cores . 90
5.6 Varying the number of tasks on platform with 3 PE cores and 2 EE

cores . 90

6.1 Scheduling of Example 6.1 . 98
6.2 plane 1 . 107
6.3 plane 2 . 108
6.4 vertical surface . 108
6.5 3D space of optimization problem (6.17) 109

xi

xii LIST OF FIGURES

6.6 3D image of the speedup factor w.r.t α and λ 111
6.7 λ = 0.3 . 114
6.8 λ = 0.5 . 114
6.9 λ = 0.7 . 114
6.10 Impact of λ . 115
6.11 Impact of α . 116

1 λ = 0.3 . 134
2 λ = 0.5 . 134
3 λ = 0.7 . 134

List of Abberivations

Proposed Algorithms

ASHM Allocation and Split on Heterogeneous Multicore

DM Density Minimization

FDM Frequency Driven Mapping

Data-Flow Models

CSDF Cyclo-Static Data-Flow

SDF Synchronous Data-Flow

Mixed-Criticality Systems

AMC Adaptive Mixed-Criticality

CA Certification Authority

EDF-VD Earliest Deadline First with Virtual Deadline

IMC Imprecise Mixed-Criticality

MC Mixed-Criticality

Others

ASIP Application Specific Instruction Processor

EE Energy-Efficient

ICP Integer Convex Programing

ILP Integer Linear Programing

xiii

xiv LIST OF FIGURES

MPSoC Multi-Processor System-on-Chip

PE Performance-Efficient

UAV Unmanned Aerial Vehicle

VFS Voltage and Frequency Scaling

Real-Time Systems

BF Best-Fit

DBF Demand Bound Function

EDF Earliest Deadline First

FF First-Fit

FFD First-Fit-Decreasing

HRT Hard-Real-Time

LLF Least Laxity First

QPA Quick convergency Processor-demand Analysis

WCET Worst-Case Execution Time

WF Worst-Fit

WFD Worst-Fit-Decreasing

Chapter 1

Introduction

Almost all computer systems of the future will utilize real-time scientific principles
and technology.

John Stankovic

Embedded systems are computer systems dedicated to a specific functionality. Usu-
ally embedded systems are integrated into a large and complex system to control,

monitor and assist the operation of the whole system, safely and reliably. In some
cases, we may not be aware of the presence of embedded systems, but in our daily life
they are prevalent and almost everywhere, affecting and somehow changing our life.
From the ARTEMIS report [ART14], 98% of all computing chips are for embedded
systems. A smart watch which monitors our health situation is an embedded system;
A mouse which we use to control a computer is an embedded system; A thermostat
which senses the temperature and humidity of our apartment is also an embedded sys-
tem. We can give uncountable examples of such embedded systems which are playing
an important role in our daily life without notice.

Since embedded systems usually execute control applications which constantly
interact with the physical world via sensors and actuators, embedded systems are re-
quired to execute not only functionally correctly but also on time. This critical re-
quirement related to time is referred as real-time constraints [But11]. Systems are
called real-time systems, if the correctness of the system does not only depend on
the correctness of the system output but also on whether the output is delivered on
time [Sta88]. Based on consequences of missing time deadlines by an application,
real-time systems are categorized into two types:

• Hard-real-time systems: missing deadlines will lead to failure of the system
which in turn causes catastrophic consequences, e.g., loss of human life. Exam-

1

CHAPTER 1. INTRODUCTION

ples of hard-real-time systems are safety control systems in cars and aircrafts,
pacemakers, etc;

• Soft-real-time systems: missing deadlines will not cause failure of the whole
system but will degrade the performance of the system. Examples of soft-real-
time systems are multimedia applications, on-line service applications, etc.

Embedded systems with real-time constraints are called real-time embedded systems.
Besides real-time constraints, many applications of real-time embedded systems

feature another important property, called criticality. The criticality is to denote
degrees of importance in guaranteeing the safety of a system. For example, un-
manned aerial vehicles (UAVs) have two types of applications, safety-critical appli-
cations, such as the flight control, and mission-critical applications, such as surveil-
lance and video streaming. The safety-critical applications (e.g., the flight control)
have higher criticality level because they are essentially crucial to the operational
safety of the whole system and failure (i.e., violating timing properties) of the safety-
critical applications will lead to a catastrophic consequence, such as loss of UAV
which may injure a human-being. On the other hand, the mission-critical applica-
tions have lower criticality level because they are not coupled to the operational safety
of the whole system, so failure of mission-critical applications will not threaten the
operational safety of the system but will only affect the system service quality. In
different industrial contexts, different standards are deployed to guide the design of
systems with different criticality-level applications, such as IEC61508 for electri-
cal/electronic/programmable electronic safety-related systems, ISO26262 for auto-
motive systems, and DO-178B/C for avionic systems [ENNT15]. Table 1.1 defines
the classification of criticality levels in standard DO-178B/C [Nor], where 5 critical-
ity levels are present and the criticality levels are classified with respect to the failure
consequence on the system safety. Criticality level A is the most critical level and
failure of an A-level application leads to catastrophic consequences, whereas failure
of an E-level application does not have an effect on the system safety.

Up to this point, we have introduced embedded systems, real-time constraints
tightly coupled to embedded systems, and the criticality concept of real-time embed-
ded systems. In the next section, we will discuss three significant development trends
in designing real-time embedded systems.

1.1 Development Trends in Real-Time Embedded Systems

In the past decade, we have been witnessing some important development trends in the
computing world which have profound effects on the design of real-time embedded
systems.

2

CHAPTER 1. INTRODUCTION

Level Failure Condition Failure Consequence

A Catastrophic Failure may cause multiple fatalities, usu-
ally with loss of the airplane.

B Hazardous Failure has a large negative impact on
safety or performance, or reduces the abil-
ity of the crew to operate the aircraft due to
physical distress or a higher workload, or
causes serious or fatal injuries among the
passengers.

C Major Failure significantly reduces the safetymar-
gin or significantly increases crew work-
load. May result in passenger discomfort
(or even minor injuries).

D Minor Failure slightly reduces the safety margin
or slightly increases crew workload. Ex-
amplesmight include causing passenger in-
convenience or a routine flight plan change.

E No Effect Failure has no impact on safety, aircraft op-
eration, or crew workload.

Table 1.1: Criticality levels in the DO-178B/C standard [Nor]

1.1.1 The Era of Multicore/Multiprocessor Systems

When single processor systems were dominating the chip market a decade ago, chip
manufacturers used to improve the performance of a processor by scaling up the oper-
ational clock frequency. Meanwhile, the fast development of the process technology
enables semiconductor manufacturers to produce thiner transistors, the fundamental
element to implement electronic circuits. Nowadays, some high-end processors, like
Samsung Exynos 7 Octa 7420, 7870 and 8890, are implemented with 14 nanometer
transistors [Sam16]. However, constantly scaling up the operational clock frequency
of thin transistors results in extremely high power consumption [EET04].

As a solution to such high power consumption, chip manufacturers have drasti-
cally changed their design scheme from a single processor chip with high operational
clock frequency to a chip with multiple cores/processors, but each with lower opera-
tional clock frequency. Fabricating more cores on a chip is able to enhance the peak
performance of the system and at the same time to reduce the total power consumption
in comparison to the single processor design. Throughout this dissertation, we may
use the term multicore and multiprocessor interchangeably.

The year 2004 marked the milestone of this significant change in industry, when
Intel canceled its single processor design, namely Tejas, and moved to a duel-core

3

CHAPTER 1. INTRODUCTION

design [EET04]. Since then, computing systems including embedded systems have
entered the multicore era. Nowadays, multicore systems are the mainstream in com-
puting systems. This trend can be seen on diverse computing systems such as mobile
phones, laptops, desktops, etc.

1.1.2 The Shift to Heterogeneous Multicore Systems

Multicore systems have been widely adopted to satisfy the increasing computational
demands of complicated applications and, in the meantime, to reduce energy con-
sumption. Among all multicore systems, homogeneous multicore systems that consist
of identical processing cores are most ubiquitous and widely-used in modern elec-
tronic systems spanning from mobile devices to supercomputing systems. However,
the rapid development of multicore systems brings a new problem, called the dark
silicon problem [EBSA+11]. In 1974, Dennard et al. [DGR+74] stated that as tran-
sistors decrease size, the power density still remains a constant, i.e., the transistors
become thinner, and the power consumption also scales down along with the reduced
size. This statement is wildly known as the "Dennard Scaling". However, when the
transistor manufacturing technology enters the era of nanometer, the Dennard Scal-
ing fails due to the dramatically increased static power consumption in nanometer-size
transistors. Static power is consumed by currents which leak through transistors even
when transistors are turned off [KAB+03]. This significant increase in static power
consumption in turns leads to an overheating issue for the system. To avoid the over-
heating, some transistors on a chip have to be inactive (powered-off), i.e., ‘dark’.

Several solutions [CZZ+15, HKPS15] have been proposed in recent years to mit-
igate the dark silicon problem. Heterogeneous multicore systems [Mit15] have been
considered to be one of the promising solutions for the dark silicon problem and a
good alternative to homogeneous multicore systems. In contrast to homogeneous
systems having identical cores, heterogeneous multicore systems consist of different
types of cores. Such variety of cores enable diverse applications to enhance the appli-
cation performance and/or reduce the power/energy consumption of the application
by means of selecting a proper core for execution.

Among all heterogeneous systems, the single-ISA heterogeneous multicore sys-
tem [KFJ+03] is a special type of heterogeneous multicore system, where the cores
on the chip have the same instruction set architecture (ISA) but differentiate with
each other in terms of power consumption and performance. Typical single-ISA het-
erogeneous multicore systems usually consist of two types of cores; ‘big’ cores with
complex micro-architecture, e.g., a deep pipeline and wider issue width, designed for
high performance computing and ‘LITTLE’ cores with simple micro-architecture,
e.g., a shallow pipeline and narrower issue width, optimized for low power comput-
ing. Table 1.2 shows an example of cores implemented on a ‘big.LITTLE’ architecture

4

CHAPTER 1. INTRODUCTION

Core type pipeline depth Out-of-order Decode big.LITTLE role
execution

ARM Cortex A57 15 Yes 3-wide-issue ‘big’
ARM Cortex A53 8 No 2-wide-issue ‘LITTLE’

Table 1.2: Comparison between ARM Cortex A57 and ARM Cortex A53 [ARM16]

system and gives a comparison of the two types of ARM cores in terms of microar-
chitecture [ARM16]. Several leading semiconductor companies have mass-produced
their own single-ISA heterogeneous multicore systems for commodity products, e.g.,
Qualcomm Snapdargon 810 and 808, Samsung’s Exynos 5 Octa series [Sam16], and
Nvidia’s Tegra X1[Gil15]. In the remainder of this dissertation, when we refer to
heterogeneous multicore/multiprocessor systems, we mean single-ISA heterogeneous
multicore/multiprocessor systems.

1.1.3 The Emergence of Mixed-Criticality Systems

Real-time systems which execute applications with different criticality are becoming
prevalent, e.g, automotive vehicles, unmanned aerial vehicles, aircrafts, etc. To en-
sure the safety guarantee of systems with different critical-level applications, the old
paradigm of designing such safety-critical systems was to physically isolate applica-
tions with different criticality level, i.e., critical applications and non-critical appli-
cations are executed separately on different processing units. Such complete spatial
isolation enables critical applications to avoid the interference from non-critical appli-
cations, thereby guaranteeing system safety. However, with the rapid development of
complex and sophisticated real-time systems, increasing number of applications with
different criticality and complex functionality are incorporated into a system, leading
to a huge growing number of processing units. For instance, modern premium cars
typical contain around 70-100 computers, around 100 electronic motors and 2 km of
wire [Tho12]. This complicated and sometimes redundant hardware leads to a system
with large system size and very high power consumption. Therefore, to reduce Size,
Weight, and Power (SWaP), the emerging trend in the development of safety-critical
systems is to integrate applications with different criticality into a shared computing
platform. We call such systems mixed-criticality systems. A formal definition of a
mixed-criticality system is given as follows:

Definition 1.1.1 ([BBB+09]). A mixed-criticality system is an integrated suite of
hardware, operating system and middleware services, and application software that
supports the execution of safety-critical, mission-critical, and non-critical software
within a single, secure compute platform.

5

CHAPTER 1. INTRODUCTION

1.2 Problem Statement

The important development trends, described in Section 1.1, bring new opportunities
to develop embedded systems, but they also arise several challenges when designing
real-time embedded systems. In this dissertation, we address challenges arisen by the
above-mentioned development trends in the contexts of system resource optimiza-
tion, system energy optimization, and system schedulability analysis. The specific
problems, we address in this dissertation, are formulated as follows.

Problem 1: Resource Optimization for hard-real-time streaming applications.
Streaming applications, such as video/audio processing and digital signal pro-

cessing, have become prevalent in embedded systems. These applications contain
ample amount of parallelism which perfectly matches the processing power of Multi-
Processor System-on-Chip (MPSoC) platforms. To efficiently program MPSoC plat-
forms, Models-of-Computation (MoCs) are usually used to specify streaming applica-
tions. Prominent examples of MoCs include Synchronous Data Flow (SDF) [LM87]
and its generalization Cyclo-Static Dataflow (CSDF) [BELP96], in which actors rep-
resenting computation are executed concurrently, thereby naturally exposing paral-
lelism.

Traditionally, self-timed scheduling [MB07] is considered to be the most proper
scheduling paradigm to schedule Data-Flow modeled applications. However, hard-
real-time constraints are increasingly imposed to streaming applications and self-
timed scheduling cannot guarantee such rigorous constraints. In addition, self-timed
scheduling suffers from complex analysis techniques, making its design procedure re-
ally time-consuming. Recently, Bamakhrama and Stefanov in [BS11][BS12][BS13]
proposed a scheduling framework that schedules acyclic CSDF graphs by using hard-
real-time theories. In this scheduling framework, each CSDF actor executes strictly
periodically and meets a given deadline. The periodic execution of actors guarantees
a certain throughput and latency. Additionally the well-defined analytical techniques
of real-time theories significantly reduce the design time when designing embed-
ded multiprocessor streaming systems [BZNS12]. When CSDF actors are scheduled
as strictly periodic tasks, the deadline of each actor can be varied in a well-defined
bounded interval (see Section 2.3), thereby controlling the application latency and the
number of processors needed to schedule the application. This means that selecting
a proper deadline value for each actor is an important issue for reducing the latency
and minimizing the number of processors in this framework. Although, in [BS12], the
authors give a method to select deadlines of actors to reduce the application latency,
their method is not optimal in terms of the required number of processors. The prob-
lem, we address in the scheduling framework proposed in [BS11][BS12][BS13],
is how to select deadlines of actors of hard-real-time streaming applications in

6

CHAPTER 1. INTRODUCTION

a proper way such that the resources (the number of processors) is minimized
while meeting their latency constraints.

Problem 2: Energy-efficient mapping and scheduling of hard-real-time applica-
tions on "big.LITTLE" heterogeneous multicore systems.

Energy/power consumption has gradually become a critical design criterion for
a system, especially for embedded systems which are mostly battery-powered. Volt-
age/frequency scaling (VFS) is the most common technique for power reduction and
can be seen on many modern processors. Due to its prevalence, VFS is also applied
to real-time embedded systems for energy minimization.

Basically, for energy-efficient real-time application mapping, an algorithm with
consideration of energy efficiency is deployed first to map real-time applications on
multicore systems and then the VFS technique is used on the system to scale down the
operational clock frequency/voltage to a proper level that is able to guarantee the time
deadlines of all real-time applications and to minimize the energy consumption at the
same time. However, the energy-efficient mapping and scheduling problem has been
proven to be NP-hard in the strong sense on homogeneous multiprocessor systems
[AY03] as well as on heterogeneous multiprocessor systems [CT08]. Thus, heuristic
or approximate algorithms are required to deal with the problem in a reasonable time.
Many approaches have been proposed to effectively and efficiently map real-time ap-
plications in an energy-efficient manner. Two surveys in [CK07, BMAB16] compre-
hensively review existing works concerning energy-efficient mapping and scheduling
of real-time applications.

However, the existing approaches cannot effectively handle the new heterogeneous
"big.LITTLE" multicore systems discussed in Section 1.1.2, because some impor-
tant features of these emerging heterogeneous multicore systems were not consid-
ered. Hence, this fact motivates us to revisit the existing mapping and scheduling ap-
proaches and consider the features of the new heterogeneous multicore systems. The
problem, we address, is how to map hard-real-time applications on the emerging
"big.LITTLE" heterogeneous multicore systems in an energy-efficient manner
while satisfying real-time constraints and performance requirement when con-
sidering hard-real-time streaming applications.

Problem 3: Schedulability of imprecise mixed-criticality systems.
To ensure the correctness of a mixed-criticality (MC) system, highly critical ap-

plications are subject to certification by Certification Authorities (CAs), such as the
Civil Aviation Authority [Civ16] and Federal Aviation Administration [Fed16], and
usually the certifications are done under extremely rigorous and pessimistic assump-
tions [Ves07]. As a consequence, this pessimism generally causes large worst-case
execution time (WCET) over-estimation for highly critical applications and in turn it

7

CHAPTER 1. INTRODUCTION

results in underutilization of the hardware resource.
To deal with this overestimation, Vestal proposed in [Ves07] to characterize a

highly critical application with different WCETs corresponding to different criticality
levels. Besides the large WCET determined by the CAs, each highly critical applica-
tion is specified with several smaller WCETs which are determined by system design-
ers at lower assurance levels, i.e., considering less pessimistic situations. Since CAs
only certify highly critical applications, all less critical applications are only validated
by system designers who generally do this under less pessimistic situations, thereby
having only lower assurance and smaller WCETs. When scheduling an MC system
modeled as described above, all applications (highly critical and lowly critical) are ini-
tially scheduled using their low assurance WCETs. This can better utilize hardware
resources, and in most cases all applications can be safely and successfully scheduled
with their low assurance WCETs. Then, if a rare case occurs, i.e., any highly critical
application cannot complete its execution within its low assurance WCET, the sys-
tem discards all less critical applications and dedicates the whole system to schedule
only highly critical applications with their certified (very pessimistic, large) WCETs.
Throughout this dissertation, we call the MCmodel discussed above the classicalMC
model.

Although the classical MC model captures the core features of MC systems, it
also receives some criticisms from system engineers because completely discarding
less critical applications is too pessimistic and in some cases unacceptable [BB13]. To
address these criticisms, Burns and Baruah in [BB13] proposed a more general MC
model. In this general MC model, besides the normal WCET validated by system
designers, a reduced WCET is given to each less critical application. Then, if a rare
situation occurs, i.e., highly critical applications overrun their low assurance WCETs,
instead of discarding all less critical applications, this general MC model keeps less
critical applications running with their reduced WCETs. Reducing WCETs to keep
less critical applications running is conceptually similar to the imprecise computation
model [LLS+91][LSL+94]. In the imprecise computation model, the output quality
of a real-time application depends on its execution time. The longer a task executes,
the better quality results it produces. Then, if there is an overload in the system, tasks
can trade off the quality of the produced results to ensure their timing correctness. In
[RKKK14a], Ravindran et al. give several real-life applications with this imprecise
feature in different domains, e.g., video encoding, robotic control, cyber-physical sys-
tems, and planetary rovers. Considering the conceptual analogy between the general
MC model proposed in [BB13] and the imprecise model, we call this general MC
model imprecise mixed-criticality (IMC) model in this dissertation.

For MC real-time systems or even non-MC real-time systems (all applications
have the same criticality level), the most important problem is to analyze the schedu-

8

CHAPTER 1. INTRODUCTION

lability (i.e., feasibility) of the system, i.e., whether under a certain scheduling al-
gorithm, a set of real-time applications can run on a platform without violating any
deadline, even in the worst case. To analyze the schedulability of a real-time system
under a certain scheduling algorithm, a schedulability test is needed.

Definition 1.2.1. Given a scheduling algorithm, a hardware platform and a real-time
application set, a schedulability test decides whether the application set is schedulable
by the scheduling algorithm on the hardware platform.

In [BB13], Burns andBaruah presented a test based onAdaptiveMixed-Criticality
(AMC) [BBD11] to check the schedulability of the IMCmodel under the fixed-priority
scheduling algorithm [LL73]. However, a schedulability test of the IMC model under
dynamic-priority scheduling algorithm, e.g., earliest deadline first (EDF) with virtual
deadline (EDF-VD) [BBD+12], has not been addressed. Here, the problem, we ad-
dress, is how to ensure and test the schedulability of an IMC system under the
EDF-VD scheduling algorithm.

1.3 Contributions of This Dissertation

Below, we summarize our novel contributions to the problems outlined in Section 1.2.

Contribution 1: Novel approach for Resource Optimization of CSDF-modeled
Streaming Applications with Latency Constraints
To address Problem 1 in Section 1.2, in the context of CSDF-modeled streaming ap-
plications and the hard-real-time scheduling framework proposed in [BS11][BS12]
[BS13], we propose a new method to optimally select the deadlines of actors in CSDF
graphs so that the required resources (i.e, the number of processors) are minimized
while the latency requirement is satisfied. Our novel contributions are twofold: 1) we
propose a new method to interpret the precedence relation between actors so that the
parameters of actors, i.e., starting times and deadlines, can be formalized in a mathe-
matical form; 2) based on our first contribution, we formulate our resource optimiza-
tion problem as an integer convex programing (ICP) problem. Convex programming
is a mathematical optimization problem which can be optimally solved in polynomial
time [BV04]. The formulated ICP problem enables us to use an off-the-shelf convex
programming solver, e.g., CVX [GB14][GB08] to solve our problem and obtain the
optimal solution for our resource optimization problem. Compared to the existing ap-
proach [BS12], our ICP-based approach can effectively reduce the resource require-
ments for the hard-real-time streaming applications while guaranteeing the latency
constraints. This contribution and experimental results are presented in Chapter 3.

9

CHAPTER 1. INTRODUCTION

Contribution 2: Novel Algorithm for Energy-Efficient Mapping of Real-Time
StreamingApplications onHeterogeneousMultiprocessor System-on-Chip (MP-
SoC)
We address Problem 2 in Section 1.2 by proposing a novel polynomial time algorithm,
called Frequency Driven Mapping (FDM), to map real-time streaming applications
onto a heterogeneous multiprocessor system with the aim of reducing the energy con-
sumption and guaranteeing the latency and throughput constraints. The main novelty
in this algorithm is twofold: 1) By using the hard-real-time scheduling framework
for CSDF graphs in [BS11][BS12][BS13], we propose an efficient way to determine
a suitable processor type for each actor/task in the CSDF graph, where the energy
consumption is minimized and throughput and latency constraints are met; 2) Then,
based on the obtained processor type assignment, we propose a new approach to map
actors of the streaming application specified as a CSDF graph to the given platform
and then further reduce the energy consumption by using VFS. Experimental results
show the effectiveness of our proposed algorithm in terms of energy efficiency in com-
parison to the related work. This contribution and experimental results are presented
in Chapter 4.

Contribution 3: Novel Algorithm for Energy-Efficient Mapping of Real-Time
Tasks on Heterogeneous Multicores Using Task Splitting
To address Problem 2 in Section 1.2, in the context of independent real-time tasks (ap-
plications), we are inspired by the latest C=D task-splitting technique [BDWZ12] and
propose a novel algorithm, called Allocation and Split on Heterogeneous Multicore
systems (ASHM), to energy-efficiently map real-time tasks on heterogeneous multi-
core systems by using the C=D task-splitting technique. To the best of our knowledge,
our ASHM algorithm is the first work to consider the C=D task-splitting technique on
heterogeneousmulticore systems for energy efficiency. In this work, we investigate the
application of the C=D task-splitting on real-time heterogeneous multicore systems to
reduce energy consumption. The concepts regarding the task-splitting approach and
the C=D approach will be explained later in Section 5.2.4. We analyze the proper-
ties of the C=D task-splitting and extend it for heterogeneous multicore systems. The
analysis and extension of the C=D task-splitting on heterogeneous multicore systems
serves as the foundation of the proposed ASHM algorithm. Experimental results show
that our ASHM outperforms the existing approaches in terms of energy efficiency.
This contribution and experimental results are presented in Chapter 5.

Contribution 4: The first Schedulability Test for Imprecise Mixed-Criticality
Systems Under EDF-VD Scheduling
The last contribution in this dissertation addresses Problem 3 discussed in Section
1.2. We propose the first test to check the schedulability of the IMC model under the

10

CHAPTER 1. INTRODUCTION

scheduling and prove the correctness of the proposed schedulability test. A brief intro-
duction of the EDF-VD scheduling algorithm is given in Section 6.2.3. Moreover, with
the proposed schedulability test, a special metric for scheduling algorithms, namely
speedup factor, is used to quantify the optimality of the IMC model under EDF-VD
scheduling algorithm. The experimental results show that EDF-VD can schedulemore
IMC task sets than the existing approach AMC [BB13]. This contribution and its ex-
perimental results are presented in Chapter 6.

1.4 Dissertation Outline

The remainder of this dissertation is organized in a self-contained manner. Chapter 2
introduces some common, fundamental, and relevant knowledge about the data-flow
model, considered in this dissertation, and the real-time system models and their cor-
responding analysis techniques that are deployed in this dissertation are also presented
in order to facilitate the understanding of the contributions afterwards.

Chapter 3 - 6 present in details the dissertation contributions briefly introduced in
Section 1.3. Each chapter is organized in a self-contained way. That is, each chapter
has its specific

– brief introduction and detailed contributions;

– related work and a system model;

– proposed algorithm/approach; and

– experimental results.

Finally, Chapter 7 summarizes this dissertation and points out some directions
which deserve further investigation. The detailed organization of this dissertation is
as follows:

1. Chapter 2 presents some common background information pertaining to the
CSDFmodel, real-time systems, hard-real-time scheduling framework proposed
in [BS11][BS12][BS13].

2. Chapter 3 presents the new approach to optimize resource requirements of
hard-real-time streaming applications subject to latency constraints in the schedul-
ing framework proposed in [BS11][BS12][BS13].

3. Chapter 4 presents the FDM algorithm to energy-efficiently map hard-real-
time streaming applications onto cluster heterogeneous multicore systems.

11

CHAPTER 1. INTRODUCTION

4. Chapter 5 presents the ASHM algorithm to energy-efficiently map real-time
tasks onto heterogeneous multicore systems by using the task-splitting tech-
nique.

5. Chapter 6 presents the schedulability test for the IMC model under EDF-VD
and the proof of the speed-up factor.

6. Chapter 7 summarizes the dissertation and discusses possible future work.

12

Chapter 2

Background

Predictability, not speed, is the foremost goal in real-time system design.

John Stankovic [Sta88]

In this chapter, to better understand this dissertation, we introduce some common
preliminaries which we use in the subsequent chapters, such as the cyclo-static

dataflow (CSDF) model, the real-time theories, and the hard-real-time scheduling of
CSDF.

2.1 Cyclo-Static Dataflow (CSDF) Model

In this dissertation, we use the cyclo-static dataflow (CSDF)model tomodel streaming
applications. In this section, we introduce this model and its properties.

In [BELP96], Bilsen et al. proposed the cyclo-static dataflow (CSDF) model to
model signal processing applications. CSDF generalizes the well-known synchronous
dataflow (SDF) model [LM87]. A CSDF graph is defined as a directed graph G =
(A, E), where A is a set of actors and E is a set of edges. Actor τj ∈ A represents a
piece of computation in an application and edge ei ∈ E represents the communica-
tion between two actors, where an atomic data object that is transferred via an edge
is called a token. In a CSDF graph, every actor τi ∈ A has an execution sequence
[Fi(1), Fi(2), · · · , Fi(Ni)] of length Ni, meaning that the nth execution/firing of ac-
tor τi executes the code of function Fi(((n − 1) mod Ni) + 1). Similarly, each
CSDF actor may produce/consume a variable but predefined number of data tokens
in consecutive executions, called production/consumption sequence. The produc-
tion/consumption sequence has the same length of Ni as the execution sequence. An
edge eu ∈ E is a first-in, first-out (FIFO) queue defined as pair eu = (τi, τj), denot-

13

CHAPTER 2. BACKGROUND

ing that actor τi produces data tokens on edge eu and actor τj consumes data tokens
from edge eu. Let [xui (1), xui (2), · · · , xui (Ni)] denote the production sequence of
actor τi on edge eu, meaning that at the nth execution actor τi produces xui (((n− 1)
mod Ni)+1) data tokens on edge eu. Xu

i (n) =
∑n

l=1 x
u
i (l) denotes the total amount

of data tokens which actor τi produces on edge eu after its first n executions. Let
[yuj (1), yuj (2), · · · , yuj (Nj)] denote the consumption sequence of actor τj on edge
eu. Similarly, at the nth execution actor τj consumes yuj (((n − 1) mod Nj) + 1)
data tokens from edge eu and Y u

j (n) =
∑n

l=1 y
u
j (l) denotes the total amount of data

tokens which actor τj consumes from edge eu after its first n executions.
A compelling and important property of CSDF is its decidability, i.e., a schedule

for all actors in a CSDF graphG can be derived at design time. To derive a valid static
schedule of a CSDF graph at design-time, the graph needs to be consistent and live.

Definition 2.1.1 ([BELP96]). ACSDF graphG is said to be consistent if a non-trivial
solution exists for a repetition vector ~q = [q1, q2, · · · , q|A|]T .

The repetition vector ~q is defined as follows:

Definition 2.1.2 ([BELP96]). Given a connected CSDF graphG, a vector ~q = [q1, q2,
· · · , q|A|]T representing the number of invocations of the actors of G in a valid static
schedule is called a repetition vector of G.

And the repetition vector ~q is computed by using the following theorem,

Theorem 2.1.1 ([BELP96]). For a connected CSDF graph G, a repetition vector
~q = [q1, q2, · · · , q|A|]T is given by

~q = Θ · ~r, with Θik =

{
Ni if i = k

0 otherwise
(2.1)

where ~r = [r1, r2, · · · , r|A|]T is a positive integer solution of the balance equation

O · ~r = ~0 (2.2)

and where the topology matrix O ∈ Z|E|×|A| is defined by

Ouj =

Xu
j (Nj) if τj produces on channel eu
−Y u

j (Nj) if τj consumes from channel eu
0 Otherwise.

(2.3)

Definition 2.1.3 ([BELP96]). A CSDF graph G is said to be live if a deadlock-free
schedule can be found.

14

CHAPTER 2. BACKGROUND

τ1

τ2

τ3

τ4

e1

e2

e3

e4

[1, 1, 0]

[0, 0, 1]

[1] [1]

[1] [1]

[1, 1, 0]

[0, 0, 1]

Figure 2.1: CSDF graph G

Definition 2.1.4. For a consistent and live CSDF graph, the graph completes one
iteration, if every actor τi ∈ A executes for qi times.

Below, we use an illustrative example to facilitate the understanding of the theories
and definitions of CSDF presented above.
Example 2.1.1. Consider the CSDF depicted in Figure 2.1. There are four actors
{τ1, τ2, τ3, τ4} and four edges {e1, e2, e3, e4}. Each actor has different production/
consumption sequences on different edges. For example, actor τ1 has a production
sequence of [1, 1, 0] on edge e1 and actor τ2 has a consumption sequence of [1] on
edge e1 and a production sequence of [1] on edge e3. Then, according to Equation
(2.1),(2.2), (2.3) in Theorem 2.1.1, we obtain

O =

2 −1 0 0
1 0 −1 0
0 1 0 −2
0 0 1 −1

 , ~r =

1
2
1
1

 ,Θ =

3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 3

 , ~̆q =

3
2
1
3

In this dissertation, we consider streaming applications which are modeled as

acyclic CSDF graphs. From empirical studies in [TA10], Thies and Amarasinghe
showed that 90% of streaming applications can be modeled as acyclic SDF graphs,
where SDF graphs are a subset of CSDF graphs. For acyclic CSDF graphs, we have
the following lemma,

Lemma 2.1.1 ([BS11]). Any acyclic consistent CSDF graph is live.

2.2 Real-Time Theories
This section introduces the real-time task models, real-time scheduling algorithms,
the schedulability analysis techniques and the multiprocessor real-time scheduling

15

CHAPTER 2. BACKGROUND

algorithms.

2.2.1 Real-Time Task Models

A real-time system is comprised of a collection of real-time applications. To ensure
the system’s timing correctness, each application in the application set is modeled as a
real-time task τi and all tasks form a real-time task setΓ. A real-time task τi that might
generate an infinite sequence of task instances, also called jobs, is usually specified
by a parameter tuple {Si, Ci, Di, Ti} and the interpretations of the parameters are as
follows:

• Si denotes the start time of τi;

• Ci denotes the estimated Worst-Case Execution Time (WCET) of τi;

• Di denotes the relative deadline of τi; and

• Ti denotes the period of τi or the minimal arrival interval of two subsequent
jobs generated by τi.

The different interpretations of Ti define two widely-used real-time task models: pe-
riodic task model and sporadic task model. In the periodic task model, Ti denotes
the period of task τi, i.e., task τi releases its jobs strictly periodically at time instants
t = {t|Si+kTi, k ∈ Z+}. In the sporadic task model, Ti denotes the minimal arrival
interval of two subsequent jobs generated by τi, i.e., task τi can release its next job
anytime once the minimal arrival interval Ti elapses.

The task model also features another characeristic related to the tasks’ start times.
If all tasks in a task set Γ have the same start time, i.e., S1 = S2 = · · · = Sn, task
set Γ is said to be a synchronous task set. Otherwise, it is called an asynchronous
task set. Moreover, considering the relation between deadline Di and period Ti, a
periodic/sporadic task set can be defined as either implicit deadline task set or con-
strained deadline task set. The implicit deadline task set indicates that every task
τi ∈ Γ has Di = Ti, whereas the constrained deadline task set means that every task
τi ∈ Γ hasDi ≤ Ti. In real-time systems, the utilization is used to denote the ratio of
WCET over a period. For a task set Γ, the utilization ui of task τi ∈ Γ is ui = Ci/Ti
and thus the total utilization UΓ of task set Γ is the sum of the utilizations of all tasks,
i.e., UΓ =

∑n
i=1 ui. In addition, we have another term, called density, which denotes

the ratio of task’s WCET over the lesser of a task’s relative deadline and period , i.e.,
the density δi of task τi ∈ Γ is δi = Ci/min(Di, Ti) and the total density δΓ of task
set Γ is computed by δΓ =

∑n
i=1 δi.

Table 2.1 lists the corresponding task models used in different chapters. Note that
in this section we only introduce the basic task model. The exact task model used

16

CHAPTER 2. BACKGROUND

Task Model
synchronous/ constrained/ periodic/
asynchronous implicit sporadic

Chapter 3 asynchronous constrained deadline periodic
Chapter 4 asynchronous implicit deadline periodic
Chapter 5 synchronous constrained deadline periodic
Chapter 6 synchronous implicit deadline sporadic

Table 2.1: Task models considered in the dissertation’ chapters

in each chapter might be slightly different from the basic task model, and we will
elaborate the difference in each chapter.

2.2.2 Real-Time Scheduling

When a system and a set of real-time tasks are given, a real-time scheduling algorithm
is required to schedule the task set on the specified system. A scheduling algorithm
schedules tasks based on their priority and there are three ways to assign priority to
each task [DB11].

• Fixed task priority: all jobs from a task have a single fixed priority. An exam-
ple of this is the rate-monotonic scheduling [LL73];

• Task-level priority: the jobs of a task might have different priorities, but each
job has a single static priority. An example of this is the earliest deadline first
(EDF) scheduling [LL73];

• Dynamic priority: a job of a task might have different priorities at different
times. An example of this is the least laxity first (LLF) scheduling [Leu89].

Preemption is another important feature pertaining to scheduling algorithms.

• If tasks can be preempted by a task with higher priority at any time, the schedul-
ing algorithm is said to be a preemptive scheduling algorithm;

• If tasks start to execute and they cannot be suspended at runtime until their com-
pletions, then the scheduling algorithm is said to be a non-preemptive schedul-
ing algorithm.

Since the optimal scheduling algorithms for uniprocessor or multiprocessor sys-
tems are both preemptive [LL73][BCPV93a], we in this dissertation focus our study
on preemptive scheduling algorithms.

17

CHAPTER 2. BACKGROUND

Schedulability Tests and Scheduling Algorithms

As we discussed in Chapter 1, the key problem of real-time systems is to decide
whether real-time tasks are schedulable on a specific platform under a certain real-
time scheduling algorithm, i.e., to guarantee the system’s timing constraint. Schedu-
lability tests are the formal and veryfing tools to help us check the schedulability. The
formal definition of Schedulability tests can be found in Definition 1.2.1 on page 9.
In this section, we introduce the schedulability tests used in this dissertation.

Generally, schedulability tests can be classified as follows [DB11]:

• Sufficient test: If a real-time task set which is schedulable according to a
schedulability test is indeed schedulable, the schedulability test is said to be
sufficient.

• Necessary test: If a real-time task set which is unschedulable according to a
schedulability test is indeed unschedulable, the schedulability test is said to be
necessary.

• Exact test: If a schedulability test is both sufficient and necessary, the schedu-
lability test is said to be exact.

In some cases, it is highly difficult to derive an exact test, so we would like to derive
a sufficient test to ensure the schedulability of a real-time task set.

The preemptive earliest deadline first (EDF) scheduling algorithm [LL73] is the
most studied dynamic-priority scheduling algorithm. In this dissertation, we use EDF
as the scheduling algorithm in Chapter 5 and 6. The seminal paper [LL73] proved
the exact schedulability test for an implicit deadline periodic task set under EDF on
a uniprocessor system.

Theorem 2.2.1 ([LL73]). For an implicit deadline periodic task set Γ, it is schedula-
ble by EDF if and only if

UΓ = C1/T1 + C2/T2 + · · ·+ Cn/Tn =
n∑
i=1

Ci/Ti ≤ 1. (2.4)

On a uniprocessor system, EDF has been proven to be the optimal scheduling
algorithm for implicit deadline tasks [Der74].

Theorem 2.2.2 ([Der74]). If a job set J is schedulable by an algorithm A, then it is
schedulable by EDF.

Corollary 2.2.1. EDF is an optimal scheduling algorithm on a uniprocessor system.

18

CHAPTER 2. BACKGROUND

However, for constrained deadline task set, Equation (2.4) only serves as a nec-
essary test. Barauh et al. in [BMR90] proposed an exact schedulability test for
constrained deadline task set under EDF on a uniprocessor system, where the exact
schedulability test is derived based on the concept of demand bound function (dbf).

dbf(τi, t0, tf) = max

{
0,

⌊
(tf − t0)−Di

Ti

⌋
+ 1

}
Ci (2.5)

where tf − t0 denotes a time interval, t0 and tf are the start time and the end time
of the interval, respectively. dbf computes the maximum cumulative execution time
which a task demands within time interval [t0, tf]. If the total maximum execution
time of task set Γ within the time interval does not exceed the time interval, the task
set is schedulable. Otherwise, it is unschedulable for the task set.

Theorem 2.2.3 ([BMR90]). A task set Γ is schedulable if and only if UΓ ≤ 1 and

∀t < La, dbf(Γ, t0, tf) =
n∑
i=1

max

{
0,

⌊
(tf − t0)−Di

Ti

⌋
+ 1

}
Ci (2.6)

where La is defined as follows:

La = max

{
D1, · · · , Dn, max

1≤i≤n
{Ti −Di}

UΓ

1− UΓ

}
(2.7)

Theorem 2.2.3 is the exact test to check the schedulability of a task set under EDF
scheduling. However, the exact test shown in Theorem 2.2.3 is computationally expen-
sive because this exact test needs to test all absolute deadlines within the time interval
and there can be a large number of absolute deadlines which need to be checked. To
improve the efficacy of the EDF exact test, Zhang and Burns [ZB09] proposed a new
exact test for the EDF scheduling, referred as Quick convergence Processor-demand
Analysis (QPA).

Theorem 2.2.4 ([ZB09]). A task set Γ is schedulable if and only if UΓ ≤ 1 and the
result of the QPA iterative algorithm shown in Algorithm 1 is dbf(Γ, to, tf) ≤ dmin,
where dmin = min{Di}.

The extensive experimental results in [ZB09] demonstrate the efficiency of QPA
in terms of reducing the time complexity of testing the schedulability. Therefore, in
our work, we use QPA to test the schedulability of a task set when the utilization-based
test is not applicable.

19

CHAPTER 2. BACKGROUND

Algorithm 1: QPA
1 t← max{di|di < L};
2 while (dbf(Γ, t) ≤ t ∧ dbf(Γ, t) > dmin)
3 {if (dbf(Γ, t) < t) t← dbf(Γ, t);
4 else t← max{di|di < L};
5 }

2.2.3 Multiprocessor Real-Time Scheduling

Nowadays, the increasing number of real-time systems is implemented on multipro-
cessor platforms. The prevalence of these real-time multiprocessor systems rises a
new problem, namely the assignment problem, i.e., deciding which processor to ex-
ecute which task. Multiprocessor scheduling algorithms can be classified as follows
based on the tasks’ assignment:

• Partitioned scheduling: tasks are only permitted to execute on their assigned
processors and task migration is prohibited. On each processor, a uniprocessor
scheduling algorithm is deployed to schedule the tasks assigned to the proces-
sor;

• Global scheduling: tasks are permitted to migrate to any processor at anytime
and a global scheduling algorithm assigns tasks to proper processors at runtime;

• Cluster Scheduling: the system is comprised of several clusters where each
cluster consists of a number of processors. Tasks are statically assigned to a
fixed cluster and within a cluster tasks are permitted to migrate to the processors
in the same cluster, i.e., a global scheduling algorithm is deployed within a
cluster, but task migration between clusters is prohibited;

• Semi-partitioned scheduling/Task-splitting: the majority of tasks are statically
assigned to processors and only a few tasks are permitted to migrate among
processors. Usually, the assignment of migrative tasks is also known at design
time, i.e., a migrative task executes partially on one processor and then migrates
to another processor to complete its execution.

Assignment Algorithms

When partition scheduling is deployed to schedule tasks on a multiprocessor system,
a key problem is to efficiently decide how to assign a task to a proper processor so

20

CHAPTER 2. BACKGROUND

that a certain metric, e.g., schedulability, energy-efficiency, etc, is satisfied1.
The assignment problem of real-time tasks on a multiprocessor system is inher-

ently analogous to the well-known bin-packing problem [GJ79]. In the bin-packing
problem, objects of different volumes are packed into a finite number of bins with
fixed capacity such that the number of bins used is minimized. The bin-packing prob-
lem has been proven to be a NP-complete problem [GJ79], so an optimal solution
cannot be obtained in a polynominal time unless P=NP. Therefore, many heuris-
tic algorithms are developed to efficiently solve the bin-packing problem and to ob-
tain a suboptimal result in a reasonable time. The close similarity between these two
problems allows us to directly utilize the well-established heuristic algorithms for the
bin-packing problem to assign real-time tasks on a multiprocessor system. Below, we
introduce the most used heuristic algorithms [CGJ97, Joh74].

• First-Fit (FF) algorithm: the FF algorithm always tries to place an item Ii to
the first bin Bj (i.e., lowest index). That is

j = min{k : size(Ii) + capacity(Bk) ≤ 1}

If no exsiting bin can accomodate the item, a new bin is opened and the item is
placed in the new bin;

• Worst-Fit (WF) algorithm: theWF algorithm always tries to assign an item Ii
to the bin Bj which has the most residual capacity after placing item Ii. That
is

j = min{k : size(Ii) + capacity(Bk) minimized}

If no exsiting bin can accomodate the item, a new bin is opened and the item is
placed in the new bin;

• Best-Fit (BF) algorithm: the BF algorithm always tries to assign an item Ii to
the bin Bj which has the least residual capacity after placing item Ii. That is

j = min{k : size(Ii)+capacity(Bk) maximized & not exceed the bin volume.}

If no exsiting bin can accomodate the item, a new bin is opened and the item is
placed in the new bin.

Performance of these heuristic algorithms can be improved by sorting tasks in order
of decreasing utilization or density. Then, we have:

1Throughout this dissertation, we may use the term “assign”, “map”, and “partition” interchangeably
to denote the procedure that statically decides a processor for a task to complete its execution.

21

CHAPTER 2. BACKGROUND

Priority Platform Multiprocessor Scheduling

Chapter 3 task-level/dynamic multiprocessor global scheduling
Chapter 4 dynamic multiprocessor cluster scheduling
Chapter 5 task-level multiprocessor task-splitting
Chapter 6 dynamic 2 uniprocessor None

Table 2.2: Scheduling algorithms considered in each chapter

• First-Fit-Decreasing (FFD): all tasks are sorted in decreasing order of their
utilization or density (see Section 2.2.1) and then tasks are assigned using the
FF algorithm;

• Worst-Fit-Decreasing (WFD): all tasks are sorted in decreasing order of their
utilization or density and then tasks are assigned using the WF algorithm;

Although partitioned scheduling has no migration cost and can directly apply a
wealth of well-developed uniprocessor real-time theories, it suffers from low resource
utilization due to the capacity loss during the assignment procedure [DB11]. The
rest of the multiprocessor real-time scheduling algorithms can achieve better resource
utilization and additionally the research on them is an increasingly hot topic in the real-
time community. Therefore, in this dissertation, we consider the global scheduling,
cluster scheduling, and task-splitting approach.

In the cluster scheduling, the inital step is to assign tasks to a cluster such that
a global scheduling can be applied to the tasks assigned to the cluster. Similarly, in
the task-splitting approach, a subset of tasks are statically assigned to processors and
the rest of the tasks are splitted among the processors. The assignment procedures in
both the cluster scheduling and the task-splitting aproach are similar to the assignment
procedure in partitioned scheduling. Therefore, all heuristic assignment algorithms
introduced aboven can be applied to the cluster scheduling and the task-splitting ap-
proach.

Table 2.2 summarizes the priority assignment schemes, platforms, and multipro-
cessor scheduling algorithms considered in each chapter.

2Although the original EDF is a task-level priority scheduling algorithm, EDF-VDmay change dead-
lines of some tasks during runtime. As a result, the priority of these tasks will be changed upon their
execution. Thus, we here consider EDF-VD as a dynamic priority scheduling.

22

CHAPTER 2. BACKGROUND

2.3 Hard-Real-Time (HRT) Scheduling of CSDF graphs

Throughout this dissertation, instead of traditional dataflow scheduling techniques
[MB07], we use a new scheduling framework [BS11, BS12, BS13] to schedule CSDF
graphs. In this section, we give a brief introduction about this new scheduling frame-
work.

Traditionally, CSDF graphs are scheduled by self-timed scheduling [MB07], where
an actor starts to execute as soon as it receives enough tokens from its predecessors.
However, since the self-timed scheduling normally provides best-effort services, it
is difficult to provide a hard-real-time timing guarantee for every task in an applica-
tion. Bamakhrama and Stefanov in [BS11, BS12, BS13] proposed a Hard-Real-Time
(HRT) scheduling framework in which an acyclic CSDF graph is converted into an
independent periodic task set. This conversion effectively bridges the gap between
data-flow models and real-time theories and enables us to apply a plethora of well-
developed real-time theories to CSDF graphs. The advantage of this framework is
the direct application of real-time theories on dataflow models, such as schedulabil-
ity tests and assignment algorithms, and the designers are able to accomplish fast
admission control and temporal isolation and provide hard-real-time guarantees. A
good example of the application of theHRT scheduling framework is demonstrated in
[BZNS12], where the merit of the HRT scheduling framework helps to significantly
reduce the complexity of the design space exploration when designing a real-time
streaming multiprocessor system.

TheHRT scheduling framework takes as an input a CSDF graph where theWCET
of each actor in the CSDF graph is known in a priori, and finally it outputs a periodic
task sets which can be scheduled by a real-time scheduler. Note that the WCETs
considered in the HRT scheduling framework also account for the worst-case com-
munication overhead because the HRT scheduling framework strives to ensure the
feasibility of this approach regardless of the variance of different task assignments.
The basic concept behind this framework is to derive the real-time parameters, i.e.,
period, start time, and deadline, for each actor according to actors’ WCETs and the
CSDF graph properties, e.g., the repetition vector explained in Section 2.1. The pro-
cedure goes through the following steps: 1) it computes a period for each actor in the
input CSDF graph according to its repetition values and WCETs; 2) it computes the
actors’ start times such that the precedence constraints between actors are respected
and thus the deadlock in execution is avoided; and 3) it determines the deadline of
each actor.

Computing Periods
To compute the period of an actor in a CSDF graph, we first define the workload

of an actor and the maximum actor workload of a graph as follows:

23

CHAPTER 2. BACKGROUND

Definition 2.3.1. The workload of an actor τi isWi = qiCi and themaximum actor
workload of the graph is Ŵ = maxτi∈G{Wi}

Then, we can use themaximum actor workload and the repetition value qi of actor
τi to compute the minimum period T̆i of actor τi as follows [BS11]:

T̆i =
lcm(~q)

qi

⌈
Ŵ

lcm(~q)

⌉
(2.8)

where lcm(~q) is the least common multiple of the repetition vector ~q (explained in
Section 2.1). The minimum periods deliver the maximal throughput for the CSDF
graph under the HRT scheduling. Based on this minimum period, a period scaling
technique can be applied to uniformly scale up the period of each actor under theHRT
scheduling framework, thereby adjusting the throughput of the CSDF graph [ZBS13,
SLS16] .

Computing Start Times
Once the periods of all actors are computed, we need to deal with the precedence

constraints between actors. The execution semantics of a dataflow model requires an
actor to receive sufficient data from its predecessors in order to trigger its execution,
thus the existence of precedence constraints prohibits all actors to start their execution
at the same time. To resolve the precedence constraints, the converting procedure
in the HRT scheduling framework offsets the start times of actors such that by its
start time every actor is capable of obtaining sufficient data on its input edges and
its subsequently periodic executions are free from deadlock. The following lemma is
used to compute the earliest start time for each actor in a CSDF graph

Lemma 2.3.1 (From [BS11]). For an acyclic CSDF graph G, the earliest start time
of an actor τj ∈ A, denoted Sj , under HRT scheduling is given by

Sj =

{
0 if Ω(τj) = ∅
maxτi∈Ω(τj) (Si→j) if Ω(τj) 6= ∅

(2.9)

where Ω(τj) is the set of predecessors of τj , and Si→j is given by

Si→j = min
t∈[0,Si+α]

{t : prd
[Si,max(Si,t)+k)

(τi) ≥ cns
[t,max(Si,t)+k]

(τj) ∀k ∈ [0, α]} (2.10)

where α = qiTi = qjTj , prd[ts,te)(τi) is the number of tokens produced by τi during
the time interval [ts, te), and cns[ts,te](τj) is the number of tokens consumed by τj
during the time interval [ts, te].

24

CHAPTER 2. BACKGROUND

Determing Deadlines
After the step of computing the start times, we have three parameters to specify

an actor τi as a periodic task: the given WCET Ci, the period Ti, and the start time
Si computed by using Equation (2.8) and Equation (2.9), respectively. Recall that a
periodic task is specified by a tuple of 4 parameters {Si, Ci, Di, Ti}, so we need to
determine a deadline for each actor. In the HRT scheduling framework, the deadline
Di of actor τi can be selected within a well-defined range [Ci, Ti], i.e.,Di ∈ [Ci, Ti].
The deadline selection is a highly relevant problem for the HRT scheduling frame-
work because the deadline selection is able to influence both the performance (mainly
the latency) of the CSDF graph and the number of processors required to schedule
the CSDF graph. Later in Chapter 3, we propose a novel approach to optimally se-
lect deadlines in the HRT scheduling framework such that the latency requirement is
ensured and the number of processors required is minimized.

Latency and Throughput
After the periodic tasks’ parameters are computed, as explained above, the latency

and throughput of the CSDF graph scheduled in the HRT scheduling framework can
be computed. Equation (2.11) is used to compute the minimum latency of the CSDF
graph,

L(G) = max
w∈W

(Sout + (gCout + 1)Tout − (Sin + gPinTin)) (2.11)

where w is one path of set W which consists of all paths from the input actor to the
output actor. Here, Sout and Tout are the start time and period, respectively, of output
actor τout, while Sin and Tin denote the start time and period, respectively, of input
actor τin. gCout and gPin are two constants which denote the number of invocations the
actor waits for the non-zero consumption/production of tokens on a path w ∈ W.
Note that whenDi = Ci,∀i, the graph can reach the minimum latency achievable by
the HRT scheduling framework. The throughput of the CSDF graph is computed as
follows:

R = 1/Tout (2.12)

Note that when all actors have the minimum periods T̆i, the graph can reach the max-
imum throughput achievable by the HRT scheduling framework.

25

CHAPTER 2. BACKGROUND

26

Chapter 3

Resource Optimization for
Real-Time Streaming Application

Di Liu, Jelena Spasic, Jiali Teddy Zhai, Gang Chen, and Todor Stefanov,
"Resource optimization for CSDF-modeled streaming applications with latency constraints,"
2014 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, 2014, pp. 1-6.

Streaming applications, such as video/audio processing and digital signal process-
ing, contain ample amount of parallelism which perfectly matches the processing

power of Multi-Processor System-on-Chip (MPSoC) platforms. To efficiently pro-
gramMPSoC platforms, Models-of-Computation (MoCs) are used to specify stream-
ing applications. Prominent examples ofMoCs include SynchronousData Flow (SDF)
[LM87] and its generalization Cyclo-Static Dataflow (CSDF) [BELP96].

Traditionally, CSDF graphs are scheduled by self-timed scheduling [MB07], where
an actor starts to execute as soon as it receives enough tokens from its predecessors.
However, since the self-timed scheduling normally provides best-effort services, it is
difficult to provide a hard-real-time timing guarantee for every actor in a CSDF graph.
Bamakhrama and Stefanov in [BS11] proposed the hard-real-time (HRT) scheduling
framework to schedule acyclic CSDF graphs, explained in detail in Section 2.3. This
HRT scheduling framework provides HRT timing guarantee and fast admission con-
trol for an application modeled as a CSDF graph, at the expense of increasing the
graph latency [BS12]. The same authors in [BS12] identified this issue of the HRT
scheduling framework and proposed to reduce the graph latency by scaling down ac-
tors’ relative deadlines. In [BS12], Bamakhrama and Stefanov proposed to use a scal-
ing factor to uniformly reduce the deadlines of all actors/tasks. However, since the
deadlines of periodic tasks play a crucial role in determining the minimum number of

27

CHAPTER 3. RESOURCE OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATION

processors required to schedule the task set, this uniform scaling factor may unneces-
sarily increase the required number of processors.

In this chapter, we address this above-mentioned problem of minimizing the num-
ber of processors required to schedule a latency-constrained streaming application
modeled as a CSDF graph, which is scheduled by using the HRT scheduling frame-
work. We formalize this problem and prove that it is an integer convex programming
problem such that it can be solved effectivelly by an off-the-shelf convex programming
solver, e.g., CVX [GB14]. The novel contributions of our work can be summarized
as follows:

• We present a new method to compute the earliest starting time of actors in a
CSDF graph when the actors are scheduled under the HRT scheduling.

• Based on the above contribution, we formalize the problem of minimizing the
number of processors for a latency-constrained CSDF graph under the HRT
scheduling and prove that it is an integer convex programming (ICP) problem.

• We carry out experiments by solving the ICP problem on 13 real-life streaming
applications and demonstrate the effectiveness and efficiency of our solution
approach in comparison to the deadline selection approach [BS12] in terms
of the minimum number of processors required to schedule an application. By
applying our approach, we obtain reduction in the number of processors in more
than 48% of the conducted experiments.

Spasic et al. in [SLCS16] proposed a new approach to improve the HRT schedul-
ing framework. The proposed approach in this chapter is also applicable to the im-
proved HRT scheduling and more details can be found in [SLCS16].

3.1 Background

We have introduced the CSDF application model, real-time theories, and the HRT
scheduling framework in Chapter 2. Here, we present the system model considered
in this chapter. The platform, we target, is a homogeneous multiprocessor platform
which consists of identical processors. Since the global scheduling, explained in Sec-
tion 2.2.3, has been proven to be a theoretically optimal scheduling algorithm on
multiprocessor systems [DB11], we adopt a global optimal scheduling, such as PFair
[BCPV93b], to schedule periodic tasks generated from an acyclic CSDF graph.

To reduce the graph latency, we scale down the relative deadline of each actor and
thus a constrained deadline task set (i.e., deadline is smaller than or equal to period) is
derived. For the constrained deadline task model (i.e.,Di ≤ Ti), Baker and Baruah in

28

CHAPTER 3. RESOURCE OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATION

[BB07] gave the following sufficient schedulability for the global optimal scheduling:

δΓ ≤M (3.1)

δΓ is the total density of a real-time task set Γ, explained in Section 2.2.1. M de-
notes the number of processors. This sufficient test can be converted to compute the
minimum required number of processors for the global optimal scheduling as follows:

M = dδΓe (3.2)

For global optimal scheduling, we see from Equation (3.2) that the total density
δΓ plays a crucial role in computing the minimum number of processors needed to
schedule a task set. Therefore, we are able to minimize the number of processors
required to schedule a task set Γ by minimizing the value of the total density δΓ.

3.2 Related Work

In the context of real-time systems, several works deal with period and/or deadline se-
lection for periodic tasks in order to achieve certain goals. The authors in [DZDN+07]
optimize periods for dependent tasks on hard real-time distributed automotive systems
in order to meet a latency constraint. In [HCH11], Hong et al. propose a distributed
approach to assign local deadlines for each task on distributed systems to meet a la-
tency constraint. In contrast to [DZDN+07] and [HCH11], our work selects deadlines
for data dependent tasks in order to meet a latency constraint while minimizing the
number of processors required for scheduling the application. Such minimization is
not considered in [DZDN+07] and [HCH11]. Balbastre et al. [BRC06] propose an
analysis to select deadlines for periodic tasks on a uniprocessor to reduce the output
jitters. Comparing to [BRC06], our work differs in that we select deadlines in order
to reduce the required number of processors in a multiprocessor system while guar-
anteeing the latency constraint. Chantem et al. [CWLH08] optimize the periods and
deadlines simultaneously for an infeasible independent task set such that it can be
scheduled on a uniprocessor. Their work concentrates on the schedulability of a sys-
tem rather than optimizing the resources while meeting the latency constraint which
is the main goal of our work.

In another aspect, only a few works deal with latency of streaming applications
specified as dataflow/task graphs. Given latency or throughput constraints, Javaid et
al. [JHIP10] optimized the area of MPSoCs which are comprised of Application Spe-
cific Instruction set Processors (ASIP). The problem is formulated as an integer linear
programming (ILP) problem. In their work, the area is optimized by setting different
configurations for each ASIP. In contrast to their work, we consider to minimize the

29

CHAPTER 3. RESOURCE OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATION

number of processors and our objective function cannot be written in a linear form
and thus not amenable to an ILP formulation. The authors in [CGHJ09] proposed a
framework to synthesize homogeneous multiprocessor system for streaming applica-
tions with throughput constraints while optimizing latency and resources. However,
their framework can not take the latency as a constraint. As a result, the framework
in [CGHJ09] is not applicable to our problem. It is worth noting that the throughput
constraint in [JHIP10] and [CGHJ09] can be trivially added into our approach.

3.3 Motivational Example
In this section, we take the CSDF graph in Figure 2.1 as our motivational example to
demonstrate the deficiency of the approach in [BS12], where deadlines of actors are
computed by Equation (3.3) below with the global uniform deadline scaling factor df .

∀τj Dj = Cj + df × (Tj − Cj) 0 ≤ df ≤ 1 (3.3)

We use Equation (3.2) to compute the required number of processors. Given a latency
constraint of 20 clock cycles, if we use the approach in [BS12], it finds that the global
deadline scaling factor df should be set to 0 in order to meet the latency constraint.
By using Equation (3.3), we compute that Dj = Cj , and the parameters of the tasks
are given in Table 3.1. Using these parameters we obtain that the total density δA =
2
2 + 3

3 + 3
3 + 6

6 = 4. This means that 4 processors are needed to schedule the task set.
However, larger deadlines can be selected for some actors without violating the

latency constraint, thereby reducing the total density δA, which in turn can decrease
the number of processors. We select new deadlines D2 = 9 and D3 = 12 for actors
τ2 and τ3, respectively, and recompute the start time of the tasks using Lemma 2.3.1
in Section 2.3. We see that in this specific case shown in Table 3.2, although we have
changed two deadlines, the start times Sj have not changed. By using Equation (2.11)
in Section 2.3 to compute the latency, we see that the latency of 20 clock cycles can
be met with the new parameters, but the total density δA = 2

2 + 3
9 + 3

12 + 6
6 = 2.58

decreases. This means that 3 processors are sufficient to schedule the task set without
violating the latency constraint of 20 clock cycles. We can see from the motivational
example that the approach from [BS12] is not optimal in terms of the required number
of processors.

3.4 Proposed Approach
As we show in Section 3.3, although the deadline selection approach in [BS12] is able
to meet the latency constraint, it is not optimal in terms of the number of processors.
Hence, selecting deadlines in a proper way is a problem that should be solved in order

30

CHAPTER 3. RESOURCE OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATION

task Sj Cj Dj Tj
τ1 0 2 2 6
τ2 2 3 3 9
τ3 14 3 3 18
τ4 14 6 6 6

Table 3.1: Tasks Parameters 1

task Sj Cj Dj Tj
τ1 0 2 2 6
τ2 2 3 9 9
τ3 14 3 12 18
τ4 14 6 6 6

Table 3.2: Tasks Parameters 2

to minimize the number of processors while meeting the latency constraint. To se-
lect deadlines properly, we devise the solution approach presented in this section that
formalizes and formulates the problem as a mathematical programming problem.

According to Equation (2.11), the latency depends on the earliest start time and
deadline of the output actor, and the earliest start time of the input actor. The earliest
start time Sj of any actor depends on two conditions: 1) at the earliest start time, there
should be sufficient number of tokens on all input edges to enable the actor’s firing and
2) once an actor fires for the first firing, the consequent firings of the actor should be
possible to happen at time instant t = Sj+kTj for each k ∈ N+. The first condition is
imposed by the firing rule [BELP96] of the CSDFmodel which is a data-drivenmodel,
where a sufficient number of tokens is the requirement to trigger an actor firing. The
second condition makes sure that the CSDF graph is schedulable as a periodic task set.
Although Lemma 2.3.1 in Section 2.3 is able to find the earliest start time of an actor,
it is impossible to use its equations into any mathematical programming problem.
Hence, we present a new computation method to calculate the start time of actors in
a CSDF, in which the start times of actors can be represented as linear items and can
be integrated into a mathematical programming problem.

Lemma 3.4.1. For an acyclic CSDF graphG, the earliest start time of an actor τj ∈
A, denoted Sj , under HRT schedule is given by

Sj =

{
0 if Ω(τj) = ∅
maxτi∈Ω(τj){Si + (Smin

i→j − Smin
i − Ci) +Di} if Ω(τj) 6= ∅

(3.4)

where Ω(τj) is the set of predecessors of τj , Si, Ci, andDi are the earliest start time,
WCET, and deadline of the predecessor actor τi, respectively. Smin

i is the earliest start
time of τi given by Equation (2.9) when Dn = Cn,∀τn ∈ A, and Smin

i→j is given by
Equation (2.10) when Dn = Cn, ∀τn ∈ A.

Proof. Consider an arbitrary edge eu = (τi, τj) ∈ E . τj starts after τi has started
and fired a “certain” number of times. This number of firings is independent from the
execution speed of the actors and depends only on the production and consumption

31

CHAPTER 3. RESOURCE OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATION

rates of τi and τj on eu. The production and consumption functions are given by:

prd
[ts,t)

(τi) =

b(t−ts)/Tic∑
k=0

(xui (((k − 1) mod Ni) + 1) · u(t− kTi −Di))

cns
[ts,t]

(τj) =

d(t−ts)/Tje∑
k=0

(yui (((k − 1) mod Nj) + 1) · u(t− kTj))

where xui (k) is the kth element in the production sequence of actor τi, yuj (k) is the kth
element in the consumption sequence of actor τj ,Ni andNj are the execution lengths
of τi and τj , respectively, as defined in [BELP96]. u(t) is the unit step function. Sup-
pose thatDn = Cn,∀τn ∈ A. The curves that depict the production and consumption
functions of τi and τj are plotted in Figure 3.1. Interval ∆ in Figure 3.1 depends only
on the production and consumption rates of τi and τj on eu and can be calculated as:

∆ = Smin
i→j − Smin

i − Ci (3.5)

Now, suppose that Dn > Cn,∀τn ∈ A. The production curve will move to the
right for certain time units, and the new start time of τi is Si. If the consumption
curve does not move, the relation between the production and consumption given by
Equation (2.10) will be violated, i.e. it will happen in some point in time that the
cumulative consumption is greater than the cumulative production. This means that
we have to move the consumption curve to the right by the same number of time units
such that the new start time Si→j is minimum and the relation is preserved. Because
the production and consumption rates are unchanged, interval ∆ will stay the same,
and we can calculate it as follows:

∆ = Si→j − Si −Di (3.6)

We can re-write Equation (3.5) and Equation (3.6) as:

Si→j = Si + (Smin
i→j − Smin

i − Ci) +Di (3.7)

Now, we can derive from Equation (3.4) the following set of linear inequality con-
straints, where the number of the linear inequality constraints is equal to the number
of edges in the CSDF:

Si + (Smin
i→j − Smin

i − Ci) +Di ≤ Sj ∀eu ∈ E (3.8)

32

CHAPTER 3. RESOURCE OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATION

Smin
i Smin

i→j

tTi Tj

∆

Di = Ci

prd
cns

Figure 3.1: Production and consumption curves on edge eu = (τi, τj)

As we explain Since computing the required number of processors depends on the
total density δA of the task set (see Equation 3.2 Section 3.1), for a CSDF graphG =
(A, E), our objective is to minimize δA in order to minimize the number of processors.
Therefore, we formulate our density minimization (DM) problem as follows:

Minimize δA =
∑
τn∈A

Cn
Dn

(3.9a)

subject to:
Sout +Dout − Sin ≤ L+ gPinTin − gCoutTout

∀win→out ∈W
(3.9b)

Si +Di − Sj ≤ −(Smin
i→j − Smin

i − Ci) ∀eu ∈ E (3.9c)
−Dn ≤ −Cn, Dn ≤ Tn ∀τn ∈ A (3.9d)

where Equation (3.9a) is the objective function and Dn is an optimization variable.
We want the objective function (3.9a) with |A| optimization variables to be subject to
a latency constraint L. Therefore, Inequality (3.9b) comes from Equation (2.11). In
addition, inequality constraints (3.9c) are the constraints given by (3.8), and inequality
(3.9d) bounds all optimization variables in the objective function by the worst-case
execution time and period as explained in Section 2.3. Si and Sj (including Sin, Sout)
are implicit variables which are not in the objective function (3.9a), but still need to
be considered in the optimization procedure. L, gPinTin, g

C
outTout, Smin

i→j , Smin
i , Cn, and

Tn are constants.

Theorem 3.4.1. TheDMproblem (3.9) is an integer convex programming (ICP) prob-
lem.

Proof. First, we prove that the DM problem is a convex programming problem if the
values of D and S are continuous. In a convex programming problem, the objec-
tive function and the constraints both should be convex[BV04]. We first prove the
convexity of the objective function.

f(x) =
a

x
(3.10)

33

CHAPTER 3. RESOURCE OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATION

Function (3.10) has been proven to be convex for x ∈ (0,∞) and a > 0 [BV04].
SinceDn is always greater than 0, all δn(Dn) = Cn

Dn
are convex functions, whereDn

and Cn are the variable x and the constant a, respectively. Moreover, if f1 and f2 are
both convex, so is their sum f1 + f2. Hence, δA =

∑
τn∈A

Cn
Dn

is a convex function.
A closed halfspace which is convex is a set of the form {x|aTx ≤ b}[BV04],

where a 6= 0 and all entries in x are continuous. Since all constraints (3.9b), (3.9c),
and (3.9d) are in the form of the closed halfspace, all constraints are convex. Hence,
the DM problem (3.9) is a convex programming problem.

Given that all D and S in the DM problem (3.9) have to take only integer values
in practice, the DM problem is an ICP problem.

In mathematical programming, a convex programming problem can be solved ef-
ficiently to find a global optimum. If the variables have to only take integer values,
the problem becomes an integer convex programming problem. This integer problem
is an NP-hard problem that can not be solved efficiently using only the conventional
convex programming. Fortunately, the combination of the conventional convex pro-
gramming [BV04] and some algorithms for solvingmixed integer linear programming
can be used to find a global optimal solution for ICP. In Section 3.5.2, the evaluation
shows the efficiency of the existing CVX solver [GB14] to solve our DM problem.

3.5 Evaluation

In this section, we evaluate our DM approach and compare it with the Baseline Ap-
proach (BA) proposed in [BS12]. This baseline approach uses Binary Search to find
the maximum df (in Equation 3.3) which makes the latency constraint met. Finding
this maximum df reduces the required number of processors to schedule the CSDF
actors. Our DM problem is solved by using mixed integer disciplined convex pro-
gramming (MIDCP) in CVX [GB14]. All experiments are performed on an Intel i7
dual-core processor running at 2.7GHz with 4 GB RAM.

We have selected 13 real-life streaming applications modeled as CSDF graphs
from the StreamIt [TA10] benchmark suit. TheWCET of each actor in the application
benchmarks which we use in this evaluation is the same as specified in [BS11]. The
characteristics of these benchmarks are given in Table 3.3, including the number of
actors (|A|), the number of edges (|E|), themaximum latency (Lmax) and theminimum
latency (Lmin) in clock cycles. The maximum latency is the latency obtained by using
the implicit deadline periodic task model, i.e. df = 1, whereas the minimum latency
is the latency obtained when df = 0. To demonstrate the effectiveness of our DM
approach, the latency constraints of the graphs are varied during the experiments.
We evaluate our DM approach in terms of the number of processors needed for each

34

CHAPTER 3. RESOURCE OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATION

Realistic Applications |A| |E| Lmax Lmin

Beamformer 57 70 60912 14692
ChannelVocoder 55 70 284000 106755
DCT 8 7 380928 121672
Data Encryption Standard (DES) 53 60 46080 15602
FilterBank 85 99 158368 34638
MPEG2 23 26 138240 49452
Serpent 120 128 370296 122108
Time Delay Equalization (TDE) 29 28 1071840 628151
Vocoder 114 147 291360 21554
CD2DAT 6 5 829 258
H.263 4 3 996697 369508
Samplerate 6 5 3792 1531
Satelite 22 26 11746 5484

Table 3.3: Characteristics of application benchmarks

Constraint Latency
L0 Lmin

L1 0.4(Lmax − Lmin) + Lmin

L2 0.9(Lmax − Lmin) + Lmin

Table 3.4: Latency Constraints

benchmark and compare it to the BA for the three latency constraints per benchmark,
shown in Table 3.4, while the achieved throughput of each benchmark is the same in
both BA and DM approaches.

3.5.1 The effectiveness of our DM approach

First, we evaluate the effectiveness of our DM approach in terms of the number of
required processors. Figure 3.2 to 3.4 show the results under global scheduling. The
number of processors needed to schedule a task set is computed using Equation (3.2).

Figure 3.2 shows the results with latency constraint L0(Lmin). Under such strin-
gent latency constraint, the intervals in which deadlines of actors may vary are limited.
Our DM approach is still capable of reducing the number of processors compared to
the BA for 8 out of 13 benchmarks. The largest reduction is obtained for the Vocoder
benchmark, with a reduction of 66 processors. TheDCT,TDE andH.263 benchmarks
have only a single data path in the corresponding CSDF graphs. The Beamformer and

35

CHAPTER 3. RESOURCE OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATION

0

20

40

60

80

100

120

N
u

m
b

e
r

o
f

P
ro

c
e

s
s

o
rs

B
ea

m
fo

rm
er

C
han

nel
Voco

der

D
C
T

D
ES

Filt
er

B
an

k

M
PEG

2

Ser
pen

t
TD

E

Voco
der

C
D
2D

A
T

H
.2

63

Sam
ple

ra
te

sa
te

lit
e

BA

DM

Figure 3.2: Global scheduling with L0 constraint

Filterbank benchmarks have symmetric graph structures, i.e., multiple paths consist
of the same type of actors. Therefore, for all these benchmarks, small intervals in
which deadlines of actors may vary restrict the possibility to reduce the total density,
consequently the required number of processors is not reduced.

Figure 3.3 presents the results for a relaxed latency constraint for each bench-
mark. There are 6 benchmarks for which our DM approach reduces the number of
processors. In this case, the Beamformer benchmark with symmetric structure, also
benefits from the DM approach. That is because the redistribution of deadlines on
a path makes it possible to decrease the densities δi of some tasks/actors. For DCT,
TDE, and H.263, although we can see a reduction in the total density δA of the task
set, the reduction is smaller and insufficient to decrease the number of processors.
The Samplerate and ChannelVocoder benchmarks keep unchanged on the number of
processors because the total density is very close to the total utilization which is the
lower bound of δA. Figure 3.4 shows the results for a very relaxed latency constraint,
where only 5 benchmarks get reduction on the number of processors by using our DM
approach.

In summary, our DM approach obtains reduction in the number of processor in
more than 48% of the conducted experiments.

3.5.2 The time complexity of solving our DM problem

In this section, we evaluate the efficiency of our DMapproach in terms of the execution
time of CVX [GB14] for solving our DM problem. We set a maximum runtime of
4 hours for the solver, and all results are summarized in Table 3.5 where the time

36

CHAPTER 3. RESOURCE OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATION

0

10

20

30

40

50

60

N
u

m
b

e
r

o
f

P
ro

c
e
s
s
o

rs

B
ea

m
fo

rm
er

C
han

nel
Voco

der

D
C
T

D
ES

Filt
er

B
an

k

M
PEG

2

Ser
pen

t
TD

E

Voco
der

C
D
2D

A
T

H
.2

63

Sam
ple

ra
te

sa
te

lit
e

BA

DM

Figure 3.3: Global scheduling with L1 constraint

0

5

10

15

20

25

30

35

40

45

N
u

m
b

e
r

o
f

P
ro

c
e
s
s
o

rs

B
ea

m
fo

rm
er

C
han

nel
Voco

der

D
C
T

D
ES

Filt
er

B
an

k

M
PEG

2

Ser
pen

t
TD

E

Voco
der

C
D
2D

A
T

H
.2

63

Sam
ple

ra
te

sa
te

lit
e

BA

DM

Figure 3.4: Global scheduling with L2 constraint

37

CHAPTER 3. RESOURCE OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATION

Applications L0 L1 L2

Beamformer 0.05 0.18 0.11
ChannelVocoder 0.07 0.11 0.11
DCT 0.05 0.07 0.06
DES 5.9 14.7 0.23
FilterBank 0.1 0.32 0.17
MPEG2 12.9 0.13 0.07
Serpent 20.59 900.98 4751
TDE 0.13 0.1 0.24
Vocoder 1909 2256 0.31
CD2DAT 0.11 0.21 0.1
H.263 0.22 11.72 0.23
Samplerate 0.14 0.1 0.06
Satelite 0.14 0.08 0.24

Table 3.5: The execution time of our DM approach (in second)

unit is seconds. We can see that the runtime of CVX is not a function of the number
of actors and edges in the corresponding application CSDF graph. For example, the
FilterBank benchmark with more actors and edges than theDES benchmark just needs
0.32 second to find the optimal solution for L1, while the DES benchmark needs 14.7
seconds. Additionally, even for the same benchmarkwith different latency constraints,
the runtime for finding the optimal solution is fluctuating significantly. The execution
times of our DM approachwith theVocoder benchmark forL1 andL2 is 2256 seconds
and 0.31 second, respectively. According to Table 3.5 most of the problems can be
solved in a second. However, for the two very complex benchmarks, Serpent and
Vocoder which have the largest number of constraints, the solver spent a long time to
find the optimal solution. A method to speed up solving a very complex problem is to
set an initial solution for optimization variables which can be obtained from BA, but
unfortunately CVX does not support initialization of the optimization variables.

3.6 Discussion

In this work, we address the resource minimization problem of CSDF-model stream-
ing applications under the global optimal schedulingwhen considering theHRT frame-
work [BS11, BS12]. The proposed DM approach is also applicable to partitioned
scheduling. The approach given in [SLCS16] shows how our DM approach can be
extended to partitioned scheduling. In summary, since there exists no optimal parti-
tioned scheduling, we cannot directly build a convex objective function for it. There-

38

CHAPTER 3. RESOURCE OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATION

fore, in [SLCS16], our DM approach is first used to select optimal deadlines for actors
using the same objective function as in Equation (3.9a) and then a partitioned algo-
rithm, e.g., FFD, WFD, etc (explained in Section 2.2.3), is deployed to assign task to
processor. If the current number of processors cannot suffice the schedulability of the
new input task, the number of processors increments by one. The procedure repeats
until all tasks are successfully mapped to the system. It is worth to notice that when
our DM approach is applied in partitioned scheduling, as in [SLCS16], it only derives
a suboptimal result.

39

CHAPTER 3. RESOURCE OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATION

40

Chapter 4

Energy Optimization for
Real-Time Streaming Applications

Di Liu, Jelena Spasic, Gang Chen and Todor Stefanov,
"Energy-efficient mapping of real-time streaming applications on cluster heterogeneous MPSoCs,"
The 13th IEEE Symposium on Embedded Systems For Real-time Multimedia (ESTIMedia),
Amsterdam, 2015, pp. 1-10.

With the increasing number of cores/processors fabricated on a chip, the strin-
gent area requirement hinders to implement the core’s frequency and voltage

regulator hardware by using the fine-grained per-core DVFS due to its high hardware
cost [HM07]. In order to balance the energy saving and hardware cost, cluster hetero-
geneous MPSoCs provide a promising solution. On cluster heterogeneous MPSoCs,
all processors on the same cluster operate at the same frequency and voltage level,
i.e., processors on the same cluster are managed by a single frequency and voltage
regulator. Although the cluster heterogeneous MPSoC systems have shown their en-
ergy efficiency in the state-of-the-art chips and commercial products, e.g., Samsung
Exynos 5422 [Sam16], Samsung Galaxy S7, Iphone 7 and 7Plus, etc., there has been
no sufficient effort by the design community to devise a systematic approach for map-
ping real-time streaming applications onto a cluster heterogeneous MPSoC. Thus,
motivated by this fact, in this chapter, we present our new algorithm to map streaming
applications onto a cluster heterogeneous MPSoC, where the streaming applications
are modeled as CSDF graphs and scheduled using the HRT scheduling framework
in Section 2.3. The proposed novel algorithm is called Frequency Driven Mapping
(FDM) and its main novelty is twofold:

1. By using the HRT scheduling framework for CSDF graphs, explained in Section
2.3, we propose an efficient way to determine a suitable processor type for each

41

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

actor/task in a CSDF graph, where the energy consumption is minimized and
throughput and latency constraints are met;

2. According to an initial mapping derived by the first-fit-decreasing (FFD) heuris-
tic and the properties of cluster MPSoCs, we remap some tasks to unused clus-
ters in order to further reduce the energy consumption by using VFS.

We have performed various experiments on real-life streaming applications. The
experimental results show that compared to the existing approaches in [CKR14] and
[KYD11], the proposed FDM algorithm can achieve more energy saving.

4.1 Related Work

The energy-efficient design issue has been addressed extensively in the past decade.
Voltage/frequency scaling (VFS) and dynamic power management (DPM) are the two
major techniques used to achieve energy efficiency. In particular, in real-time systems,
a considerable amount of work has been done to deploy VFS to schedule real-time
tasks in an energy-efficient way. [CK07] surveys most of the papers dealing with
energy efficient scheduling of real-time tasks by using VFS. All papers reported in
[CK07] assume per-core VFS platforms. Regardless of the properties of cluster MP-
SoCs, directly adopting these per-core VFS approaches onto cluster MPSoCs may
lead to an energy inefficient design/mapping [KYD11]. In contrast, the algorithm
proposed in this chapter is specifically devised for cluster heterogeneous MPSoCs and
effectively deals with the mapping problem on the cluster heterogeneous MPSoCs in
terms of energy efficiency.

Although the works in [CKR14] and [KYD11] have addressed real-time taskmap-
ping on cluster-based MPSoC systems, they are different from our work in several
aspects. The differences are summarized in Table 4.1. First, [CKR14] and [KYD11]
only consider tomeet deadlines for each task, but do not consider the applications’ per-
formance constraints, e.g., throughput and latency, which streaming applications usu-
ally are subject to. Applying their techniques directly onto the considered streaming
applications will not guarantee the performance constraints, i.e., throughput and la-
tency. Second, they consider partitioned scheduling in their work, whereas motivated
by the state-of-the-art hardware, i.e., ARM big.LITTLE heterogeneous MPSoCs, we
consider a cluster scheduling which provides a good trade-off between global schedul-
ing and partitioned scheduling with respect to schedulability and scalability [BBA10].
Thus, the cluster scheduling can achieve a better system utilization than partitioned
scheduling. Finally, the work in [KYD11] only considers homogeneous MPSoCs,
whereas we consider heterogeneous MPSoCs which provide better energy efficiency.

42

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

heterogeneous performance scheduling

Colin et al. [CKR14] Yes No Partitioned
Kong et al. [KYD11] No No Partitioned
Our FDM approach Yes Yes Cluster

Table 4.1: The difference from [KYD11] and [CKR14]

Some works have been done to reduce the energy consumption of streaming ap-
plications onMPSoCs [SDK13], [XMM07], [WLL+11] and [CHBK13], where some
performance metrics are taken into account. The works in [SDK13], [XMM07],
[WLL+11] and [CHBK13] use per-core VFS on homogeneous MPSoCs to reduce
the energy consumption. In contrast, we consider cluster heterogeneous MPSoCs in
our work. Heterogeneous MPSoCs are known to be more energy efficient than ho-
mogeneous MPSoCs [KFJ+03]. Since finding a suitable type of processor for each
actor/task is really important with respect to energy reduction and guaranteed per-
formance, mapping tasks to heterogeneous MPSoCs is a more challenging job than
mapping tasks to homogeneous MPSoCs. Moreover, adopting the per-core VFS ap-
proaches without considering the properties of cluster MPSoCs may result in an en-
ergy inefficient mapping [KYD11].

4.2 Background

In this section, we elaborate the system model and present the power/energy model
considered throughout this chapter.

4.2.1 System Model

We consider a cluster heterogeneous MPSoC which has two types of clusters, namely
performance-efficient (PE) clusters and energy-efficient (EE) clusters, which refer to
the ARM’s big.LITTLE architecture [ARM16]. Each cluster has a number of identi-
cal processors, PE processor or EE processor. In total, the cluster heterogeneous MP-
SoC consists of NPE

c ×MPE
p PE processors andMEE

c ×MEE
p EE processors, where

NPE
c andMPE

p represent the total number of PE clusters and the number of processors
per PE cluster, respectively. MEE

c and MEE
p are the total number of EE clusters and

the number of processors per EE cluster, respectively. Figure 4.1 shows an example of
a cluster heterogeneous MPSoC, where there are two PE clusters and two EE clusters,
each cluster with four identical processors. The processors within one cluster share
some resources, e.g, the last level cache, the memory controller, etc. A cluster in the
system can be switched off, thereby consuming no power. In this chapter, we only con-
sider symmetric clusters, i.e., all clusters have the same number of processors, but our

43

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

Figure 4.1: An example of a cluster heterogeneous MPSoC

approach can be easily adapted to asymmetric clusters. Since application tasks/actors
may run on different processor types, theWCETCi of a task/actor varies according to
the performance of the assigned processor type. Hence, we first extend the task model
described in Section 2.3 to support this WCET variation due to the heterogeneity of
the systems. We replace the scalar Ci with a vector ~Ci which consists of two WCETs,
CEE
i and CPE

i , corresponding to the WCET of a task running on an EE processor and
on a PE processor, respectively. CEE

i andCPE
i are theWCETswhen EE and PE proces-

sors run at their maximum operating frequencies supported by the hardware platform.
A real-time task τi then is specified by a tuple of τi = {Si, Di, Ti, C

EE
i , CPE

i }.
As we mentioned in Section 4.1, we adopt cluster scheduling in this chapter. With

cluster scheduling, we compute the minimum voltage/frequency level offline and con-
figure the cluster with the computed voltage/frequency level. On each cluster, an opti-
mal global scheduling algorithm, e.g., PFair [AS00] or LLREF [CRJ06], is deployed
to schedule actors. A periodic taskset is schedulable on a homogeneous multiproces-
sor system by an optimal global scheduling algorithm, if U =

∑
∀τi∈ΓCi/Ti ≤ M

[BCPV93a], whereU is the total utilization of the taskset andM is the number of pro-
cessors. Since in our work we consider an optimal global scheduling algorithm for

44

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

each cluster, tasks mapped onto a PE cluster are schedulable if UPEk ≤ MPE
p , while

tasks mapped onto an EE cluster are schedulable if UEEj ≤MEE
p . UPEk and UEEj are

the utilization of PE cluster k and EE cluster j, respectively. They are computed by
the following equations:

UEE
j =

∑
∀τi∈AEE

j

CEE
i

T̆i
, UPE

k =
∑
∀τi∈APE

k

CPE
i

T̆i
(4.1)

whereAEE
j andAPE

k represent the set of actors assigned to EE cluster j and PE cluster
k, respectively.

4.2.2 Energy Model

In this chapter, we use real measurements from the ODROID XU-3 [ODR16] board
to build our power and energy models. The ODROID XU-3 has an Exynos 5422 chip
[Sam16], where there are two clusters on the chip, one quad core Cortex A15 (big)
and one quad core Cortex A7 (LITTLE). The power consumption of a cluster consists
of two parts, ‘processor’ and ’uncore’ [GBK+12]. The ’processor’ power consump-
tion is power dissipated by the processors, while the ’uncore’ power consumption is
the power consumption from some components not pertaining to a processor, e.g., a
shared cache, an integrated memory controller, etc. The ‘uncore’ power consumption
of the ODROID XU-3 is shown in Table 4.2, where the ‘uncore’ power consumption
for the PE (big) cluster and EE (LITTLE) cluster, at different operating frequencies,
are given. We can see that for the PE (big) cluster the ‘uncore’ power consumption
P PE
s (f) scales along with the cluster operating frequency. We find that the ‘uncore’

power consumption P PE
s (f) contributes approximately 20% to the total power con-

sumption of the big cluster. For the EE (LITTLE) cluster, with the on-chip power
sensor, we can not see the variation of the ’uncore’ power consumption P EE

s (f) at dif-
ferent frequency levels. Hence, in Table 4.2, the ‘uncore’ power consumption P EE

s (f)
is the same for each frequency level. Note that since one core on the LITTLE cluster
has to be active for the operating system, we are not able to measure the pure ‘uncore’
power consumption P EE

s (f) for the LITTLE cluster. The values of P EE
s (f) given in

Table 4.2 include some power consumption from the active core running the OS.
Although the ‘uncore’ power consumption may be related to the frequency as

shown in Table 4.2, it is different from the dynamic power consumption which also
relates to the frequency. Dynamic power is only consumed when there is a workload
on the processors, whereas the ‘uncore’ power consumption always exists as long as
the cluster is on. Based on the above discussion, we use the following power model
for each cluster,

P (f) = αf b +Mpβ + Ps(f) (4.2)

45

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

f (GHz) 2 1.8 1.6 1.4 1.2 1 0.8
P PE
s (f) (W) 0.8 0.528 0.39 0.309 0.244 0.182 0.134

f (GHz) 1.4 1.2 1 0.8 0.6 0.4 0.2
P EE
s (f) (W) 0.04 0.04 0.04 0.04 0.04 0.04 0.04

Table 4.2: The ’uncore’ power consumption

where the first term is the dynamic power consumption, β is the static power con-
sumption of one processor andMp is the number of processors on the cluster. Ps(f)
is the ’uncore’ power consumption and f is the frequency level. In this chapter, we use
power parameters from ODROID XU-3 as our reference, so parameters α, b, and β
are estimated by using curve fitting with real power measurements from the ODROID
XU-3 board. The estimated parameters for each processor type are shown in Table
4.3.

processor type α (W/MHzb) b β (W)

PE (big) 3.03× 10−9 2.621 0.155
EE (LITTLE) 2.62× 10−9 2.12 0.0278

Table 4.3: The estimated parameters

To validate our power model, described above, we measure the power consump-
tion from the board and compare it with the estimations obtained from our model.
We keep one core on and run a computation-intensive job on the core. Then, we mea-
sure the power consumption at different frequency levels for each cluster through the
on-chip power sensors. Figure 4.2 plots two curves for the PE (big) cluster, one for
the measured power consumption and another for the estimated power consumption,
while Figure 4.3 plots two curves for the EE (LITTLE) cluster, one for the measured
power consumption and another for the estimated power consumption. In the two fig-
ures, the y-axis shows the power consumption, while the x-axis shows the different
operating frequency levels. From the figures, we can see that the estimated curves are
close to the measured curves, so our power model is sufficiently accurate.

To compute the total system energy consumption, we need to introduce the con-
cept of a hyper-period (hp),

hp = lcm(T̆1, T̆2, , . . . , T̆i) (4.3)

where the lcm is the least common multiple and T̆1, T̆2, . . . , T̆i are the minimum
periods of application actors/tasks computed using Equation (2.8). For periodic tasks,

46

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

 0

 500

 1000

 1500

 2000

 2500

 3000

800
1000

1200
1400

1600
1800

2000

Po
w

er
 (

m
W

)

Frequency (MHz)

Big_Measurement
Big_Estimation

Figure 4.2: Power model validation of PE (big) cluster

every hyper-period has the same workload, i.e, all tasks will execute for a certain
number of times. Hence, with the definition of the hyper-period, we can build the
energy model of an MPSoC within one hyper-period as follows:

E = Es + Ed (4.4)

where Es is the total static energy consumption and the total ‘uncore’ energy con-
sumption which is computed as:

Es = hp
(MEE

ac∑
j=1

Ps
EE(fj) +

MPE
ac∑

k=1

P PE
s (fk) +MEE

ac M
EE
p βEE +MPE

ac M
PE
p βPE

)
(4.5)

MEE
ac is the number of active EE clusters andMPE

ac denotes the number of active PE
clusters. MPE

p andMEE
p denote the number of processor per PE cluster and EE cluster,

respectively. fj and fk are the operating frequency levels for the corresponding EE
cluster and PE cluster, respectively. βEE and βPE are the power parameters shown in
the last column of Table 4.3.

47

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

 68

 70

 72

 74

 76

 78

 80

 82

200
400

600
800

1000
1200

1400

Po
w

er
 (

m
W

)

Frequency (MHz)

Little_measurement
Little_estimation

Figure 4.3: Power model validation of EE (LITTLE) cluster

The total dynamic energy consumption Ed in Equation (4.4) is computed as:

Ed = hp
(MEE

ac∑
j=1

∑
∀τi∈AEE

j

CEE
i

Ti
αEEf bEEj

fmax
j

fj
+

MPE
ac∑

k=1

∑
∀τi∈APE

k

CPE
i

Ti
αPEf bPEk

fmax
k

fk

)

= hp

MEE
ac∑

j=1

UEE
j αEEf

(bEE−1)
j fmax

j + hp

MPE
ac∑

k=1

UPE
k αPEf

(bPE−1)
k fmax

k

(4.6)

where fj and fk are the operating frequencies of the corresponding EE cluster and PE
cluster, respectively. Correspondingly, fmax

j and fmax
k are the maximum operating

frequencies of the EE and PE cluster, respectively. αEE, bEE, αPE and bPE are the
estimated power parameters for an EE cluster and a PE cluster, shown in Table 4.3.

4.3 Proposed Mapping Algorithm

In this section, we present our mapping algorithm, called Frequency Driven Map-
ping (FDM), which is able to energy-efficiently map real-time streaming applications,
modeled as CSDF graphs, to cluster heterogeneous MPSoCs while guaranteeing the

48

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

vld iq idct mce1 e3 e4

[594] [1] [1] [1] [1] [594]

Figure 4.4: H.263 Decoder

throughput and latency constraints. The complete FDM algorithm is given in Algo-
rithm 5 in Section 4.3.4. Before we explain FDM in details, we would like to introduce
the three foundations of FDM which are described in Section 4.3.1, 4.3.2, 4.3.36.

4.3.1 Processor Type Assignment

In a heterogeneous MPSoC, choosing the type of processor for each task in an ap-
plication is crucial. To support this statement, we show an example with a real-life
streaming application, H.263 decoder, which is modeled as an SDF graph which is a
subset of CSDF. Hence, the HRT scheduling explained in Section 2.3 is applicable to
the SDF. The SDF-modeled H.263 decoder consists of 4 tasks/actors and 3 edges, as
shown in Figure 4.4. The parameters of each actor in the H.263 decoder are shown in
Table 4.4, where CPE

i and CEE
i denote the WCETs in clock cycles (cc) of the actor on

the PE cluster and EE cluster, respectively. qi is the repetition value which is used to
compute the workload explained in Definition 2.3.1.

CPE
i (cc) CEE

i (cc) qi

vld 26018 52036 1
iq 559 1118 594
idct 500 1000 594
mc 10958 21916 1

Table 4.4: The parameters of H.263

In Table 4.5, different processor type assignments for all actors are presented.
Column 1 shows the number identifying processor type assignments, and column 2 to
5 show which type of processor each actor is assigned to where we highlight the EE
processor type. The last two columns show the latency and the throughput of these
processor type assignments, which are computed by using Equation (2.11) and Equa-
tion (2.12) and the parameters in Table 4.4. In these two columns, we highlight the
values which satisfy the latency and throughput constraints. Intuitively, we want to
have more actors running on EE processors as long as the latency and throughput con-
straints are met. According to the figures in Table 4.5, we can see that an inappropriate
processor type assignment significantly degrades the system performance and violates

49

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

Processor Type Assignment L R(token/
vld iq idct mc (cycles) cycles)

1 EE PE PE PE 996697 1/332046
2 PE EE PE PE 1993394 1/664092
3 PE PE EE PE 1783000 1/594000
4 PE PE PE EE 996697 1/332046
5 EE PE PE EE 996697 1/332046

Table 4.5: Different processor type assignments for the H.263 decoder

the constraints. Looking at processor type assignments 2 and 3, assigning either task
iq or idct to the EE type of processor leads to a violation of the performance con-
straints. On the other hands, processor type assignment 5 assigns both tasks vld and
mc to the EE type of processor while the performance constraints are met. Thus, de-
termining a good processor type assignment is essential for heterogeneous MPSoCs.

From the example given above, in order to efficiently assign actors to proces-
sor types, it is important to identify those tasks which will violate the performance
constraints if assigning them to the EE type of processor. By considering the charac-
teristics of the HRT scheduling of CSDF, we propose an efficient way to split tasks
into two categories, bottleneck and non-bottleneck tasks. The bottleneck actors/tasks
should be assigned to PE processors in order to guarantee the performance, while
the non-bottleneck actors/tasks can be assigned to EE processors for the purpose of
energy saving. We introduce the following proposition:

Proposition 1. For a CSDF graph scheduled using hard-real-time scheduling, in-
creasing WCET Ci of task τi will not increase the latency and reduce the throughput,
if the maximum workload Ŵ remains the same.

Proof. By looking at Equation (2.11), we can see that the latency is only determined
by the start times and periods of the input and output actors. On the one hand, from
Equation (2.8), it is not difficult to see that Ŵ is the variable part to compute period T̆i,
because qi and lcm(−→q) are both constants. Hence, as long as the maximumworkload
Ŵ does not increase, increasing other actors’ WCETs will not change any actor’s
period. As a result, the throughput will not be reduced. On the other hand, start time
Si depends on the data-dependency and the deadlines of precedent actors. The data-
dependency will not change in any case, whileDi = T̆i and period T̆i does not change.
Hence, Si remains the same as well. As a result, the latency does not increase.

It follows from Proposition 1 that some actors in the graph can execute slowly,
while not degrading the application performance. Thus, Proposition 1 can help us to

50

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

Algorithm 2: Processor Type Assignment
Input: G = (A, E)
Output: AEE and APE

1 A← Sort ∀τi ∈ A in increasing order ofW EE
i of τi

2 b← Binary search to find the position in A with the biggest index , where
actor τi can meetW EE

i ≤ Ŵ PE.
3 AEE ← A[0 : b]
4 APE ← A−AEE

5 return AEE and APE

classify the actors into the two categories mentioned above. If an actor is assumed
to be executed on an EE processor (longer WCET) and its new workload Wi does
not change the maximum workload Ŵ , then it is a non-bottleneck actor and can be
assigned to an EE cluster without degrading the application performance. Otherwise,
the actor should be assigned to a PE cluster in order to guarantee the performance.
We look back at the example of the H.263 decoder. From Table 4.5, since executing
vld and mc on the EE type of processor does not lead to an increase of Ŵ , this as-
signment does not violate the performance constraints. Therefore, we can use Ŵ PE

as a threshold to determine which type of processor an actor should be run on, where
Ŵ PE is themaximum actor workload assuming that all actors run on PE processors.
Algorithm 2 presents a pseudo-code showing how to classify the actors, where AEE

and APE denote the set of actors assigned to EE type and PE type of processors, re-
spectively. To reduce the complexity of the processor type assignment, first we sort
the actors in order of increasing workload assuming all of them are assigned to EE
processors - see Line 1 in Algorithm 2. Then, with the sorted actors, we use Ŵ PE as a
threshold and deploy a binary search algorithm to find the pivotal point by which we
can split the sorted actors into two sets, one for the EE type of processor and another
for the PE type of processor. Since it is impossible to guarantee that the binary search
can always find one actor whoseW EE

i is equal to Ŵ PE, we pick up the one with the
biggest index as the pivotal point, where the condition W EE

i ≤ Ŵ PE is met. Since
the sorting algorithm has a complexity of O(|A| log |A|) and the complexity of the
binary search is O(log |A|), the complexity of Algorithm 2 is O(|A| log |A|).

The processor type assignment can: (1) assign actors of an application CSDF
graph to two different types of processors and (2) allow to initially decide whether
the system has enough resources to schedule this application. Suppose that UEE and
UPE are the total utilization of AEE and APE returned by Algorithm 2, respectively. If
UEE > MEE

c ×MEE
p , the tasks from AEE are not schedulable on EE clusters. If tasks

on the EE clusters are not schedulable, we can move some of them to PE clusters such

51

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

PE Clusters Actor Mapping Energy Consumption
vld iq idct mc (µJ)

WFD 2 PE1 PE2 PE1 PE1 1378
FFD 1 PE1 PE1 PE1 PE1 1226

Table 4.6: Different mappings for H.263 decoder

that the tasks can run on the system. Based on Proposition 1, it is trivial to observe
that reassigning some of the tasks in set AEE to set APE, i.e., assigning these tasks to
the PE type of cluster, is still able to guarantee the performance constraints. However,
if tasks on the PE clusters are not schedulable, i.e., UPE > MPE

c ×MPE
p , that means

that with the throughput and latency constraints the application is not schedulable on
the system.

4.3.2 Task mapping

When the processor type assignment is determined as described in Section 4.3.1, tasks
need to be mapped onto clusters. The task mapping is analogous to a bin-packing
problem which is known to be an NP-hard problem [GJ79]. Several well-known
heuristic algorithms for the bin-packing problem, e.g., first-fit, best-fit, etc, have been
proposed see Section 2.2.3. In terms of energy efficiency, the worst-fit-decreasing
(WFD) algorithm is evaluated as the best mapping heuristic [AY03] for the parti-
tioned scheduling. [KYD11] also uses an WFD-like approach. However, by using the
following example, we will show that WFD does not work very well in the context of
a cluster MPSoC with cluster scheduling.

Here, we use a cluster homogeneous MPSoC to illustrate this problem, where the
homogeneousMPSoC has two PE clusters, eachwith four identical PE processors. Ta-
ble 4.6 shows twomappings for the H.263 decoder in Figure 4.4 by using two different
mapping algorithms, worst-fit-decreasing (WFD) and first-fit-decreasing (FFD). The
mapping derived byWFD consumes more energy than the mapping obtained by FFD.
The reason is that WFD tries to distribute the heavy tasks to different clusters, where
these heavy tasks have large utilization and need a high operating frequency in order
to meet their deadlines. In the context of a cluster MPSoC, these heavy tasks constrain
the minimum operating frequency of the cluster. On the contrary, FFD always strives
to find the first available cluster to map, where this strategy is more likely to map the
heavy tasks with the same or close utilization to the same cluster. Then, the system
can efficientlly utilize cluster VFS to reduce the energy consumption. Hence, in our
approach we use FFD to map tasks to clusters in order to obtain an initial mapping.
Given this initial mapping from FFD, we can compute the minimum operating fre-
quency of a cluster. However, the frequency of a cluster is not only determined by

52

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

the task with the largest utilization, but also the total utilization of the tasks has to be
taken into account. The following example shows the effect of the total utilization.
Example 4.3.1. Consider a cluster with two processors and three tasks with utiliza-
tion {0.5, 0.5, 0.5}. The three tasks can be mapped to the cluster because the total
utilization of the tasks is 0.5 + 0.5 + 0.5 < 2. The frequency of this cluster however
can not be set according to the task’s maximum utilization which is 0.5, because the
total utilization is 1.5 and the utilization bound (the number of processor) is 2. If the
frequency is scaled with 0.5, then the total utilization of this task set becomes 1.5

0.5 > 2
which means the task set is not schedulable on the cluster.

Considering the example above, the frequency of a cluster should be computed as
follows:

fj = max

(
max
∀τi∈Aj

{ui},
Uj
Mp

)
× fmax (4.7)

where ui is the utilization of task τi ∈ Aj and Aj is the set of tasks mapped to cluster
j. fmax is the maximum frequency of the type of processor used in the cluster. Uj is
the total utilization of Aj andMp is the number of processors in the cluster. Usually,
a cluster only supports a set of finite discrete frequency levels. Hence, we select the
minimum frequency from the frequency set which is greater than or equal to frequency
fj in Equation (4.7).

With Equation (4.7), we classify the clusters into two categories, namely U-cluster
and T-cluster, which later will be used in our remapping phase described in Section
4.3.3.

Definition 4.3.1. An U-cluster is a cluster where max
∀τi∈Aj

{ui} < Uj

Mp
.

U-cluster means that the operating frequency of the cluster is determined by the
total utilization.

Definition 4.3.2. A T-cluster is a cluster where max
∀τi∈Aj

{ui} ≥ Uj

Mp
.

T-cluster means that the operating frequency of the cluster is determined by the
task which has the largest utilization. Hence, we call such task a constrained task.

Definition 4.3.3. In a T-cluster, a constrained task is the task which has the largest
utilization.

4.3.3 Remapping

The FFD algorithm mentioned in Section 4.3.2 enables to quickly map tasks to clus-
ters. On a given MPSoC platform, FFD might just use a few clusters to run the ap-
plication tasks and leave the rest of the available clusters unused. This would lead to

53

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

a few used clusters with high utilization whose frequency can not be scaled down by
using VFS. Hence, based on the FFD mapping, we propose a remapping approach to
explore the possibility to energy-efficiently utilize the unused clusters on the system
such that we can balance or offload the workload of some clusters to the unused clus-
ters in order to further scale down the clusters’ operating frequencies to reduce the
total system energy consumption.

Our remapping approach is based on analysis for the U-cluster and T-cluster cate-
gories introduced and defined in Section 4.3.2. Below, we discuss how to remap tasks
for both categories of clusters in order to reduce the energy consumption.

U-cluster

According to Definition 4.3.1, in an U-cluster, the frequency of the cluster is deter-
mined by the total utilization. Hence, we strive to remap some tasks to an unused
cluster to reduce the total utilization, which in turn allows to scale down the frequency
further. In order to minimize the energy consumption, we need to find howmany tasks
should be remapped and what the optimal frequencies are for the initial cluster and
the new cluster to be used.

Consider that we have an initial U-cluster onto which a task set with utilization U
is mapped. We split the task set into two subsets, one with utilization U1 and another
with U2. We remap the task set with U2 to an unused cluster, and keep the task set
with U1 on the initial cluster. Then the energy consumption of the new mapping can
be computed as follows:

E = hp
(
U1αf

(b−1)
1 fmax

1 +Mpβ+Ps(f1)+U2αf
(b−1)
2 fmax

2 +Mpβ+Ps(f2)
)
(4.8)

where f1 is the operating frequency of the initial cluster, and f2 is the operating fre-
quency of the new cluster. In Equation (4.8), there are four variables, U1, U2, f1, and
f2. Since frequencies f1 and f2 depend on U1 and U2, respectively, and U1 is related
to U2, these interrelationship between them makes it difficult to find optimal values
for all variables in order to minimize Equation (4.8). Hence, with the consideration
of simplifying the procedure, we use a load balancing approach to split tasks on an
U-cluster into two tasksets. The split tasksets have close total utilizations. Algorithm
3 presents the pseudo-code of splitting the tasks for an U-cluster. We first sort tasks
in order of decreasing utilization. Then, we assign the tasks one by one to the taskset
Γ2. As soon as the utilization U2 of Γ2 is greater than or equal to the utilization U1

of Γ1, the algorithm terminates and returns Γ1 and Γ2. Due to the sorting algorithm
used in Line 1, the complexity of Algorithm 3 is O(|Γ| log(|Γ|)).

The remapping will switch on a new cluster, so the remapping should provide
enough energy reduction to compensate the static and ‘uncore’ power consumption
of the new cluster. In order to test whether it is worthwhile remapping tasks to an

54

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

Algorithm 3: Split tasks for U cluster
Input: A task set Γ
Output: two tasksets Γ1 and Γ2

1 Sort tasks in Γ in order of decreasing utilization;
2 Γ1 ← Γ, Γ2 ← ∅;
3 for i = 1 to |Γ| do
4 if U2 ≤ U1 then
5 Γ1 ← Γ1 − τi;
6 Γ2 ← Γ2 + τi;

7 else
8 Break;

9 return Γ1 and Γ2;

unused cluster, we provide the following proposition to validate the efficiency of the
remapping.

Proposition 2. Given a taskset Γ and its subsets Γ1 and Γ2, their utilizations are U ,
U1, andU2, respectively, whereU1+U2 = U , and taskset Γ is assigned to one cluster.
The cluster is an U-cluster. Then, moving taskset Γ2 to an unused cluster can reduce
the energy consumption, if the following condition is met:(

U1α(f (b−1) − f (b−1)
1) + U2α(f (b−1) − f (b−1)

2)

)
fmax

>Ps(f1) + Ps(f2) +Mpβ − Ps(f)

(4.9)

where f is the operating frequency of the initial cluster before remapping, and f1

and f2 are the operating frequencies of the initial cluster and the new cluster after
remapping, respectively. fmax is the maximum operating frequency of the cluster.1

Proof. Before the remapping, the energy consumption of the initial cluster is as fol-
lows:

E = hp
(
Uαf (b−1)fmax +Mpβ + Ps(f)

)
(4.10)

After the remapping, the energy consumption of the two clusters is:

En = hp
(
U1αf

(b−1)
1 fmax +Mpβ + Ps(f1) + U2αf

(b−1)
2 fmax +Mpβ + Ps(f2)

)
(4.11)

1Since we only do remapping on the same type of cluster, the maximum operating frequency is the
same.

55

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

To guarantee that the remapping leads to less energy consumption, we need the fol-
lowing inequality satisfied:

E > En

Since we consider symmetric clusters, by substituting Equation (4.10) and (4.11) in
the inequality and eliminating the same terms on both sides, we obtain the following
condition: (

U1α(f (b−1) − f (b−1)
1) + U2α(f (b−1) − f (b−1)

2)

)
fmax

>Ps(f1) + Ps(f2) +Mpβ − Ps(f)

(4.12)

T-cluster

According to Definition 4.3.2, in a T-cluster, the frequency of the cluster is determined
by the constrained task (Definition 4.3.3). However, within one cluster, the FFD
discussed in Section 4.3.2 might map some other tasks which have lower utilization
and could operate at a lower frequency. In this case, remapping these tasks to an
unused cluster operated at a lower frequency may result in an overall reduced energy
consumption.

Example 4.3.2. Given two clusters with two processors each and a task set with three
tasks where the utilizations are {0.9, 0.3, 0.3}, the FFD maps all tasks to one cluster,
and the cluster is a T-cluster. The frequency is determined by the task with utilization
0.9. However, if we map the two tasks with utilization 0.3 to the unused cluster, the
frequency of the initial cluster is not changed, but the new cluster operates at a lower
frequency which can significantly reduce the overall energy consumption.

Example 4.3.2 illustrates howwe can remap tasks of a T-cluster. We find the actors
which can run at a frequency lower than the current cluster frequency and remap them
to an unused cluster. Algorithm 4 presents the pseudo-code of splitting tasks of a T-
cluster. The complexity of Algorithm 4 is O(|Γ| log |Γ|) due to the sorting algorithm
used in Line 1. The remapping will need more static power consumption and ‘uncore’
power consumption due to the new cluster switched on. Thus, the efficiency of the
remapping should be verified. The following proposition presents an efficient way to
check this.

Proposition 3. Given a taskset Γ and its subsets Γ1 and Γ2, their utilizations are U ,
U1, and U2 respectively, where U = U1 +U2, and taskset Γ is assigned to one cluster.
The cluster is a T-cluster and the constrained actor is in subset Γ2. Then, moving

56

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

Algorithm 4: Split tasks for T-cluster
Input: A task set Γ
Output: two tasksets Γ1 and Γ2

1 Sort tasks in Γ in order of decreasing utilization;
2 Γ1 ← ∅, Γ2 ← ∅;
3 for i = 1 to |Γ| do
4 if τi can run at a lower frequency then
5 for j = i to |Γ| do
6 Γ1 ← Γ1 + τj ;

7 Γ2 ← Γ− Γ1;
8 Break;

9 return Γ1 and Γ2;

taskset Γ1 to an unused cluster can reduce the energy consumption, if the following
condition is met:

U1 · α · f (b−1)fmax > U1 · α · f (b−1)
1 fmax +Mpβ + Ps(f1) (4.13)

where f and f1 are the operating frequencies of the initial and new cluster, respec-
tively. fmax is the maximum operating frequency of the cluster. 2

Proof. Assume that taskset Γ is assigned to one cluster and its operating frequency
is f . Before the remapping, the energy consumption of the initial cluster can be com-
puted as follows:

E = hp
(
U · α · f (b−1)fmax +Mpβ + Ps(f)

)
(4.14)

If taskset Γ1 which is a subset of Γ is remapped to an unused cluster, the operating fre-
quency of the new cluster is f1. Since the constrained task is in taskset Γ2 and taskset
Γ2 remains on the initial cluster, the frequency of the initial cluster does not change.
After the remapping, the energy consumption of the two clusters is the following:

En = hp
(
U2 ·α ·f (b−1)fmax +Mpβ+Ps(f)+U1 ·α ·f (b−1)

1 fmax +Mpβ+Ps(f1)
)

(4.15)
The assignment with two clusters is more energy-efficient, if E > En. Since U =
U1 + U2, we replace U2 with U − U1 in Equation (4.15). By substituting Equation
(4.14) and (4.15) and eliminating the same terms on both sides of inequalityE > En,
we obtain:

U1 · α · f (b−1)fmax > U1 · α · f (b−1)
1 fmax +Mpβ + Ps(f1) (4.16)

2Same type of clusters has the same maximum operating frequency.

57

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

4.3.4 The FDM Algorithm

In this section, we present our overall mapping algorithm, called Frequency Driven
Mapping (FDM). The inputs to FDM are a CSDF graph G = (A, E) and a cluster
heterogeneous MPSoC, and the outputs are the task mapping to clusters and the min-
imum operating frequency for each cluster which is active. Algorithm 5 shows the
pseudo-code of FDM. In Line 1, FDM applies Algorithm 2 explained in Section 4.3.1
to split tasks into two sets APE and AEE which denote set of the tasks assigned to
PE type and EE type of processors, respectively. In Algorithm 2, the processor type
assignment completes the assignment procedure with the guarantees of meeting the
performance constraints. Hence, if the task setsAEE andAPE derived by Algorithm 2
are schedulable on the given MPSoC, the throughput and latency constraints are met
for the application. From Line 2 to 5, we check whether the input MPSoC has enough
resources to schedule the real-time streaming application. If there is no enough EE
type of processors, we select some tasks from set AEE and assign them to set APE

such that we have enough EE processors to schedule the tasks in set AEE. The tasks
are selected in order of decreasing utilization, and the selection is terminated as soon
as the tasks in set AEE are schedulable on the EE processors. However, if there is
no enough PE type of processors, this means the application is not schedulable on
the input MPSoC. The algorithm terminates and signals failure at Line 5. After this
schedulability check, we use the FFD heuristic discussed in Section 4.3.2 on PE clus-
ters and EE clusters to map tasks to clusters in Line 6. After this phase, we obtain the
initial mapping and the corresponding set of active clusters, i.e., Φac shown in Line
6. An element in set Φac is a cluster which includes the tasks mapped to the cluster
and the operating frequency of the cluster computed by Equation (4.7).

With the obtained initial mapping, a remapping procedure starts from Line 7. In
this procedure, we go through every cluster in set Φac to check what category the
cluster falls into, U-cluster or T-cluster. From Line 8 to 14, we do remapping for an
U-cluster. At Line 8 and 9, if a cluster is an U-cluster of type EE or PE and there
is an unused cluster of the same type available (PE or EE), we split the tasks into
two sets by using Algorithm 3 and we use Proposition 2 to validate the remapping
in Line 10. If the remapping leads to energy reduction, we complete the remapping.
Otherwise, the mapping remains unchanged. From Line 15 to 21, we do remapping
for a T-cluster. For a T-cluster, we use Algorithm 4 to split tasks in Line 16 and we use
Proposition 3 to validate the remapping in Line 17. Note that after we do a remapping
the new cluster φunused is added to the active cluster set Φac shown in Line 12 and
19. Then later the new cluster also will undertake the remapping procedure as long as
there is an unused cluster of the same type and it can meet the remapping conditions.

58

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

Finally, FDM updates the operating frequencies of each cluster in set Φac in Line 22
by using Equation (4.7). At Line 23, FDM outputs the final mapping and the operating
frequency of each active cluster. Since the complexity of Algorithm 3 and 4 are both
O(|A| log(|A|)), in the worst case the complexity of FDM is O(N × |A| log(|A|)),
whereN is the total number of clusters in the inputMPSoC and |A| is the total number
of actors in the input CSDF graph.

4.4 Evaluation

In this section, we present three experiments to demonstrate the efficiency of the pro-
posed FDM algorithm compared to the existing approaches proposed in [CKR14]
and [KYD11]. We apply our FDM and the mapping approaches from [CKR14] and
[KYD11] on cluster heterogeneous and homogeneous MPSoCs. We choose [CKR14]
and [KYD11] to compare with, because the mapping approaches in [CKR14] and
[KYD11] are specifically devised for cluster MPSoCs as considered in our work.
Therefore, their work is the most related and relevant to our approach.

We select 11 real-life streaming applications from the StreamIt [TA10] benchmark
suite and the MP3 decoder [SGB06], where all streaming applications are modeled
as CSDF graphs. We use the same parameters, i.e., WCETs of application tasks, as
specified in [BS11]. An overview of all streaming applications is given in Table 4.7.
|A| denotes the number of tasks/actors in a CSDF graph, while |E| denotes the num-
ber of edges. L is the minimum achievable latency and R is the maximum achiev-
able throughput which are computed by using Equation (2.11) and Equation (2.12)
in Section 2.3, when the applications are scheduled by the HRT scheduling. In our
experiments, for each application, we set as constraints the corresponding minimum
achievable latency and the maximum achievable throughput (L andR given in Table
4.7) when we map the applications to the target platforms.

As target platforms, we consider three heterogeneousMPSoCswith different num-
ber of clusters and cluster granularities. We use ’MPSoC_x_pe_ee’ to denote a cluster
heterogeneous MPSoC, where ‘x’ denotes the number of processors per cluster, ‘pe’
and ‘ee’ denote the number of PE clusters and EE clusters, respectively. The three
consideredMPSoCs are described in Table 4.8. Column ‘granularity’ shows the num-
ber of processors per cluster, while column ‘PE clusters’ and ’EE clusters’ show the
number of PE clusters and EE clusters in the MPSoC, respectively.

For a cluster heterogeneous MPSoC, we use the energy model described in Sec-
tion 4.2.2, where the model parameters are given in Table 4.3 and Table 4.2. In our
experiments, we use our FDM approach and the reference mapping approaches de-
scribed in [CKR14] and [KYD11] to map the tasks of the streaming applications to
the three MPSoCs and we compute the energy consumption of each application to

59

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

Algorithm 5: Frequency Driven Mapping
Input: A CSDF graph G = (A, E) and a cluster heterogeneous MPSoC
Output: A task mapping for each cluster and the minimum operating frequency for

each active cluster
1 APE, AEE ←Apply Algorithm 2 to split all actors τi ∈ A to two parts;
2 if dUEEe > MEE

c ×MEE
p then

3 Map some actors τi to PE clusters in order of decreasing utilization such that
dUEEe ≤MEE

c ×MEE
p ;

4 if dUPEe > MPE
c ×MPE

p then
5 return Unschedulable;

6 Φac ←Apply FFD on PE clusters and EE clusters to generate an initial task mapping
and compute the frequency of each active cluster by using Equation (4.7);

/* Remapping procedure */
7 for j=1 to |φac| do
8 if max∀τi∈Aj{ui} <

Uj

Mp
& an unused cluster of the same type is available then

// U-cluster
9 Aj,1, Aj,2 ← Apply Algorithm 3 to split tasks;

10 if Aj,1 and Aj,2 can meet the condition in Proposition 2 then
11 Keep ∀τi ∈ Aj,1 on the initial cluster and remap ∀τi ∈ Aj,2 to unused

cluster φunused;
12 Φac ← Φac + φunused;

13 else
14 Keep the initial mapping;

15 if max∀τi∈Aj
{ui} ≥ Uj

Mp
& an unused cluster of the same type is available then

// T-cluster
16 Aj,1, Aj,2 ← Apply Algorithm 4 to split tasks;
17 if Aj,1 can meet the condition in Proposition 3 then
18 Keep ∀τi ∈ Aj,2 on the initial cluster and remap ∀τi ∈ Aj,1 to unused

cluster φunused;
19 Φac ← Φac + φunused;

20 else
21 Keep the initial mapping;

22 Update the operating frequencies of clusters in set Φac by using Equation (4.7);
23 return Φac;

MPSoC mapping configuration using Equation (4.4), (4.5) and (4.6). The metric for
the evaluation of each configuration is the energy reduction achieved by our proposed
FDMapproach over the different referencemapping approaches. We use the following

60

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

APP |A| |E| L R(token/
(cycles) cycles)

Beamformer 57 70 61152 1/5076
BitonicSort 40 46 2280 1/95
CHVocoder 55 70 28400 1/35550
DCT 8 7 380928 1/47616
DES 53 60 46080 1/1024
FFT 17 16 204544 1/12032
FMRadio 43 53 17208 1/1434
MP3 14 18 16795242 1/1866138
MPEG 23 26 138240 1/7680
Serpent 120 128 370296 1/3336
TDE 29 28 1071840 1/36960
Vocoder 114 147 291360 1/9105

Table 4.7: The Streaming Applications

Configuration Granularity PE clusters EE clusters

MPSoC_2_20_28 2 procs 20 28
MPSoC_4_10_14 4 procs 10 14
MPSoC_8_5_7 8 procs 5 7

Table 4.8: Cluster Heterogeneous MPSoC configurations

equation to compute the energy reduction:

r =
Eref − EFDM

Eref
(4.17)

where Eref is the energy consumption of an application to MPSoC mapping configu-
ration obtained by a reference mapping approach and EFDM denotes the energy con-
sumption achieved by our proposed FDM with cluster VFS.

Comparison with [CKR14] on Heterogeneous MPSoCs
In this section, we compare our proposed FDM approach to the mapping approach

proposed in [CKR14]. In [CKR14], the authors proposed several mapping approaches
for cluster heterogeneousMPSoCs, and in our experiments we select the best mapping
approach evaluated in [CKR14] and refer to it as CKR. In this experiment, the CKR
is considered as the reference point and the energy reduction for each application

61

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

Beamformer

BitonicSort

CHVocoder

DCT
DES

FFT
FMRadio

MP3
MPEG

Serpent

TDE
Vocoder

E
ne

rg
y

R
ed

uc
tio

n
MPSoC_2_20_28
MPSoC_4_10_14

MPSoC_8_5_7

Figure 4.5: Comparison between FDM and CKR

2 procs 4 procs 8 procs

FDM average 7% 7.7% 8.9%
Max energy reduction 25% 27% 29%

Table 4.9: Summary of Figure 4.5

benchmark is computed by using Equation (4.17). Figure 4.5 depicts the energy
reduction for each benchmark mapped on the three different MPSoCs, where the x-
axis shows the benchmarks and the y-axis shows the energy reduction. For 7 out of 12
benchmarks, our proposed FDM approach finds a mapping that consumes less energy
compared to the one obtained by the CRK approach. The main reason is that the
CKR approach is similar to the FFD algorithm but it does not consider remapping to
efficiently utilize the unused clusters. Hence, for the 7 benchmarks, the remapping
approach in our FDM algorithm outperforms the CKR. For the other 5 benchmarks,
the remapping is not beneficial for them, so our proposed FDM approach achieves the
same results as the CKR approach.

The energy reduction results are summarized in Table 4.9. We see that the average
energy reduction is 7%, 7.7%, and 8.9% for the three MPSoCs with 2, 4 and 8 proces-
sors per cluster, respectively. Among all experiments, the maximum energy reduction
occurs to benchmark DES which is 25%, 27%, and 29% for the three MPSoCs with
2, 4, and 8 processors per cluster, respectively.

62

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Beamformer

BitonicSort

CHVocoder

DCT
DES

FFT
FMRadio

MP3
MPEG

Serpent

TDE
Vocoder

E
ne

rg
y

R
ed

uc
tio

n

MPSoC_2_20_28
MPSoC_4_10_14

MPSoC_8_5_7

Figure 4.6: FDM vs. Algorithm 2+KYD

2 procs 4 procs 8 procs

FDM average 6.3% 8.5% 9.4%
Max energy reduction 19% 21% 34%

Table 4.10: Summary of Figure 4.6

Comparison with [KYD11] on Heterogeneous MPSoCs
In this experiment, we compare our FDM approach with the approach proposed

in [KYD11] which we refer to as KYD. Since [KYD11] only considers cluster homo-
geneous MPSoCs, we apply our processor type assignment proposed in Section 4.3.1,
i.e., Algorithm 2, to determine the processor type for each actor and then utilize the
KYD approach to map the actors to clusters. Thus, in this experiment, ‘Algorithm
2+KYD’ is used as the reference mapping approach in Equation (4.17).

The energy reduction for the different benchmarks mapped on the different MP-
SoCs is depicted in Figure 4.6. For 7 out of 12 benchmarks, our FDM finds a mapping
which consumes less energy than the mapping approach ’Algorithm 2+KYD’. For the
rest of the benchmarks, our proposed approach finds a mapping that consumes the
same energy as the reference mapping approach. For benchmarks CHVocoder, DCT,
MP3 and FMRadio, their actors which are assigned to PE type of clusters have very
similar workload, hence evenly distributing heavy tasks by the KYD approach can find
the energy efficient mapping as our FDM approach does. For benchmark Vocoder,

63

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Beamformer

BitonicSort

CHVocoder

DCT
DES

FFT
FMRadio

MP3
MPEG

Serpent

TDE
Vocoder

E
ne

rg
y

R
ed

uc
tio

n
MPSoC_2_20_28
MPSoC_4_10_14

MPSoC_8_5_7

Figure 4.7: FDM vs. KYD on homogeneous MPSoCs

2 procs 4 procs 8 procs

FDM average 10% 16.6% 18.5%
Max energy reduction 31% 34% 38%

Table 4.11: Summary of Figure 4.7

only two heavy tasks are assigned to PE clusters and running them on different clus-
ters leads to energy efficiency, so the KYD approach can find the best mapping by
mapping these two tasks to two different clusters as our FDM approach does.

The results are summarized in Table 4.10. We can see that the average energy
reduction of the three MPSoCs is 6.3% for the MPSoC with 2 processors per cluster,
8.5% for the MPSoC with 4 processors per cluster, and 9.4% for the MPSoC with 8
processors per clusters. The maximum energy reduction is 19% in benchmark Beam-
former for 2 processors per cluster, 21% and 34% in benchmark DES for 4 processors
per cluster and 8 processors per cluster, respectively.

Comparison with [KYD11] on Homogeneous MPSoCs
TheKYD approach [KYD11] is originally proposed for cluster homogeneousMP-

SoCs. In order to have a fair comparison, we apply our FDM approach to homoge-
neous MPSoCs and compare it with the KYD approach to show the efficiency of our
FDM approach. Since we need to guarantee the throughput and latency constraints

64

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

shown in Table 4.7, running the benchmarks on a cluster homogeneous MPSoC com-
prised of EE clusters will violate the performance constraints. Thus, we only map
the applications to the PE clusters available in the cluster MPSoCs described in Table
4.8, thereby considering cluster homogeneousMPSoCs that canmeet the performance
constraints for every application.

Figure 4.7 depicts the energy reduction of each benchmark mapped on the three
different MPSoCs by only using the PE clusters. In Figure 4.7, we see that for bench-
mark Vocoder on platform ’MPSoC_2_20_28’, the mapping derived by our FDM ap-
proach consumes 3%more energy than the KYD approach. With this fine granularity
of the cluster size, i.e, the small number of processors per cluster, benchmark Vocoder
has a lot of mapping possibilities. Since the KYD has a design space exploration step
which enables to explore more mappings and our FDM only improves the mapping
generated by the FFD heuristic, in the case of benchmark Vocoder our FDM does not
find a more energy efficient mapping compared to KYD. However, except benchmark
Vocoder on platform ’MPSoC_2_20_28’, our FDM approach outperforms the KYD
in all other cases by finding more energy efficient mappings.

The results of this experiment are summarized in Table 4.11. We see that for dif-
ferent MPSoCs our FDM approach can reduce the energy consumption by an average
of 10%, 16.6% and 18.5%. The maximum reduction occurs for benchmark Serpent
which is 31% and 34% for the MPSoCs with 2 and 4 processors per cluster, respec-
tively. For the MPSoC with 8 processors per cluster, benchmark BitonicSort has the
maximum energy reduction which is 38%.

65

CHAPTER 4. ENERGY OPTIMIZATION FOR REAL-TIME STREAMING
APPLICATIONS

66

Chapter 5

Energy Optimization for
Real-Time Tasks

Di Liu, Jelena Spasic, Peng Wang, and Todor Stefanov,
"Energy-Efficient Scheduling of Real-Time Tasks on Heterogeneous Multicores Using Task Splitting",
"The 22nd IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications", Daegu, South Korea, 2016, pp. 1-10.

As we discussed in Section 2.2.3, the semi-partitioned scheduling/task-splitting,
e.g., [BDWZ12, GSYY10, JLBK13, BBA11], can achieve a good trade-off be-

tween global scheduling and partitioned scheduling in terms of schedulability, re-
source utilization and scheduling overhead. The advantage of the task-splitting tech-
nique has been extended to another dimension, namely, energy-efficient real-time
scheduling. Lu and Guo [LG11] investigated to use the task-splitting technique given
in [GSYY10] to energy-efficiently schedule real-time tasks under fixed-priority schedul-
ing on homogeneous multicore systems. As presented in Section 1.1, the heteroge-
neous multicore systems are gradually replacing the homogeneous multicore systems
in order to satisfy diverse performance requirements of different applications and at
the same time reduce the energy consumption. However, there is no work investigat-
ing the task-splitting approach on heterogeneous multicore systems for the energy-
efficient purpose. Motivated by this fact, in this chapter, we investigate how to adopt
the task-splitting approach with dynamic priority scheduling to better utilize the re-
sources on heterogeneous multicore systems for energy efficiency. We select the C=D
approach [BDWZ12], which will be introduced in details later in Section 5.2.4, to split
tasks among heterogeneous cores. We extend the C=D approach for heterogeneous
multicore systems and propose an allocation algorithm to schedule real-time tasks
with C=D task-splitting on heterogeneous multicore systems. Formally, our novel
technical contributions are summarized as follows:

67

CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

• We analyze the properties of the C=D task-splitting and extend it for hetero-
geneous multicore systems. We present a new definition, namely ‘valid split’,
for the C=D task-splitting on heterogeneous multicore systems. This analysis
is presented in Section 5.4;

• Based on the analysis of the C=D task-splitting and the characteristics of het-
erogeneous multicore systems, we propose an energy-efficient algorithm, called
ASHM, to allocate and split real-time tasks on heterogeneous multicore sys-
tems. Algorithm ASHM is presented in Section 5.5;

• Since the existing methods to compute the minimum operational frequency for
each core cannot work with the C=D approach, we propose a new approach
based onQuick convergence Processor-demandAnalysis (QPA) [ZB09] to com-
pute the minimum frequency for each core in the system. This proposed ap-
proach is presented in Section 5.5.4

The extensive experiments on synthetic real-time tasks shows the effectiveness
of our ASHM algorithm over the existing partitioned algorithms in terms of energy
efficiency.

5.1 Related Work

Energy-efficient scheduling for real-time systems has been widely explored in the past
two decades. Chen and Kuo in [CK07] comprehensively reviewed most of the papers
addressing energy-efficient real-time scheduling problems before 2007. An updated
review for energy-efficient real-time scheduling is provided by Bambagini et al. in
[BMAB16]. We can see from [CK07, BMAB16] that most of the works consider
homogeneous systems, whereas in this work we consider heterogeneous multicore
systems which are more energy-efficient but more difficult to effectively schedule the
tasks.

A few works consider heterogeneous systems. Chen and Thiele in [CT08] pro-
posed a polynomial algorithm to energy efficiently schedule periodic tasks on hetero-
geneous systems but the systems they considered had only two cores. In contrast, we
consider a more general system model where the system has two types of cores, and
for each core type we can have any number of cores which can be seen on many real
commercial processors. Chen et al. [CST09] developed two polynomial-time algo-
rithms to energy efficiently allocate real-time tasks on a more general system model
that can have different types of processors and different number of processors for
each type like we consider in our work. However, in their work, they do not take
voltage/frequency scaling (VFS) into account, whereas we consider VFS as a crucial

68

CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

technique to improve the energy efficiency. With the consideration of VFS, we can
further minimize the energy consumption of the heterogeneous system. In [HTC07],
Huang et al. proposed an allocation algorithm to schedule frame-based real-time tasks
on heterogeneous multicore systems, where a non-preemptive scheduling is consid-
ered. The main difference compared to our work is: (1) they consider frame-based
real-time task model, whereas we consider the periodic task model which is more
general; (2) the non-preemptive scheduling, they consider, is known to be NP-hard in
the strong sense even on uniprocessor [JSM91]. In contrast, we consider preemptive
scheduling.

Recently, more interests have risen for energy efficient real-time scheduling on
single-ISA heterogeneous multicore systems. Liu et al. [LSCS15] consider an opti-
mal cluster scheduling to schedule real-time tasks on cluster heterogeneous multicore
systems. However, from practical perspective the optimal cluster scheduling suffers
from a very high overhead caused by frequent context switching and task migration.
When the overhead is taken into account, the achieved resource utilization may be
quite low in practice [BBA11]. In contrast, the C=D task-splitting, we consider, has
a limited number of migrations and on each core a normal EDF scheduler is used to
schedule real-time tasks, hence it significantly reduces the context-switching and task
migration overhead and makes it more practical for real implementation. Colin et al.
[CKR14] and Elewi et al. [ESAS14] adopt the partitioned EDF scheduling to sched-
ule real-time tasks on heterogeneous multicore systems, where both consider energy
minimization as the objective. Due to the capacity loss of partitioned scheduling,
the proposed approaches from [CKR14] and [ESAS14] do not fully utilize ‘LITTLE’
cores on a heterogeneous multicore system and thus possibly lose some opportuni-
ties to further reduce the energy consumption. Contrarily, in our work, we adopt the
state-of-the-art C=D task-splitting approach to exploit the energy efficiency of a het-
erogeneous multicore system. Our experimental results on randomly generated task
sets demonstrate the merit of the task-splitting on heterogeneous multicore systems.

A few works study the task migration/splitting approaches for energy-efficient
real-timemulticore system. Chen et al. [CHC+04] address the energy-efficient schedul-
ing problem on homogeneous multicore systems with task migration, in which all
tasks have the same release time and a common deadline. In our work, we consider a
more general and widely-used periodic task model and instead of homogeneous mul-
ticore systems, we consider heterogeneous multicore systems which are more energy
efficient. Lu and Guo [LG11] adopt the task-splitting approach proposed by Guan
et al. [GSYY10] on homogeneous multicore systems to achieve energy efficiency.
The main difference between [LG11] and our work is twofold:1) they consider fixed
priority scheduling, whereas dynamic priority scheduling, i.e., earliest deadline first
(EDF) [LL73], is adopted in our work. It is known that EDF can achieve better re-

69

CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

source utilization than fixed-priority scheduling; 2) they consider homogeneous mul-
ticore systems, whereas we target heterogeneous multicore systems which are more
energy-efficient.

5.2 Background
In this section, we present the system model, task model, and energy model used
in this work. Then, we give a brief description of the C=D task-splitting approach
[BDWZ12].

5.2.1 System Model

We consider a heterogeneous multicore system M which consists of two types of
cores, the ‘big’ core for performance and the ‘LITTLE’ core for low power. Through-
out this chapter, we use PE and EE to denote a ‘big’ core and a ‘LITTLE’ core, re-
spectively, like what we did in Chapter 4. We useMEE andMPE to denote the sets
consisting of all EE cores and all PE cores, respectively. The power consumption of
one core can be computed by the following equation,

P (f) = αf b + s (5.1)

where α and b ∈ [2, 3] are technology-based parameters [CK07], f is the opera-
tional frequency. For different types of cores, α and b are different. The first term of
Equation (5.1) is the frequency-related power consumption, i.e., the dynamic power
consumption. s denotes the power consumption unrelated to the frequency, i.e., the
static power consumption. Each core executes independently from the others and has
a discrete frequency set at which the core can run. Let fj = {f1, · · · , fl} denote the
frequency set of core j. Without loss of generality, we assume that the frequencies in
the set are sorted in increasing order, i.e., fk < fk+1.

5.2.2 Task Model

The task model adopted in this work is similar to the one introduced in Section 2.2.1,
but all tasks are assumed to start at time instant 0, i.e., S1 = S2 = · · · = Sn =
0. Moreover, since we have two type of cores, the WCET of each task may vary
when executing on different types of cores. We slightly extend the model to have two
WCETs as we did in Chapter 4.

• CEEi andCPEi are the worst-case execution times (WCETs) of task τi executing
on an EE core and PE core at the maximum frequency, respectively;

Then, a task is characterized by a tuple of parameters τi = {CEEi , CPEi , Di, Ti}.

70

CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

5.2.3 Energy Model

With the system and task models discussed above, we explain how to compute the
energy consumption for the system. After all tasks are allocated to cores, the energy
consumption for each core can be computed as follows:

Ej = hp

(
αjf

bj
j

fmax
fj

∑
∀τi∈Γj

Ci
Ti

+ sj

)
(5.2)

where Γj is the task set containing all tasks allocated to core j and hp is the hyper-
period of task setΓj . The hyper-period is the least commonmultiple (lcm) of all tasks’
periods. Every hyper-period has the same workload and thus we compute the energy
consumption within one hyper-period. The energy consumption of the whole system
is the summation of the energy consumption Ej of all cores.

5.2.4 C=D Task-Splitting

In this work, we adopt the C=D task-splitting to schedule real-time tasks on a hetero-
geneous multicore system. Burns et al. in [BDWZ12] propose the C=D approach to
split real-time tasks on homogeneous systems. They use a preemptive earliest dead-
line first (EDF) scheduling [LL73] to schedule the tasks on each core. The tasks are
first allocated to cores according to a certain allocation algorithm. If task τi cannot
be integrally allocated to a core, the C=D approach splits unassigned task τi into two
parts/subtasks, τ1

i and τ2
i . The split procedure is as follows:

• Find a processor x and then compute the maximum computation time C1
i for

subtask τ1
i which ensures the schedulablility of subtask τ1

i on processor x. For
subtask τ1

i , its deadline D1
i is set to be equal to C1

i and its period T 1
i is equiv-

alent to its original period Ti, i.e., τ1
i = {C1

i , D
1
i = C1

i , T
1
i = Ti}. Then,

subtask τ1
i is allocated to processor x;

• According to subtask τ1
i , we can obtain the second subtask τ2

i . The WCET C2
i

of τ2
i is computed as C2

i = Ci − C1
i , its deadline D2

i is computed as D2
i =

Di − D1
i and its period T 2

i equals to its original period, T 2
i = Ti, i.e., τ2

i =
{C2

i = Ci − C1
i , D

2
i = Di − D1

i , T
2
i = Ti}. Subtask τ2

i is allocated to a
processor which has enough space to schedule subtask τ2

i and is different from
processor x on which subtask τ1

i is allocated.

In the remainder of this chapter, we call subtask τ1
i the first subtask and subtask τ2

i

the second subtask.
The C=D task-splitting permits each core to have only one first subtask τ1

i . This
means that the whole system has at most M split tasks, where M is the number of

71

CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

cores. This task-splitting scheme can be realized by using task migration. τ1
i com-

pletes its execution on the allocated core. Then it migrates to the core where τ2
i is

assigned and continues the execution of subtask τ2
i . From the experimental results

in [JLBK13], the C=D task-splitting outperforms other existing semi-partition/task-
splitting approaches in terms of schedulability.

Migration Overhead: Like [BDWZ12], in our work the migration overhead is
assumed to be negligible. An extensive number of experiments on real hardware sys-
tems [BBA11] have shown that with cache coherence among cores the task migra-
tion overhead is at the similar order of magnitude as the normal context switching.
The cache coherence hardware architecture, like CoreLink CCI-400 Cache Coherent
Interconnect [ARM16], has been adopted by the big.LITTLE multicore systems to
maintain the cache coherence between cores. Therefore, the migration overhead is
accounted for in the WCET of a task.

5.3 Motivational Example

In this section, we use an example to motivate the application of the C=D task-splitting
approach on heterogeneous multicore systems for energy efficiency purpose. For sim-
plicity, assume that we have a multicore system with one PE core and one EE core.
The PE core and EE core have different power parameters α and b (see Equation (5.1)
and (5.2)). In this example, we use the parameter values from Table 4.3 given in
Section 4.2.2 of Chapter 4. We recap it here for reference convenience.

Core type α(W/Mhzb) b s(W)

PE 3.03× 10−9 2.621 0.155
EE 2.62× 10−9 2.12 0.027

Table 5.1: Power parameters for different core types

CPE(ms) CEE(ms) D(ms) T(ms)

τ1 55 110 100 100
τ2 20 40 100 100
τ3 20 40 100 100
τ4 15 30 100 100

Table 5.2: The original task set

72

CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

CPE(ms) CEE(ms) D(ms) T(ms)

τ1
4 10 20 20 100
τ2

4 5 10 80 100

Table 5.3: Split subtasks

Suppose to have four tasks with the parameters given in Table 5.2. As far as the
deadlines can be ensured, we strive to partition/allocate as many tasks as possible to
the EE core in order to save energy consumption. However, since scheduling τ1 on
the EE core will violate the deadline guarantee, only τ2, τ3, and τ4 are eligible to be
scheduled on the EE core. But we cannot schedule τ2, τ3, and τ4 together on the EE
core, because a total utilization of 1.1 > 1 leads to infeasibility. One task has to be
scheduled on the PE core along with τ1. Then, we obtain a fully partitioned allocation
for the given task set, where τ1 and τ4 are scheduled on the PE core and τ2 and τ3 are
scheduled on the EE core. In contrast to the above fully partitioned allocation, we
adopt the C=D task-splitting (explained in Section 5.2.4) to schedule the tasks on the
multicore system. In the splitting case, τ1 is scheduled on the PE core while τ2 and τ3

are scheduled on the EE core. But τ4 is split into two subtasks, τ1
4 and τ2

4 , and then we
schedule τ1

4 on the EE core and τ2
4 on the PE core. The parameters for the subtasks

are shown in Table 5.3,
With the given allocation and the power parameters, we can compute a minimum

frequency for each core such that the energy consumption can be minimized by using
VFS while deadlines are still ensured. Table 5.4 shows the allocation, the minimum
operational frequency of each core, and the energy consumption of the multicore sys-
tem. We can see that the splitting approach saves energy consumption by 32% com-
pared to the partitioned approach because it can effectively utilize the EE core to save
energy and at the same time it can reduce the workload allocated to the PE core. As a
result, the PE core in the splitting approach executes at a lower frequency compared
to the partitioned approach.

Mapping PE EE fPE fEE Energy(mJ)

Partitioned τ1, τ4 τ2, τ3 1.4GHz 1.2GHz 5.42
Splitting τ1, τ2

4 τ2, τ3, τ1
4 1.2GHz 1.4GHz 3.69

Table 5.4: Energy consumption

From the example, we see the advantage of the C=D task-splitting approach on
heterogeneous systems in terms of energy efficiency. In the subsequent sections, we
will introduce our novel approach to exploit the C=D task-splitting on heterogeneous

73

CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

multicore systems for minimizing the energy consumption.

5.4 C=D Task-Splitting on Heterogeneous Multiprocessor
Systems

In [BDWZ12], the C=D task-splitting is devised for homogeneous multiprocessor sys-
tems. However, in ourwork, we target heterogeneousmulticore systems [Mit15][Mit16]
which have been emerging as an alternative of the conventional homogeneous multi-
core systems. In this section, we investigate how to adopt the C=D task-splitting on a
heterogeneous system.

5.4.1 Task Splitting

CPE CEE D T
τ1 60 120 100 100
τ1

1 25 50 50 100
τ2

1 35 70 50 100
τ1

1 41 82 82 100
τ2

1 19 38 18 100

Table 5.5: Let us assume that we split τ1 into two subtasks τ1
1 and τ2

1 and allocate τ1
1

and τ2
1 to an EE core and a PE core, respectively. We assume that there is no constraint

on the split. We give two different splits for τ1 shown in rows 3,4 and 5,6. For the first
split shown in rows 3,4, there is no problem to schedule the subtasks. However, for
the second split, although the execution time on the EE core is maximized, it causes
a deadline miss for subtask τ2

1 due to CPE > D, seen in the last row with red color.

Since, on heterogeneous multicore systems, a task’s WCET is varying upon the
allocated core, the splitting on the heterogeneous multicore system should pay more
attention to the varying WCET and the relation between the obtained two subtasks.
First, the deadline of the first subtask τ1

i is set according to where the first subtask is
allocated. For instance, assume that a subtask τ1

i has its CPEi = 5 and CEEi = 10.
If it is allocated to a PE core, its deadline D1

i equals to CPEi = 5, otherwise D1
i =

CEEi = 10 if allocated to an EE core. Moreover, in some cases an improper split
might cause a deadline miss for the second subtask τ2

i . The example given in Table
5.5 demonstrates this issue.

From the example, we observe the potential split issue on a heterogeneous mul-
ticore system. Thus, we give the following property to ensure that a proper split on

74

CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

heterogeneous multicore systems is obtained:

Property 1. On a heterogeneous multicore system, the following inequality must hold
for a split task τi,

Ti − C1
i ≥ C2

i (5.3)

where C1
i and C2

i are the WCETs of subtasks τ1
i and τ2

i , depending on which type of
core the subtasks have been allocated.

This property is to ensure enough space to execute the second subtask τ2
i on a

heterogeneous system. We can see that for subtask τ2
i it must have,

D2
i ≥ C2

i (5.4)

Since D2
i = Di −D1

i = Ti −D1
i and D1

i = C1
i , see Section 5.2.4, we obtain

Ti − C1
i ≥ C2

i (5.5)

Thus, the property is observed. Based on this property, we give the following defini-
tion,

Definition 5.4.1 (valid split). If two subtasks τ1
i and τ2

i obtained by splitting task τi
satisfy Property 1, we call such split a valid split.

If the split is not a valid split, then the second subtask cannot meet its deadline.

5.4.2 Subtask Allocation

In Section 5.4.1, we discussed how to find a valid split for a task on a heterogeneous
multicore system. Here, we continue to discuss the allocation of subtasks. Before
proceeding to the discussion, we distinguish tasks in two categories and give their
definitions as follows,

Definition 5.4.2. If a task can be integrally scheduled on an EE core, we call such
task an eligible task (E-task).

Definition 5.4.3. If a task cannot be integrally scheduled on an EE core, we call such
task a non-eligible task (NE-task).

If we look at the motivational example in Section 5.3-Table 5.2, τ2, τ3, and τ4 are
E-tasks and τ1 is NE-task. Now, we discuss the possible allocation destinations for
these two categories of tasks.

75

CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

E-task

When an E-task is selected to be split, any split is a valid split regardless of which
type of core the subtasks are allocated. Therefore, for an E-task, the two subtasks
can be allocated to any type of core, as long as the schedulability of the system is
ensured. Thus, we can have three possible combinations to allocate the two subtasks
of an E-task:

• Allocate the two subtasks to two EE cores;

• Allocate the two subtasks to one EE core and one PE core; and

• Allocate the two subtasks to two PE cores.

NE-task

When a NE-task is about to be split, we need to ensure that the obtained split is a valid
split by satisfying Property 1. For a NE-task, we cannot allocate the two subtasks to
two EE cores, because Property 1 will be violated and then it leads to an invalid split.
Excluding the invalid combination, we have two possible combinations to allocate the
two subtasks of a NE-task:

• Allocate the two subtasks to one EE core and one PE core; and

• Allocate the two subtasks to two PE cores.

With the above possible allocation destinations for the two categories of tasks, in
the next section, we will use this information to devise an energy-efficient allocation
strategy for each category of tasks.

5.5 Allocation and Split on Heterogeneous Multicore Sys-
tems (ASHM)

In [CT08], Chen and Thiele have shown that allocating real-time tasks onto two differ-
ent processors is an NP-hard problem. Their problem is just a subset of our problem,
so our problem is also an NP-hard problem. Hence, we propose a heuristic algo-
rithm to energy-efficiently schedule real-time tasks on heterogeneous multicore sys-
temswith task-splitting. We call this algorithm ASHM.ASHM first handles all E-tasks
and then all NE-tasks. For the sake of clarity, we first explain the different parts in
the ASHM algorithm and after that we explain the whole ASHM algorithm. Before
proceeding to the detailed discussion, we introduce the following property for the core
with first subtask τ1

i allocated on it,

76

CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

Property 2. A core must run at the maximum frequency if first subtask τ1
i of a split

task τi is assigned to it.

It is trivial to see this property because the first subtask of a split task has its
WCET equal to the deadline. Scaling down the frequency leads to a deadline miss.
This property is useful to determine the allocation of the subtasks.

5.5.1 Allocation and splitting of E-tasks

ASHM first starts to allocate and split E-tasks. The procedure to allocate and split
E-tasks is summarized as follows:

1. Use a bin-packing algorithm, first-fit-decreasing (FFD) [CGJ97], to integrally
allocate E-tasks to EE cores;

2. Split unallocated E-tasks on the platform. For a given unallocated E-task τi, we
use the following allocation and splitting order,

(a) Split τi among two EE cores. If it fails, try step b);

(b) Split τi among one EE core and one PE core. If fails, try step c);

(c) Allocate τi integrally to one PE core. If it fails, try step d);

(d) Split τi among two PE cores. If it fails, the system is unschedulable on
the platform withM = {MEE ,MPE}.

For the first step, we use FFD to integrally allocate EE tasks to EE cores because FFD
is proven to be the resource efficient bin-packing algorithm [AY03]. By using FFD
we could leave some EE cores with a lot of free capacity. This could later benefit the
NE-tasks for energy saving.

After some E-tasks are integrally allocated to EE cores, we might have some E-
tasks left unallocated. The next step is to split and allocate them on the system. The
allocation and split order summarized above prioritizes the EE cores to explore the
energy-efficient potential on the EE cores. Therefore, we first try to allocate the sub-
tasks of a split E-task to two EE cores. If the task cannot be split among two EE cores,
this means that there is no enough space on EE cores. So, we try one EE core and one
PE core. Since, a PE core consumes much more power than an EE core and Property
2 indicates the maximum frequency requirement, it is not favorable to allocate the first
subtask to a PE core. Therefore, we constrain ourself to allocate the first subtask to
an EE core and the second subtask to a PE core. For the selection of the PE cores,
we use the approach proposed in [CKR14] which selects the core with the smallest
energy cost contribution to the whole system when the task is allocated to it. If the

77

CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

combination of one EE core and one PE core still fails, we need to find an allocation
among PE cores.

On PE cores, we first try to integrally allocate the E-task to one PE core because
if we split an E-task among two PE cores, Property 2 requires that one PE core must
execute at the maximum frequency which leads to a very high power consumption.
Hence, we prefer to integrally allocate the E-task to one PE core than split it among
two PE cores. We also use the approach from [CKR14] to select the energy-efficient
core for the task. If it still fails, we try the final step to split it on two PE cores in order
to ensure its schedulability.

Algorithm 6 presents the pseudo-code to allocate and split E-tasks, called EAS,
following the procedure explained above. EAS takes as inputs task set ΓE consisting
of all E-tasks and the heterogeneous multicore platform consisting of EE core set
MEE and PE core setMPE and outputs the allocation of all E-tasks. At Line 1, we
first use FFD to allocate E-tasks to EE cores integrally. If there are some unallocated
E-tasks, we follow the steps introduced above to split unallocated E-tasks among two
EE cores or one EE core and one PE core - see Line 3-10. We use function mpwr() to
represent the core selection approach from [CKR14], where the inputs of mpwr() are
a core set and a task and the output is a core which can schedule the task and has the
smallest contribution to the energy consumption. However, if the task is not allocated
successfully, we have to try to allocate or split the task among PE cores - see Line
11-24. From Line 12-14, the integral allocation on one PE core is first tried. If it fails,
from Line 15-24 EAS splits τi among two PE cores. Function SPLIT in Algorithm 6
finds the first subtask τ1

i with the maximum WCET which is schedulable on core x
and also gives the corresponding τ2

i . We will explain SPLIT in details later in Section
5.5.3.

5.5.2 Allocation and Splitting of NE-tasks

After all E-tasks are allocated, we proceed towards allocating and splitting NE-tasks
on the system. The procedure to allocate and split NE-task τi is summarized as fol-
lows:

1. Split τi among one EE core and one PE core. If it fails, try step 2);

2. Allocate τi integrally onto one PE core. If it fails, try step 3);

3. Split τi among two PE cores. If it fails, it is unschedulable.

Since, after the allocation of E-tasks, EE cores might have some free space to execute
parts of NE-tasks, we first try to split a NE-task among one EE core and one PE
core in order to utilize EE cores for energy saving. Since the first subtask needs a

78

CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

Algorithm 6: E-task Allocation and Split (EAS)
Input: All E-tasks ΓE and the heterogeneous multicore platformM = {MEE ,MPE}
Output: Allocation for all E-tasks

1 MEE ← using FFD to allocate tasks from ΓE
2 Γun ← unallocated tasks from ΓE
3 for ∀τi ∈ Γun in order of decreasing U do
4 for ∀x ∈MEE in order of increasing U do
5 τ1

i ,τ2
i = SPLIT(τi, x)

6 if τ1
i 6= ∅ then

7 x← τ1
i

8 y ← mpwr(M = {MEE ,MPE}, τ2
i)

9 if y = ∅ then
10 x← x− τ1

i

11 if τi is not allocated successfully then
12 x← mpwr(MPE , τi)
13 if x 6= ∅ then
14 x← τi

15 else
16 for ∀x ∈MPE in order of decreasing U do
17 τ1

i ,τ2
i = SPLIT(τi, x)

18 if τ1
1 6= ∅ then

19 x← τ1
i

20 y ← mpwr(MPE , τ
2
i)

21 if y = ∅ then
22 x← x− τ1

i

23 else
24 y ← τ2

i

25 if τi is not allocated successfully then
26 return Unschedulable

27 return Allocation of ∀τi ∈ ΓE

79

CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

maximum operational frequency (Property 2), we constrain the first subtask to the
EE core and allocate the second subtask to a PE core for ensuring the schedulability.
However, when we maximize the execution time of the first subtask on an EE core,
it might bring a negative effect on the second subtask. Maximizing the execution of
the first subtask will reduce the slack time for the second subtask, i.e.,D2

i −C2
i . As a

consequence, the reduced slack time leaves a little space to scale down the frequency
of the PE core which might compromise the energy saving from the EE core. Hence,
in order to provide an energy-efficient split, we set the following constraint for splitting
a NE-task on one EE core and one PE core.

C2
i

D2
i

≤ Ci
Ti

(5.6)

Constraint (5.6) can guarantee that after the split the slack ratio of the second subtask
is not smaller than before. Therefore, it would not require to run at a higher frequency.
If the task cannot be split on one EE core and one PE core, we integrally allocate NE-
task τi to one PE core. For the integral allocation, we try to allocate task τi to the PE
core given by function mpwr(). If task τi cannot be allocated to a PE core, then we
split it among two PE cores in order to ensure its schedulability.

Algorithm 7 presents the pseudo-code to allocate and split NE-tasks, where we
call this algorithm NEAS. The inputs for NEAS are all NE-tasks and the platform.
From Line 2-13, NEAS splits task τi among one EE core and one PE core. For this
combination NEAS selects the EE core with the smallest utilization and the PE core
given by function mpwr() to split task τi in order to save the energy consumption. At
Line 5-7 constraint (5.6) is checked. If the combination of one EE core and one PE
core fails to allocate task τi, then, from Line 14-17, NEAS tries to integrally allocate
task τi to one PE core which can schedule τi and has the minimum contribution to
the energy consumption. If it does not successfully allocate τi to one PE core, NEAS
splits τi among two PE cores from Line 18-24. In this case, it finds the PE core
with the largest utilization to schedule the first subtask τ1

i . Because τ1
i requires the

maximum frequency to guarantee the schedulability and the PE core with the largest
utilization should execute at a high frequency compared to others, allocating τ1

i to the
PE core would not increase the frequency too much which in turn does not lead to a
lot of extra energy consumption for the task allocated to the PE core. For τ2

i , we still
use function mpwr() to find the candidate core. If splitting among two PE cores fails,
NEAS returns a failure.

5.5.3 The SPLIT function

In this section, we present the SPLIT function used in EAS andNEAS discussed above.
Algorithm 8 presents the pseudo-code for SPLIT. The concept behind the SPLIT algo-

80

CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

Algorithm 7: NE-task Allocation and Split (NEAS)
Input: All NE-tasks ΓNE and the heterogeneous multicore platform

M = {MEE ,MPE}
Output: Allocation for all NE-tasks

1 for ∀τi ∈ ΓNE in order of decreasing U do
2 for ∀x ∈MEE in order of increasing U do
3 τ1

i ,τ2
i = SPLIT(τi, x)

4 if τ1
i 6= ∅ then

5 while C2
i

D2
i
> Ci

Ti
do

6 C1
i ← C1

i − 1
7 Recompute C2

i according to the new C1
i (see Section 5.2.4)

8 x← τ1
i

9 y ← mpwr(MPE , τ
2
i)

10 if y = ∅ then
11 x← x− τ1

i

12 else
13 y ← τ2

i

14 if τi is not allocated then
15 y ← mpwr(MPE , τ

2
i)

16 if y 6= ∅ then
17 y ← τi; break

18 for ∀pe ∈MPE in order of increasing U do
19 τ1

i ,τ2
i = SPLIT(τi, pe)

20 if τ1
i 6= ∅ then

21 x← τ1
i

22 y ← mpwr(MPE , τ
2
i)

23 if y = ∅ then
24 pe← pe− τ1

i

25 if τi is not allocated successfully then
26 return Unschedulable

27 return Allocation of ∀τi ∈ ΓNE

81

CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

Algorithm 8: SPLIT
Input: τi and one processor x
Output: subtasks τ1

i , τ
2
i

1 C1
i = D1

i = (0.999− Ux)Ti;
2 Compute subtask τ2

i according to the parameters of τ1
i (see Section 5.2.4)

3 while C2
i > Ti − C1

i and τi is a NE-task and x is an EE core do
4 C1

i ← C1
i − 1

5 Recompute C2
i according to the new C1

i (see Section 5.2.4)

6 Γx ← Γx + τ1
i ;

7 while True do
8 if C1

i < 1 then
9 return τ1

i = τ2
i = ∅

10 if QPA(Γx) reports unschedulable then
11 t←the failure point from QPA
12 while True do
13 I = (t− dbf(Γx − τ1

i , t))/b
t+Ti−(C1

i −1)
Ti

c
14 if I 6= C1

i then
15 C1

i = C1
i − 1

16 else
17 Break;

18 else
19 Compute parameters for subtask τ2

i (see Section 5.2.4)
20 return τ1

i , τ
2
i

82

CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

rithm is based on the approach proposed in [BDWZ12] and the properties of the C=D
approach on heterogeneous multicore systems identified and discussed in Section 5.4.
The inputs for SPLIT are a task τi and a core x while the output is two subtasks τ1

i

and τ2
i . The objective of function SPLIT is to find the maximum WCET of τ1

i which
can satisfy the schedulability on core x. The procedure is as follows:

• Initialize the parameters of subtasks. For τ1
i let C1

i = D1
i = (0.999 − Ux)Ti

(Line 1) and configure subtask τ2
i according to subtask τ1

i (Line 2), as explained
in Section 5.2.4, where Ux denotes the total utilization of processor x;

• If τi is a NE-task and x is an EE core (Line 3-5), ensure valid split according
to Property 1;

• Use QPA [ZB09] to test whether subtask τ1
i can be allocated onto core x. If it

is schedulable, return the subtasks τ1
i and τ2

i (Line 10, 18-20);

• If QPA reports ‘unschedulable’, recompute the WCET for subtask τ1
i . In this

case, we use the recurrence approach from [BDWZ12] to make sure that

C1
i = (t− dbf(Γx − τ1

i , t))/b
t+ Ti − (C1

i − 1)

Ti
c (5.7)

where t is the failure point returned by QPA, i.e., the time instance dbf(Γx, t) >
t and dbf(Γx−τ1

i , t) represents the demand of tasks on core x excluding subtask
τ1
i . The recurrence equation in Equation (5.7) computes a maximum value for
C1
i such that dbf(Γx, t) ≤ t which ensures the schedulability of task set Γx at

time instant t. If Equation (5.7) is satisfied, the recurrence procedure stops and
returns C1

i for subtask τ1
i . Otherwise, it decrements C1

i by 1 and repeats the
previous procedure (Line 10-17);

• Return failure if it cannot split task τi on core x (Line 8-9).

Note that we use 0.999 instead of 1 to initialize a subtask at Line 1, because if using
1 would result in that QPA uses the hyper-period of all tasks as bound to test the
schedulability. Then, QPA would be very complex and time-consuming.

5.5.4 Computing the minimum frequency

We use VFS to scale down the frequency of each core so that the energy consumption
is further reduced. However, next to implicit deadline tasks (i.e., unsplit tasks), we
might have some subtasks obtained by splitting on some cores which are constrained
deadline tasks. In such case, we cannot simply use the utilization-based approach
[CK07] [BMAB16] to compute the minimum frequency. Hence, we integrate the

83

CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

Algorithm 9: Compute Minimum Frequency (CMF)
Input: core x and task set Γx
Output: the minimum operating frequency for core x

1 if x has a first subtask then
2 return fmax
3 else
4 Compute a minimum achievable frequency fcrit based on Ux
5 f ← {∀fi|fi ≥ fcrit} and sort f in order of increasing frequency
6 for ∀fi ∈ f, i = {1, 2, ..., k} do
7 if QPA(Γx, fi) reports schedulable then
8 return fi

9 return fmax

frequency into QPA [ZB09] to efficiently compute the minimum frequency for a core.

Algorithm 9 (CMF) presents the pseudo-code to compute the minimum opera-
tional frequency for each core. The inputs are one core x and a task set Γx which
includes all tasks allocated to core x. The output is the minimum operational fre-
quency for core x. If the core has first subtask τ1

i , its frequency will be set to the
maximum frequency according to Property 2 - see Line 1-2. Otherwise, we compute
a minimum operational frequency for the core from Line 4-8. First, we compute a
frequency called fcrit based on utilization Ux of core x [CK07]. Frequency fcrit can
be deemed as the lower bound of the operational frequency of core x. If the opera-
tional frequency is lower than fcrit, the system is not schedulable. Then, we select
all frequencies from the core’s frequency set which are greater than fcrit and let these
frequencies form a frequency set f sorted in order of increasing frequency - see Line
5. We start with the smallest frequency fi in frequency set f and use QPA to test
whether the task set is schedulable at this frequency - see Line 7. If it is schedulable,
CMF returns frequency fi as the operational frequency. Otherwise, we take frequency
fi+1 and use QPA to test whether the task set is schedulable at this frequency.

5.5.5 The ASHM Algorithm

Given all algorithms explained earlier, we present our complete Allocation and Split
algorithm ASHM using the pseudo-code in Algorithm 10. We first divide all tasks
into two task sets ΓE and ΓNE , one for all E-tasks ΓE and another for all NE-tasks
ΓNE . Then, we use EAS (Algorithm 6) to allocate all E-tasks - see Line 2. If all E-

84

CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

Algorithm 10: ASHM
Input: all tasks Γ and the platformM = {MEE ,MPE}
Output: the allocation for all tasks and the minimum operational frequency

for each core on the platform
1 ΓE ←all E-tasks, ΓNE ←all E-tasks
2 M ← EAS(ΓE ,M)
3 M ← NEAS(ΓNE ,M)
4 for ∀x ∈M do
5 fx ← CMF(x,Γx)

tasks are successfully allocated, we proceed to allocate all NE-tasks by using NEAS
(Algorithm 7) - see Line 3. Finally, we apply CMF (Algorithm 9) to compute the
minimum frequency for each core - see Line 4-5.

Complexity Analysis: In the worst case, EAS, NEAS, SPLIT and CMF are all
pseudo-polynomial algorithms due to QPA. Although QPA has shown its efficiency in
[ZB09], its complexity is still pseudo-polynomial in the worst case. This worst-case
scenario happens when the utilization U equals to 1. However, in function SPLIT,
we strive to avoid the worst-case scenario to occur by setting the utilization bound
as 0.999 - see Line 1 of Algorithm 8. Therefore, in practice, our algorithms can be
executed very efficiently.

5.6 Evaluation

In this section, we present extensive experimental results to show the effectiveness
of our ASHM algorithm in terms of energy consumption compared to two widely-
used bin-packing algorithms [CGJ97] and two existing related approaches [CKR14]
[ESAS14]. We do not compare with the algorithm proposed in Chapter 4, because
the approach proposed in Chapter 4 is very similar to [CKR14] when we consider the
per-core VFS system. We do not compare with [CST09], because they do not take
VFS into account. Therefore, our approach will always save more energy consump-
tion than [CST09]. Since the authors in [CKR14] have shown that their approach
outperforms the allocation approach proposed in [HTC07], we do not compare our
ASHM to [HTC07].

85

CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

5.6.1 Experimental Setup

Task Generation

To evaluate the effectiveness of ASHM, we adopt the widely-used random task gener-
ator based on UUnifast-discard [DB11]. UUnifast-discard enables the generation of
unbiased task sets. It takes as inputs the number of tasks n and the total utilization U
and generates utilization ui for n tasks. The generation procedure is summarized as
follows:

• For each task, utilization ui is generated using UUnifast-discard;

• Period Ti is generated using a log-uniform distribution with a factor of 100
difference between the minimum and maximum possible task period. This
presents a range of task periods from 10ms to 1s in real-time applications [DB11]
[BDWZ12];

• CPEi is computed as CPEi = ui · Ti; and

• CEEi is computed as CEEi = CPEi · cei, where cei is selected from a uniform
random distribution in the range [1.8, 2.3] which represents the variance of the
execution time on different types of cores [Jef12].

Platforms

We have two types of cores (PE and EE) in the platforms and the core’s power param-
eters are shown in Table 5.1 taken from [LSCS15]. In this experiment, we evaluate
the effectiveness of our ASHM algorithm mainly on platforms with limited number
of resources because on a platform with more resources our approach will always per-
form good, especially with more EE cores. Therefore, we conduct experiments on the
following three limited platforms:

1. Platform 1: 2 PE cores and 2 EE cores

2. Platform 2: 2 PE cores and 3 EE cores

3. Platform 3: 3 PE cores and 2 EE cores

On the three platforms, we experiment with task sets with different U and a different
number of tasks.

86

CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

Comparison approaches

We compare our proposed ASHM algorithm with the following approaches in terms
of energy consumption:

• FFD: Allocate E-tasks and NE-tasks to EE cores and PE cores, respectively,
using FFD [CGJ97]. If E-tasks cannot be allocated to EE cores, then they are
allocated to PE cores using FFD;

• WFD: Similar to FFD, but instead of FFD we use WFD [CGJ97] to allocate
tasks;

• EFD: The allocation algorithm proposed in [ESAS14];

• m-pwr: The allocation algorithm proposed in [CKR14];

Comparison Metric

In the experimental results, we show the energy saving by using our ASHM compared
to the above four reference approaches. The energy saving is computed as follows:

Energy saving =
Eref − EASHM

Eref
· 100[%] (5.8)

where Eref is the energy consumption of one of the four approaches given above and
EASHM is the energy consumption of our proposed ASHM.

5.6.2 Experimental Results

All experimental results are plotted in Figure 5.1 to 5.6. For each point in the figures,
we generate 100 random task sets and compute an average energy saving. Note that
onlywhen all reference approaches can schedule the generated task set we compute the
energy saving using Equation (5.8). Our ASHM always can schedule more task sets
than the other approaches because ASHM uses task-splitting. Since the schedulability
advantage of the task-splitting approach has been reported in [BDWZ12], we do not
compare the number of schedulable task sets in this work.

Impact of the Utilization

In this experiment, we fix the number of tasks for different platforms and then vary the
total utilization to evaluate the effectiveness of ASHM. In order to have both NE-tasks
and E-tasks in the generated task set, the number of tasks is fixed to 7 for all platforms.
The results are plotted in Figure 5.1 to 5.3 where the y-axis is the energy saving com-
puted using Equation (5.8) and the x-axis is the variable utilization. We can see that

87

CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

our ASHM outperforms all allocation approaches in terms of energy efficiency. From
the experimental results, we observe:

• The average energy saving byASHM decreases as the total utilization increases.
In the comparison betweenASHM andWFD, EFD andm-pwr, this trend is easy
to be observed although there is some variation due to the randomness of the
generated task sets. The reason is that when we increase the total utilization, the
slack space on the EE cores is reduced such that the task set cannot benefit from
our ASHM too much. However, for FFD in Platform 1 and 3, see Figure 5.1
and 5.3, the energy saving increases until a point and then gradually decreases.
The reason is that when we have task sets with a low utilization, FFD always
tries to use the smallest number of cores to schedule tasks which might cause
the PE cores to execute at a high frequency. The high frequency in turn leads
to high energy consumption.

• ASHM saves more energy consumption on a platform with more EE cores, see
Figure 5.2. The advantage of ASHM is to effectively utilize EE cores on the
platform to achieve energy efficiency. More EE cores provide more space to
split tasks and thus ASHM reduces more the energy consumption.

Impact of the Number of Tasks

In this experiment, we fix the utilization for different platforms and then vary the num-
ber of tasks to evaluate the effectiveness of ASHM. Since larger total utilization leads
to smaller number of schedulable task sets, we fix the utilization to 2 for all platforms
in order to compare our ASHM to the reference approaches on more schedulable task
sets. We ensure that the number of tasks is greater than the number of cores, so we
start with 4 tasks for Platform 1 and 5 tasks for Platform 2 and 3. The results are
plotted in Figure 5.4 to 5.6.

Compared to the well-performed allocation approaches WFD and m-pwr, we can
see that the energy saving is decreasing with the increasing number of tasks. The
reason is that when the number of tasks increases with a fixed utilization, the tasks
in the set become lighter, i.e., with a smaller utilization. Therefore, these tasks are
easy to be allocated among the cores and then EE cores might be completely fulfilled
or just have a little space for splitting of tasks. Therefore, ASHM cannot save too
much in this case. However, as can be seen in Figure 5.4 and 5.6, compared to FFD,
the energy saving by ASHM increases gradually. Since we have more tasks with a
low utilization, FFD might allocate all tasks onto one core which will execute at a
high frequency. However, since the dynamic power consumption still dominates the
total power consumption, executing on two PE cores with lower frequencies is more
energy-efficient than on one PE core with a high frequency.

88

CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

 0

 5

 10

 15

 20

 25

 30

 35

 40

1.5 1.7 1.9 2.1 2.3 2.5 2.7

E
ne

rg
y

Sa
vi

ng
 [

%
]

Utilization

ASHM vs. EFD
ASHM vs. WFD
ASHM vs. FFD

ASHM vs. mpwr

Figure 5.1: Varying U on platform with 2 PE cores and 2 EE cores

 0

 10

 20

 30

 40

 50

 60

1.5 1.7 1.9 2.1 2.3 2.5 2.7

E
ne

rg
y

Sa
vi

ng
 [

%
]

Utilization

ASHM vs. EFD
ASHM vs. WFD
ASHM vs. FFD

ASHM vs. mpwr

Figure 5.2: Varying U on platform with 2 PE cores and 3 EE cores

 0

 5

 10

 15

 20

 25

 30

 35

 40

1.6 1.8 2 2.2 2.4 2.6 2.8 3.0

E
ne

rg
y

Sa
vi

ng
 [

%
]

Utilization

ASHM vs. EFD
ASHM vs. WFD
ASHM vs. FFD

ASHM vs. mpwr

Figure 5.3: Varying U on platform with 3 PE cores and 2 EE cores

89

CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

 0

 5

 10

 15

 20

 25

 30

 35

 40

4 5 6 7 8 9 10

E
ne

rg
y

Sa
vi

ng
 [

%
]

The number of tasks

ASHM vs. EFD
ASHM vs. WFD
ASHM vs. FFD

ASHM vs. mpwr

Figure 5.4: Varying the number of tasks on platform with 2 PE cores and 2 EE cores

 0

 10

 20

 30

 40

 50

5 6 7 8 9 10

E
ne

rg
y

Sa
vi

ng
 [

%
]

The number of tasks

ASHM vs. EFD
ASHM vs. WFD
ASHM vs. FFD

ASHM vs. mpwr

Figure 5.5: Varying the number of tasks on platform with 2 PE cores and 3 EE cores

 0

 5

 10

 15

 20

 25

 30

 35

 40

5 6 7 8 9 10

E
ne

rg
y

Sa
vi

ng
 [

%
]

The number of tasks

ASHM vs. EFD
ASHM vs. WFD
ASHM vs. FFD

ASHM vs. mpwr

Figure 5.6: Varying the number of tasks on platform with 3 PE cores and 2 EE cores

90

CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

5.7 Discussion
ASHM shows it effectiveness on per-core VFS systems via the experimental results in
Section 5.6. We need to notice that a slight modification is capable of adaptingASHM
to cluster heterogeneous multicore systems as considered in Chapter 4, but we leave
this for the future work. On the other hand, since the HRT scheduling framework see
in Section 2.3 can convert CSDF graphs into periodic task sets which can be fed as the
input of the proposed ASHM, ASHM can also be applied by on a CSDF graph under
the HRT scheduling.

91

CHAPTER 5. ENERGY OPTIMIZATION FOR REAL-TIME TASKS

92

Chapter 6

Schedulability Analysis of
Imprecise Mixed-Criticality
Systems

Di Liu, Jelena Spasic, Nan Guan, Gang Chen, Songran Liu, Todor Stefanov, Wang Yi,
"EDF-VD Scheduling of Mixed-Criticality Systems with Degraded Quality Guarantees",
"IEEE International Real-Time Systems Symposium (RTSS’16)", Porto, Portugal, Nov. 29 - Dec. 02, 2016.

As explained in Section 1.1.3, real-time applications with different criticality levels
are being implemented on a shared computing platform in order to reduce Size,

Weight, and Power (SWaP). We refer to this kind of integrated systems as Mixed-
Criticality (MC) systems.

One of the core issues of MC systems stems from the certification authorities
(CAs), as explained in Section 1.2 (Problem 3). Vestal in [Ves07] proposes a new
model to specify real-time applications in MC systems. The new model captures
the core features of MC systems and has received considerable attention since 2007.
However, this classical MC model also receives some criticism from system design-
ers [BB13], who complain that the model is too pessimistic in dropping off all low-
criticality application tasks when any high-criticality application task overruns. Such
an approach seriously disturbs the service of low-criticality tasks and influences the
effectiveness of the whole system [BB13][SZ13].

To cope with the criticism and concerns from system designers, Burns and Baruah
in [BB13] improve the classical MC model by introducing reduced WCETs for low-
criticality tasks. Then, if any high-criticality task overruns its high-criticality WCET,
instead of discarding low-criticality tasks, the improved MC model schedules low-
criticality tasks with their reduced WCETs. Since the idea of reducing execution bud-

93

CHAPTER 6. SCHEDULABILITY ANALYSIS OF IMPRECISE
MIXED-CRITICALITY SYSTEMS

gets to keep tasks running is conceptually similar to the imprecise computation model
[LLS+91][LSL+94], suchMC systems we call imprecise mixed criticality (IMC) sys-
tems in [LSG+16].

Even though the IMC model is deemed to be a generalization of the classical
MC model, it has not received sufficient attention. Only two works investigate the
scheduling analysis of the IMC model. In [BB13], Burns and Baruah consider pre-
emptive fixed-priority scheduling for the IMC model and extend the adaptive mixed
criticality (AMC) [BBD11] approach to provide a schedulability test for the IMC
model. Recently, Barauh et al in [BBG16] study the schedulability of the IMC model
under Mixed-Criticality fluid scheduling (MC-fluid) [LPG+14].1 Another widely-
studiedMC scheduling algorithm, EDF-VD [BBD+12], which has shown strong com-
petence by both theoretical and empirical evaluations on the classical MC model
[BBD+12, EY14, Eas13], has not been investigated for the IMC model. Therefore, in
this chapter, we analyze the scheduability of the IMC model under EDF-VD schedul-
ing. The novel technical contributions of our work include

• We propose a sufficient test for the IMC model under EDF-VD, - see Theorem
6.3.3 in Section 6.3;

• For the IMC model under EDF-VD, we derive a speedup factor function with
respect to the utilization ratios of high criticality tasks and low criticality tasks -
see Theorem 6.4.1 in Section 6.4. The derived speedup factor function enables
us to quantify the suboptimality of EDF-VD and evaluate the impact of the
utilization ratios on the speedup factor. We also compute the maximum value
4/3 of the speedup factor function, which is equal to the speedup factor bound
for the classical MC model [BBD+12].

• With extensive experiments, we show that for the IMC model, by using our
proposed sufficient test, in most cases EDF-VD outperforms AMC [BB13] in
terms of the number of schedulable task sets. Moreover, the experimental re-
sults validate the observations we have obtained for the speedup factor.

6.1 Related Work
Burns and Davis in [BD15] give a comprehensive review of the work on real-time
scheduling for MC systems. Many of these works, e.g., [BBD+12] [EY14][Eas13],
consider the classical MC model in which all low criticality tasks are discarded if
the system switches to the high-criticality mode. In [BB13], Burns and Baruah dis-
cuss three approaches to keep some low criticality tasks running in high-criticality

1This work got public after our RTSS paper [LSG+16] was accepted.

94

CHAPTER 6. SCHEDULABILITY ANALYSIS OF IMPRECISE
MIXED-CRITICALITY SYSTEMS

mode. The first approach is to change the priority of low criticality tasks. However,
for fixed-priority scheduling, de-prioritizing low criticality tasks cannot guarantee the
execution of the low criticality tasks with a short deadline after the mode switches
[BB13]. Similarly, for EDF, lowering the priority of low criticality tasks leads to a
degraded service [HGST14]. In our work, we consider the IMC model which im-
proves the schedulability of low criticality tasks in high-criticality mode by reducing
their execution time. The IMC model can guarantee the regular service of a system
by trading off the quality of the produced results. For some applications given in
[LLS+91][LSL+94][RKKK14b], such trade-off is preferred.

The second approach in [BB13] is to extend the periods of low criticality tasks
when the system mode changes to high-criticality mode such that the low criticality
tasks execute less frequently to ensure their schedulability. Su et al. [SZ13][SGZ14]
and Jan et al. [J+13] both consider this model. However, some applications might
prefer an on-time result with a degraded quality rather than a delayed result with a per-
fect quality. Some example applications can be seen in [CLL90][LLS+91][LSL+94].
Then, the approach of extending periods is less useful for this kind of applications.

The last approach proposed in [BB13] is to reduce the execution budget of low
criticality tasks when the systemmode switches, i.e., the use of the IMCmodel studied
in this chapter. In [BB13], the authors extend the AMC [BBD11] approach to test the
schedulability of an IMC task set under fixed-priority scheduling. Recently, MC-fluid
(MCF) scheduling of the IMC model is studied in [BBG16]. In practice, the MCF
scheduling suffers from extremely high context switch overhead due to its very fine-
grained scheduling units and thus it is difficult to be implemented on a real platform,
whereas the EDF-VD scheduling considered in this chapter that is devised based on
the the original EDF algorithm does not introduce too much scheduling overhead,
thereby allowing to be implemented on a real platform. However, the schedulability
problem for an IMC task set under EDF-VD [BBD+12], has not yet been addressed.
Therefore, in our work, we study the schedulability of the IMC task model under
EDF-VD and propose a sufficient test for it.

6.2 Preliminaries
This section first introduces the IMC task model and its execution semantics. Then,
we give a brief explanation to the EDF-VD scheduling [BBD+12] and an example to
illustrate the execution semantics of the IMC model under the EDF-VD scheduling.

6.2.1 Imprecise Mixed-Criticality Task Model

We use the implicit-deadline sporadic task model given in [BB13] where a task set Γ
includes n tasks which are scheduled on a uniprocessor. Without loss of generality,

95

CHAPTER 6. SCHEDULABILITY ANALYSIS OF IMPRECISE
MIXED-CRITICALITY SYSTEMS

all tasks in Γ are assumed to start at time 0. Each task τi in Γ generates an infinite
sequence of jobs {J1

i , J
2
i ...} and is characterized by τi = {Ti, Di, Li, Ci}:

• Ti is the period or the minimal separation interval between two consecutive
jobs;

• Di denotes the relative task deadline, where Di = Ti;

• Li ∈ {LO,HI} denotes the criticality (low or high) of a task. In this work, like
in many previous research works [SZ13][HGST14][BBD+12] [EY14][Eas13],
we consider a dual-criticality MC model. Then, we split tasks into two task
sets, ΓLO = {τi|Li = LO} and ΓHI = {τi|Li = HI};

• Ci = {CLOi , CHIi } is a list of WCETs, where CLOi and CHIi represent the
WCET in low-criticality mode and the WCET in high-criticality mode, respec-
tively. For a high-criticality task, it has CLOi ≤ CHIi , whereas CLOi ≥ CHIi

for a low-criticality task, i.e., low-criticality task τi has a reduced WCET in
high-criticality mode.

Then each job Ji is characterized by Ji = {ai, di, Li, Ci}, where ai is the absolute
release time and di is the absolute deadline. Note that if low-criticality task τi has
CHIi = 0, it will be immediately discarded at the time of the switch to high-criticality
mode. In this case, the IMC model behaves like the classical MC model.

The utilization of a task is used to denote the ratio between its WCET and its
period. We define the following utilizations for an IMC task set Γ:

• For every task τi, it has uLOi =
CLO

i
Ti

, uHIi =
CHI

i
Ti

;

• For all low-criticality tasks, we have total utilizations

ULOLO =
∑

∀τi∈ΓLO

uLOi , UHILO =
∑

∀τi∈ΓLO

uHIi

• For all high-criticality tasks, we have total utilizations

ULOHI =
∑

∀τi∈ΓHI

uLOi , UHIHI =
∑

∀τi∈ΓHI

uHIi

• For an IMC task set, we have

ULO = ULOLO + ULOHI , UHI = UHILO + UHIHI

96

CHAPTER 6. SCHEDULABILITY ANALYSIS OF IMPRECISE
MIXED-CRITICALITY SYSTEMS

6.2.2 Execution Semantics of the IMC Model

The execution semantics of the IMC model are similar to those of the classical MC
model. Themajor difference occurs after a system switches to high-criticality mode.
Instead of discarding all low-criticality tasks, as it is done in the classical MC model,
the IMC model tries to schedule low-criticality tasks with their reduced execution
times CHIi . The execution semantics of the IMC model are summarized as follows:

• The system starts in low-criticality mode, and remains in this mode as long as
no high-criticality job overruns its low-criticality WCET CLOi . If any job of a
low-criticality task tries to execute beyond its CLOi , the system will suspend it
and launch a new job at the next period;

• If any job of high-criticality task executes for its CLOi time units without sig-
naling completion, the system immediately switches to high-criticality mode;

• As the system switches to high-criticality mode, if jobs of low-criticality tasks
have completed execution for more than their CHIi but less than their CLOi , the
jobs will be suspended till the tasks release new jobs for the next period. How-
ever, if jobs of low-criticality tasks have not completed their CHIi (≤ CLOi) by
the switch time instant, the jobs will complete the left execution to CHIi after
the switch time instant and before their deadlines. Hereafter, all jobs are sched-
uled usingCHIi . For high-criticality tasks, if their jobs have not completed their
CLOi (≤ CHIi) by the switch time instant, all jobs will continue to be scheduled
to complete CHIi . After that, all jobs are scheduled using CHIi .

Santy et al. [SGTG12] have shown that the system can switch back from the high-
criticality mode to the low-criticality mode when there is an idle period and no high-
criticality job awaits for execution. For the IMC model, we can use the same scenario
to trigger the switch-back. In this work, we focus on the switch from low-criticality
mode to high-criticality mode.

6.2.3 EDF-VD Scheduling

The challenge to schedule MC tasks with the EDF scheduling algorithm [LL73] is
to deal with the overrun of high-criticality tasks when the system switches from low-
criticality mode to high-criticality mode. Baruah et al. proposed in [BBD+12] to
artificially tighten deadlines of jobs of high-criticality tasks in low-criticality mode
such that the system can preserve execution budgets for the high-criticality tasks across
mode switches. This approach is called EDF with virtual deadlines (EDF-VD).

97

CHAPTER 6. SCHEDULABILITY ANALYSIS OF IMPRECISE
MIXED-CRITICALITY SYSTEMS

Task L CLOi CHIi Ti D̂i

τ1 LO 3 2 9
τ2 HI 4 8 10 7

Table 6.1: Illustrative example

τ1
0 5 10 15 18

τ2
0 5 10 15 20

Switch

Figure 6.1: Scheduling of Example 6.1

6.2.4 An Illustrative Example

Here, we give a simple example to illustrate the execution semantics of the IMCmodel
under EDF-VD. Table 6.1 gives two tasks, one low-criticality task τ1 and one high-
criticality task τ2, where D̂i is the virtual deadline. Figure 6.1 depicts the scheduling
of the given IMC task set, where we assume that the mode switch occurs in the second
period of τ2. When the system switches to high-criticality mode, τ2 will be scheduled
by its original deadline 10 instead of its virtual deadline 7. Hence, τ1 preempts τ2 at
the switch time instant. Since in high-criticality mode τ1 only has execution budget of
2 , i.e., CHI1 , τ1 executes one unit and suspends. Then, τ2 completes its left execution
4 (CHI2 − CLO2) before its deadline.

6.3 Schedulability Analysis

In this section, we analyze the scheduability of the IMCmodel under EDF-VD schedul-
ing and propose the first sufficient scheduability test. To ensure the timing correctness
of the IMCmodel, we need to guarantee the scheduability for both high-criticality and
low-criticality modes. Following, we demonstrate our analysis procedure and the for-
mal theoretical proof.

6.3.1 Low Criticality Mode

We first ensure the schedulability of tasks when they are in low-criticality mode. As
the task model is in low-criticality mode, the tasks can be considered as traditional

98

CHAPTER 6. SCHEDULABILITY ANALYSIS OF IMPRECISE
MIXED-CRITICALITY SYSTEMS

real-time tasks scheduled by EDF algorithm with virtual deadlines (VD). The follow-
ing theorem is given in [BBD+12] for tasks scheduled in low-criticality mode.

Theorem 6.3.1 (Theorem 1 from [BBD+12]). The following condition is sufficient
for ensuring that EDF-VD successfully schedules all tasks in low-criticality mode:

1 ≥ ULOHI
x

+ ULOLO (6.1)

where x ∈ (0, 1) is used to uniformly modify the relative deadline of high-criticality
tasks.

Since the IMC model behaves as the classical MC model in low-criticality mode,
Theorem 6.3.1 holds for the IMC model as well.

6.3.2 High Criticality Mode

For high-criticalitymode, the classicalMCmodel discards all low-criticality jobs after
the switch to high-criticality mode. In contrast, the IMC model keeps low-criticality
jobs running but with degraded quality, i.e., a shorter execution time. So the schedula-
bility condition in [BBD+12] does not work for the IMC model in the high-criticality
mode. Thus, we need a new test for the IMC model in high-criticality mode.

To derive the sufficient test in high-criticality mode, suppose that there is a time
interval [0, t2], where a first deadline miss occurs at t2 and t1 denotes the time instant
of the switch to high-criticality mode in the time interval, where t1 < t2. Assume
that J is the minimal set of jobs generated from task set Γ which leads to the first
deadlinemiss at t2. Theminimality ofJ means that removing any job inJ guarantees
the schedulability of the rest of J . Here, we introduce some notations for our later
interpretation. Let variable ηi denote the cumulative execution time of task τi in the
interval [0, t2]. J1 denotes a special high-criticality job which has switch time instant
t1 within its period (a1, d1), i.e, a1 < t1 < d1. Furthermore, J1 is the job with the
earliest release time amongst all high-criticality jobs in J which execute in [t1, t2).
Moreover, we define a special type of job for low-criticality tasks which is useful for
our later proofs.

Definition 6.3.1. A job Ji from low-criticality task τi is a carry-over job, if its absolute
release time ai is before and its absolute deadline di is after the switch time instant,
i.e., ai < t1 < di.

With the notations introduced above, we have the following propositions,

Proposition 4 (Fact 1 from [BBD+12]). All jobs in J that execute in [t1, t2) have
deadline ≤ t2.

99

CHAPTER 6. SCHEDULABILITY ANALYSIS OF IMPRECISE
MIXED-CRITICALITY SYSTEMS

It is easy to observe that only jobs which have deadlines ≤ t2 are possible to
cause a deadline miss at t2. If a job has its deadline > t2 and is still in set J , it will
contradict the minimality of J .

Proposition 5. The switch time instant t1 has

t1 < (a1 + x(t2 − a1)) (6.2)

Proof. Let us consider a time instant (a1+x(d1−a1))which is the virtual deadline of
job J1. Since J1 executes in time interval [t1, t2), its virtual deadline (a1+x(d1−a1))
must be greater than the switch time instant t1. Otherwise, it should have completed
its low-criticality execution before t1, and this contradicts that it executes in [t1, t2).
Thus, it has

t1 < (a1 + x(d1 − a1))

⇒t1 < (a1 + x(t2 − a1)) (since d1 ≤ t2)

Proposition 6. If a carry-over job Ji has its cumulative execution equal to (di −
ai)u

LO
i and uLOi > uHIi , its deadline di is ≤ (a1 + x(t2 − a1)).

Proof. For a carry-over job Ji, if it has its cumulative execution equal to (di−ai)uLOi
and uLOi > uHIi , it should complete its CLOi execution before t1. Otherwise, if job
Ji has executed time units Ci ∈ [CHIi , CLOi) at time instant t1, it will be suspended
and will not execute after t1.

Now, we will show that when job Ji completes its CLOi execution, its deadline is
di ≤ (a1 + x(t2 − a1)). We prove this by contradiction. First, we suppose that Ji
has its deadline di > (a1 + x(t2 − a1)) and release time ai. As shown above, job Ji
completes its CLOi execution before t1. Let us assume a time instant t∗ as the latest
time instant at which this carry-over job Ji starts to execute before t1. This means that
at this time instant all jobs in J with deadline≤ (a1 +x(t2−a1)) have finished their
executions. This indicates that these jobs will not have any execution within interval
[t∗, t2]. Therefore, jobs in J with release time at or after time instant t∗ can form a
smaller job set which causes a deadline miss at t2. Then, it contradicts the minimality
ofJ . Thus, carry-over job Ji with its cumulative execution time equal to (di−ai)uLOi
and uLOi > uHIi has its deadline di ≤ (a1 + x(t2 − a1)).

With the propositions and notations given above, we derive an upper bound of the
cumulative execution time ηi of low-criticality task τi.

Lemma 6.3.1. For any low-criticality task τi, it has

ηi ≤ (a1 + x(t2 − a1))uLOi + (1− x)(t2 − a1)uHIi (6.3)

100

CHAPTER 6. SCHEDULABILITY ANALYSIS OF IMPRECISE
MIXED-CRITICALITY SYSTEMS

Proof. If uLOi = uHIi , it is trivial to see that Lemma 6.3.1 holds. Below we focus on
the case when uLOi > uHIi . If a system switches to high-criticality mode at t1, then
we know that low-criticality tasks are scheduled using CLOi before t1 and using CHIi

after t1. To prove this lemma, we need to consider two cases, where τi releases a job
within interval (a1, t2] or it does not. We prove the two cases separately.

Case A (task τi releases a job within interval (a1, t2]): There are two sub-cases
to be considered.

• Sub-case 1 (No carry-over job): The deadline of a job of low-criticality task
τi coincides with switch time instant t1. The cumulative execution time of low-
criticality task τi within time interval [0, t2] can be bounded as follows,

ηi ≤ (t1 − 0) · uLOi + (t2 − t1) · uHIi

Since t1 < (a1 +x(t2− a1)) according to Proposition 5 and for low-criticality
task τi it has uLOi > uHIi , then

ηi <
(
a1 + x(t2 − a1)

)
uLOi +

(
t2 −

(
a1 + x(t2 − a1)

))
uHIi

⇔ηi < (a1 + x(t2 − a1))uLOi + (1− x)(t2 − a1)uHIi

• Sub-case 2 (with carry-over job): In this case, before the carry-over job, jobs
of τi are scheduled with its CLOi . After the carry-over job, jobs of τi are sched-
uled with its CHIi . It is trivial to observe that for a carry-over job its maximum
cumulative execution time can be obtained when it completes its CLOi within
its period [ai, di], i.e., (di − ai)u

LO
i . Considering the maximum cumulative

execution for the carry-over job, we then have for low-criticality task τi,

ηi ≤ (ai − 0)uLOi + (di − ai)uLOi + (t2 − di)uHIi
⇔ηi ≤ diuLOi + (t2 − di)uHIi

Proposition 6 shows that as Ji has its cumulative execution equal to (di − ai) ·
uLOi , it has di ≤ (a1 + x(t2 − a1)). Given that uLOi > uHIi for low-criticality
task, we have

ηi ≤ diuLOi + (t2 − di)uHIi
⇒ηi ≤

(
a1 + x(t2 − a1)

)
uLOi +

(
t2 −

(
a1 + x(t2 − a1)

))
uHIi

⇔ηi ≤ (a1 + x(t2 − a1))uLOi + (1− x)(t2 − a1)uHIi

Case B (task τi does not release a job within interval (a1, t2]): In this case, let Ji
denote the last release job of task τi before a1 and ai and di are its absolute release
time and absolute deadline, respectively. If di ≤ t1, we have

ηi = (ai − 0)uLOi + (di − ai) · uLOi = diu
LO
i

101

CHAPTER 6. SCHEDULABILITY ANALYSIS OF IMPRECISE
MIXED-CRITICALITY SYSTEMS

If di > t1, Ji is a carry-over job. As we discussed above, the maximum cumulative
execution time of carry-over job Ji is (di − ai)uLOi , so we have

ηi ≤ (ai − 0)uLOi + (di − ai) · uLOi ⇔ ηi ≤ diuLOi

Similarly, according to Proposition 6, we obtain,

ηi ≤ di · uLOi ≤ (a1 + x(t2 − a1))uLOi

⇒ηi < (a1 + x(t2 − a1))uLOi +
(
t2 −

(
a1 + x(t2 − a1)

))
uHIi

⇔ηi < (a1 + x(t2 − a1))uLOi + (1− x)(t2 − a1)uHIi

Lemma 6.3.1 gives the upper bound of the cumulative execution time of a low-
criticality task in high-criticality mode. In order to derive the sufficient test for the
IMCmodel in high-criticality mode, we need to upper bound the cumulative execution
time of high-criticality tasks.

Proposition 7 (Fact 3 from [BBD+12]). For any high-criticality task τi, it holds that

ηi ≤
a1

x
uLOi + (t2 − a1)uHIi (6.4)

Proposition 7 is used to bound the cumulative execution of the high-criticality
tasks. Since in the IMC model the high-criticality tasks are scheduled as in the classi-
cal MCmodel, Proposition 7 holds for the IMCmodel as well. With Lemma 6.3.1 and
Proposition 7, we can derive the sufficient test for the IMC model in high-criticality
mode.

Theorem 6.3.2. The following condition is sufficient for ensuring that EDF-VD suc-
cessfully schedules all tasks in high-criticality mode:

xULOLO + (1− x)UHILO + UHIHI ≤ 1 (6.5)

Proof. Let N denote the cumulative execution time of all tasks in Γ = ΓLO ∪ ΓHI
over interval [0, t2]. We have

N =
∑

∀τi∈ΓLO

ηi +
∑

∀τi∈ΓHI

ηi

102

CHAPTER 6. SCHEDULABILITY ANALYSIS OF IMPRECISE
MIXED-CRITICALITY SYSTEMS

By using Lemma 6.3.1 and Proposition 7, N is bounded as follows

N ≤
∑

∀τi∈ΓLO

((
a1 + x(t2 − a1)

)
uLOi + (1− x)(t2 − a1)uHIi

)
+

∑
∀τi∈ΓHI

(
a1

x
uLOi + (t2 − a1)uHIi

)
⇔N ≤ (a1 + x(t2 − a1))ULOLO + (1− x)(t2 − a1)UHILO

+
a1

x
ULOHI + (t2 − a1)UHIHI

⇔N ≤ a1(ULOLO +
ULOHI
x

) + x(t2 − a1)ULOLO

+ (1− x)(t2 − a1)UHILO + (t2 − a1)UHIHI

(6.6)

Since the tasks must be schedulable in low-criticality mode, the condition given
in Theorem 6.3.1 holds and we have 1 ≥ (ULOLO +

ULO
HI
x). Hence,

N ≤a1 + x(t2 − a1)ULOLO

+ (1− x)(t2 − a1)UHILO + (t2 − a1)UHIHI

(6.7)

Since time instant t2 is the first deadline miss, it means that there is no idle time
instant within interval [0, t2]. Note that if there is an idle instant, jobs from set J
which have release time at or after the latest idle instant can form a smaller job set
causing deadline miss at t2 which contradicts the minimality of J . Then, we obtain

N =

(∑
∀τi∈ΓLO

ηi +
∑

∀τi∈ΓHI

ηi

)
> t2

⇒a1 + x(t2 − a1)ULOLO + (1− x)(t2 − a1)UHILO + (t2 − a1)UHIHI

> t2

⇔x(t2 − a1)ULOLO + (1− x)(t2 − a1)UHILO + (t2 − a1)UHIHI

> t2 − a1

⇔xULOLO + (1− x)UHILO + UHIHI > 1

By taking the contrapositive, we derive the sufficient test for the IMC model when it
is in high-criticality mode:

xULOLO + (1− x)UHILO + UHIHI ≤ 1

Note that if UHILO = 0, i.e., no low-criticality tasks are scheduled after the system
switches to high-criticality mode, our Theorem 6.3.2 is the same as the sufficient

103

CHAPTER 6. SCHEDULABILITY ANALYSIS OF IMPRECISE
MIXED-CRITICALITY SYSTEMS

test (Theorem 2 in [BBD+12]) for the classical MC model in high-criticality mode.
Hence, our Theorem 6.3.2 actually is a generalized schedulability condition for (I)MC
tasks under EDF-VD.

By combining Theorem 6.3.1 (see Section 6.3.1) and our Theorem 6.3.2, we prove
the following theorem,

Theorem 6.3.3. Given an IMC task set, if

UHIHI + ULOLO ≤ 1 (6.8)

then the IMC task set is schedulable by EDF; otherwise, if

ULOHI
1− ULOLO

≤ 1− (UHIHI + UHILO)

ULOLO − UHILO

(6.9)

where
UHIHI + UHILO < 1 and ULOLO < 1 and ULOLO > UHILO (6.10)

then this IMC task set can be scheduled by EDF-VD with a deadline scaling factor x
arbitrarily chosen in the following range

x ∈
[

ULOHI
1− ULOLO

,
1− (UHIHI + UHILO)

ULOLO − UHILO

]
Proof. Total utilization U ≤ 1 is the exact test for EDF on a uniprocessor system. If
the condition in (6.8) is met, the given task set is worst-case reservation [BBD+12]
schedulable under EDF, i.e., the task set can be scheduled by EDF without deadline
scaling for high-criticality tasks and execution budget reduction for low-criticality
tasks. Now, we prove the second condition given by (6.9). From Theorem 6.3.1, we
have,

x ≥
ULOHI

1− ULOLO
From Theorem 6.3.2, we have

xULOLO + (1− x)UHILO + UHIHI ≤ 1

⇔x ≤
1− (UHIHI + UHILO)

ULOLO − UHILO

Therefore, if ULO
HI

1−ULO
LO

≤ 1−(UHI
HI +UHI

LO)

ULO
LO−U

HI
LO

, the schedulability conditions of both Theorem
6.3.1 and 6.3.2 are satisfied. Thus, the IMC tasks are schedulable under EDF-VD.

104

CHAPTER 6. SCHEDULABILITY ANALYSIS OF IMPRECISE
MIXED-CRITICALITY SYSTEMS

6.4 Speedup Factor

The speedup factor bound is a useful metric to compare the worst-case performance
of different MC scheduling algorithms. The following is the definition of the speedup
factor for an MC scheduling algorithm.

Definition 6.4.1 (from [BBD+12]). The speedup factor of an algorithmA for schedul-
ing MC systems is the smallest real number f ≥ 1 such that any task system that is
schedulable by a hypothetical optimal clairvoyant scheduling algorithm2 on a unit-
speed processor is correctly scheduled by algorithm A on a speed-f processor.

Informally speaking, by increasing the processor’s speed, a non-optimal schedul-
ing algorithm is able to schedule the task sets which are deemed to be unschedulable
by the non-optimal scheduling algorithm but schedulable by an optimal scheduling
algorithm on the processor without speed increase. The speedup factor actually com-
putes howmuch the processor needs to speed up such that the non-optimal scheduling
algorithm achieves the same scheduling performance as an optimal scheduling algo-
rithm. The smaller speedup factor indicates a better scheduling performance for the
non-optimal scheduling algorithm. The speedup factor bound for the classical MC
model under EDF-VD [BBD+12] has been shown to be 4/3.

In the following, we prove the speedup factor of the IMC model under EDF-VD
scheduling. For notational simplicity, we define

UHIHI = c, ULOHI = α× c
ULOLO = b, UHILO = λ× b

where α ∈ (0, 1] and λ ∈ [0, 1]. α denotes the utilization ratio between ULOHI and
UHIHI , while λ denotes the utilization ratio between UHILO and ULOLO .

First, let us analyze the speedup factor of two corner cases. When α = 1, i.e.,
ULOHI = UHIHI , this means that there is no mode-switch. Therefore, the task set is
scheduled by the traditional EDF, i.e., the task set is schedulable if and only if ULOLO +
ULOHI ≤ 1. Since EDF is the optimal scheduling algorithm on a uniprocessor system,
the speedup factor thus is 1. When λ = 1, i.e., ULOLO = UHILO , if the task set is
schedulable in high-criticality mode, it must hold UHIHI + ULOLO ≤ 1 by Theorem
6.3.2. Then it is scheduled by the traditional EDF and thus the speedup factor is 1 as
well.

In our work, instead of generating a single speedup factor bound, we derive a
speedup factor function with respect to (α, λ). This speedup factor function enables

2A ‘clairvoyant’ scheduling algorithm knows all run-time information, e.g., when the mode switch
will occur, prior to run-time.

105

CHAPTER 6. SCHEDULABILITY ANALYSIS OF IMPRECISE
MIXED-CRITICALITY SYSTEMS

us to quantify the suboptimality of EDF-VD for the IMC model in terms of speedup
factor (by our proposed sufficient test) and to evaluate the impact of the utilization
ratio on the schedulability of an IMC task set under EDF-VD.

First, we strive to find a minimum speed s (≤1) for a clairvoyant optimal MC
scheduling algorithm such that any implicit-deadline IMC task set which is schedula-
ble by the clairvoyant optimal MC scheduling algorithm on a speed-s processor can
satisfy the schedulability test given in Theorem 6.3.3, i.e., schedulable under EDF-
VD on a unit-speed processor. Then, we can compute the speed-up factor by simply
computing 1/s.

Lemma 6.4.1. Given b, c ∈ [0, 1], α ∈ (0, 1), λ ∈ [0, 1), and

max{b+ αc, λb+ c} ≤ S(α, λ) (6.11)

where
S(α, λ) =

(1− αλ)((2− αλ− α) + (λ− 1)
√

4α− 3α2)

2(1− α)(αλ− αλ2 − α+ 1)

then it guarantees
αc

1− b
≤ 1− (c+ λb)

b− λb
(6.12)

Proof. Suppose that λ and α are constants and we have a real number s ≤ 1, where
max{b+ αc, λb+ c} ≤ s. We need to find the minimum of s which guarantees that
any b, c ∈ [0, 1] ensure (6.12). First, max{b+ αc, λb+ c} ≤ s implies

b+ αc ≤ s (6.13)

λb+ c ≤ s (6.14)

Then, condition (6.12) can be written as follows,

λb2 + (αλ− α+ 1)bc− (λ+ 1)b− c+ 1 ≥ 0 (6.15)

Inequalities (6.13)(6.14)(6.15) define a feasible space in the three-dimension space,
respectively. In Figure 6.2, the space above the plane is a feasible space satisfying
(6.13), where the plane corresponds to b + αc = s. For (6.14), λb + c = s draws a
plane and the feasible space is above the plane shown in Figure 6.3. Similarly, when
(6.15) makes its right-hand-side equal to the left-hand-side, we draw a vertical curved
surface seen in Figure 6.4 and the space inside the vertical surface is the feasible
space (the opposite of the arrow direction). We need to find the minimum of s in the
feasible space (above the two planes and inside the vertical surface) such that any
b and c that meet (6.11) satisfy (6.12). Since max{b + αc, λb + c} = s is strictly
increasing, to ensure that condition (6.12) hold for any b and c, we strive to minimize

106

CHAPTER 6. SCHEDULABILITY ANALYSIS OF IMPRECISE
MIXED-CRITICALITY SYSTEMS

max{b+αc, λb+c} in the feasible space. Then, this problem can be transformed into
another form, where, instead of minimizing max{b+ αc, λb+ c} inside the vertical
surface, weminimize the value ofmax{b+αc, λb+c} in the space outside the vertical
surface3 which is defined by

λb2 + (αλ− α+ 1)bc− (λ+ 1)b− c+ 1 ≤ 0 (6.16)

This is equivalent to the minimization of s with the above constraint. Then, the min-
imization problem is formulated as follows,

minimize s (6.17)
subject to b+ αc ≤ s (6.18)

λb+ c ≤ s (6.19)
λb2 + (αλ− α+ 1)bc− (λ+ 1)b− c+ 1 ≤ 0 (6.20)
0 ≤ b ≤ 1, 0 ≤ c ≤ 1 (6.21)

where α and λ are constant and s, b, c are variables. If S(α, λ) is the optimal solution
of the optimization problem (6.17), then Lemma 6.4.1 is proven.

Below, we prove that S(α, λ) is the optimal solution of the optimization problem
(6.17)4

Figure 6.2: plane 1

3As the arrows direct
4This optimization problem is a non-convex problem and thus we cannot use general convex opti-

mization techniques such as the Karush-Kuhn-Tucker (KKT) approach [KT51] to solve it.

107

CHAPTER 6. SCHEDULABILITY ANALYSIS OF IMPRECISE
MIXED-CRITICALITY SYSTEMS

Figure 6.3: plane 2

Figure 6.4: vertical surface

As stated before, the feasible solutions subject to these three constraints (6.18),
(6.19) and (6.20) must be above both planes and outside the vertical curved surface.
First assume that we have a point (b′0, c

′
0, s
′
0) which satisfies all constraints but is not

on the vertical surface. If we connect the origin (0, 0, 0) and (b′0, c
′
0, s
′
0), this line

must have an intersection point (b∗0, c
∗
0, s
∗
0) with the vertical surface. It is easy to

observe that s∗0 < s′0 - see in Figure 6.5. This means that any point which is not on
the vertical surface can find a point with smaller value of s on the vertical surface
which satisfies all constraints. Therefore, the point with the minimum s must be on
the vertical surface. Similarly, the minimum s must be on one of the two planes.

108

CHAPTER 6. SCHEDULABILITY ANALYSIS OF IMPRECISE
MIXED-CRITICALITY SYSTEMS

Figure 6.5: 3D space of optimization problem (6.17)

Otherwise, if it is not on any plane, we always can find a projected point on one plane
which has a smaller value of s.

We have shown above that to obtain the minimum value of s the point must be
on the vertical surface and one plane. Then, the two planes have an intersection line
and this line intersects with the vertical surface at a point denoted by (b0, c0, s0). By
taking constraints (6.18)(6.19) and (6.20), we formulate a piece-wise function of s
with respect to b as follows.

s(b) =

{
(αλ2−αλ)b2+b−1

(αλ−α+1)b−1 0 < b ≤ b0
(1−α)b2+(αλ+α−1)b−α

(αλ−α+1)b−1 b0 < b ≤ 1
(6.22)

This function covers all points which are on the vertical surface and one plane and
at same time satisfy all constraints. By doing some calculus, we know that Equation
(6.22) is monotonically decreasing in (0, b0] and monotonically increasing in (b0, 1].
Therefore, the minimum value of Equation (6.22) can be obtained at (b0, c0, s0). The
complete proof is given by Lemma 1 in Appendix I. It means that we can obtain the
optimal solution of problem (6.17) by solving the following system of equations.

b0 + αc0 = s0

λb0 + c0 = s0

λb20+(αλ−α+1)b0c0−(λ+1)b0−c0+1 = 0

(6.23)

109

CHAPTER 6. SCHEDULABILITY ANALYSIS OF IMPRECISE
MIXED-CRITICALITY SYSTEMS

By joining the first two equations we have c0 = 1−λ
1−α × b0, and applying it to the last

equation in (6.23) gives

(−αλ2 + αλ− α+ 1)b20 + (αλ+ α− 2)b0 + (1− α) = 0

By the well-known Quadratic Formula we get the two roots of the above quadratic
equation.

b10 =
(2− αλ− α) + (1− λ)

√
−3α2 + 4α

2(−αλ2 + αλ− α+ 1)
(6.24)

b20 =
(2− αλ− α)− (1− λ)

√
−3α2 + 4α

2(−αλ2 + αλ− α+ 1)
(6.25)

We can prove that b20 is larger than 1 and thus should be dropped (since we require
0 ≤ b ≤ 1), while b10 is in the range of [0, 1]. The detailed proof is given by Lemma
2 in Appendix I. As a result, we obtain the optimal solution (b10,

1−λ
1−αb

1
0,

1−αλ
1−α b

1
0) for

Equation (6.23). Thus, we have

S(α, λ) =
1− αλ
1− α

b10

=
(1− αλ)((2− αλ− α) + (λ− 1)

√
4α− 3α2)

2(1− α)(αλ− αλ2 − α+ 1)

Therefore, Lemma 6.4.1 is proven.

Lemma 6.4.1 shows that any IMC task set that is schedulable by an optimal clair-
voyant MC scheduling algorithm on a speed-S(α, λ) is schedulable by EDF-VD on a
unit-speed processor. Therefore, we can compute the speedup factor of EDF-VD by
1/S(α, λ).

Theorem 6.4.1. The speedup factor of EDF-VD with IMC task sets is

f =
2(1− α)(αλ− αλ2 − α+ 1)

(1− αλ)((2− αλ− α) + (λ− 1)
√

4α− 3α2)

Proof. Follow the explanation given above.

The speedup factor is shown to be a function of α and λ. Figure 6.6 plots the 3D
image of this function and Table 6.2 lists some of the values with different α and λ.
By doing some calculus, we obtain the maximum value 1.333 (4/3) of the speedup
factor function when λ = 0 and α = 1

3 , which is highlighted in Figure 6.6 and Table

110

CHAPTER 6. SCHEDULABILITY ANALYSIS OF IMPRECISE
MIXED-CRITICALITY SYSTEMS

λ

0.0
0.2

0.4
0.6

0.8
1.0

α

0.0

0.2
0.4

0.6
0.8

1.0

sp
e
e
d
u
p
 f

a
ct

o
r

1.05

1.10

1.15

1.20

1.25

1.30

1.351.333

Figure 6.6: 3D image of the speedup factor w.r.t α and λ

λ
α 0.1 0.3 1/3 0.5 0.7 0.9 1

0 1.254 1.332 1.333 1.309 1.227 1.091 1
0.1 1.231 1.308 1.310 1.293 1.219 1.090 1
0.3 1.183 1.256 1.259 1.254 1.201 1.087 1
0.5 1.134 1.195 1.200 1.206 1.174 1.083 1
0.7 1.082 1.126 1.130 1.143 1.133 1.074 1
0.9 1.028 1.046 1.048 1.056 1.061 1.048 1
1 1 1 1 1 1 1 1

Table 6.2: The speedup factor w.r.t α and λ

111

CHAPTER 6. SCHEDULABILITY ANALYSIS OF IMPRECISE
MIXED-CRITICALITY SYSTEMS

6.2. We see that the speedup factor bound is achieved when the task set is a classical
MC task set. From Figure 6.6 and Table 6.2, we observe different trends for the
speedup factor with respect to α and λ.

• First, given a fixed λ, the speedup factor is not a monotonic function with re-
spect to α. The relation between α and the speedup factor draws a downward
parabola. Therefore, a straightforward conclusion regarding the impact of α on
the speedup factor cannot be drawn.

• Given a fixed α, the speedup factor is a monotonically decreasing function with
respect to increasing λ. It is seen that increasing λ leads to a smaller value of
the speedup factor. This means that a larger λ brings a positive effect on the
schedulability of an IMC task set.

6.5 Experimental Evaluation

In this section, we conduct experiments to evaluate the effectiveness of the proposed
sufficient test for the IMC model in terms of schedulable task sets (acceptance ratio).
Moreover, we conduct experiments to verify the two observations stated at the end
of Section 6.4 regarding the impact of α and λ on the average acceptance ratio. Our
experiments are based on randomly generated MC tasks. We use a task generation ap-
proach, similar to that used in [Eas13][EY14], to randomly generate IMC task sets to
evaluate the proposed sufficient test. Each task τi is generated based on the following
procedure,

• pCriticality is the probability that the generated task is a high-criticality task;
pCriticality∈ [0, 1].

• Period Ti is randomly selected from the range [100, 1000].

• In order to have sufficient number of tasks in a task set, utilizationui is randomly
drawn from the range[0.05, 0.2].

• For any task τi, CLOi = ui ∗ Ti.

• R ≥ 1 denotes the ratio CHIi /CLOi for every high-criticality task. If Li = HI ,
we set CHIi = R ∗ CLOi . It is easy to see that α used in the speedup factor
function is equal to 1

R ;

• λ ∈ (0, 1] denotes the ratio CHIi /CLOi for every low-criticality task. If Li =
LO, we set CHIi = λ ∗ CLOi .

112

CHAPTER 6. SCHEDULABILITY ANALYSIS OF IMPRECISE
MIXED-CRITICALITY SYSTEMS

In the experiment, we generate IMC task sets with different target utilization U . Each
task set is generated as follows. Given a target utilization U , we first initialize an
empty task set. Then, we generate task τi according to the task generation procedure
introduced above and add the generated task to the task set. The task set generation
stops as we have

U − 0.05 ≤ Uavg ≤ U + 0.05

where
Uavg =

ULO + UHI

2

is the average total utilization of the generated task set. If adding a new task makes
Uavg > U+0.05, then the added task will be removed and a new taskwill be generated
and added to the task set till the condition is met.

6.5.1 Comparison with AMC [BB13]

In the first experiment, we compare EDF-VD by using our proposed test to the AMC
approach in [BB13] in terms of average acceptance ratio. In this experiment,R is ran-
domly selected from a uniform distribution [1.5, 2.5]. With differentλ and pCriticality
settings, we vary Uavg from 0.4 to 0.95 with step of 0.05, to evaluate the effectiveness
of the proposed sufficient test in terms of the average acceptance ratios. We generate
10,000 task sets for each given Uavg. Since all experimental results follow the similar
trend, in this section, we only present the experimental results when pCriticality= 0.5.
Results with different pCriticality settings can be found in Appendix III. The results
are shown in Figure 6.7-6.9, where the x-axis denotes the varying Uavg and the y-axis
denotes the acceptance ratio. In the figures, let EDF-VD and AMC denote our pro-
posed schedulability test and the one proposed in [BB13], respectively. In most cases,
EDF-VD outperforms AMC in terms of acceptance ratio. We observe the following
trends:

1. When Uavg ∈ [0.5, 0.8], EDF-VD always outperforms AMC in terms of accep-
tance ratio. However, if Uavg > 0.8 and λ = 0.3 or 0.5, AMC performs better
than EDF-VD. The same trend is also found for the classical MC model under
EDF-VD and AMC, see in [EY14].

2. By comparing figures in Figure 6.7-6.9, we see that the average acceptance
ratio improves when λ increases. This confirms the observation for the speedup
factor we stated at the end of Section 6.4. The increasing λ leads to a smaller
speedup factor. As a result, it provides a better schedulability. We need to notice
that when λ increases, not only EDF-VD improves its acceptance ratio but the
acceptance ratio of AMC [BB13] also improves.

113

CHAPTER 6. SCHEDULABILITY ANALYSIS OF IMPRECISE
MIXED-CRITICALITY SYSTEMS

0.4 0.5 0.6 0.7 0.8 0.9
Uavg

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 r
a
ti

o

AMC

EDF-VD

Figure 6.7: λ = 0.3

0.4 0.5 0.6 0.7 0.8 0.9
Uavg

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 r
a
ti

o

AMC

EDF-VD

Figure 6.8: λ = 0.5

0.4 0.5 0.6 0.7 0.8 0.9
Uavg

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 r
a
ti

o

AMC

EDF-VD

Figure 6.9: λ = 0.7

114

CHAPTER 6. SCHEDULABILITY ANALYSIS OF IMPRECISE
MIXED-CRITICALITY SYSTEMS

0.2 0.3 0.4 0.5 0.6 0.7 0.8
λ

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 r
a
ti

o Uavg=0.65

Uavg=0.70

Uavg=0.75

Uavg=0.80

Uavg=0.85

Figure 6.10: Impact of λ

6.5.2 Impact of α and λ

In the first experiment, we compare our proposed sufficient test to the existing AMC
approach. In this section, we conduct experiments to further evaluate the impact
of λ and α (1/R) on the acceptance ratio. In this experiment, we select Uavg =
{0.65, 0.7, 0.75, 0.8, 0.85} to conduct experiments. We fix Uavg to a certain utiliza-
tion and vary λ and α to evaluate the impact.

We first show the results for λ. The results are depicted in Figure 6.10, where the
x-axis denotes the value of λ from 0.2 to 0.9 with step of 0.1 and the y-axis denotes the
average acceptance ratio. R is randomly selected from a uniform distribution [1.5, 2.5]
and pCriticality= 0.5. Similarly, 10,000 task sets are generated for each point in the
figures. A clear trend can be observed that the acceptance ratio increases as λ in-
creases. This trend confirms the positive impact of increasing λ on the schedulability
which we have observed in Section 6.4.

Next we conduct experiments to evaluate the impact of α on the schedulability.
Similarly, we fix Uavg and vary α to carry out the experiments. Due to α = 1

R , if
α is given, we compute the corresponding R to generate task sets. The results are
depicted in Figure 6.11, where λ = 0.5. The x-axis denotes the varying α from 0.1
to 0.9 with step of 0.1. while the y-axis denotes the average acceptance ratio. First,
from Table 6.2, we see that with increasing α the speedup factor first increases till a
point. This means within this range the scheduling performance of EDF-VD gradually
decreases. After that point, the speedup factor decreases which means the scheduling
performance of EDF-VD gradually improves. The experimental results confirm what
we have observed for α in Section 6.4. The acceptance ratio gradually decreases till
a point and then it increases.

115

CHAPTER 6. SCHEDULABILITY ANALYSIS OF IMPRECISE
MIXED-CRITICALITY SYSTEMS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
α

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

e
p
ta

n
ce

 r
a
ti

o Uavg=0.65

Uavg=0.70

Uavg=0.75

Uavg=0.80

Uavg=0.85

Figure 6.11: Impact of α

116

Chapter 7

Summary and Future Work

Research is to see what everybody else has seen, and to think what nobody else has
thought.

Albert Szent-Gyorgyi

7.1 Summary and Conclusions

As we quoted in the epigraph of Chapter 1, "Almost all computer systems of the
future will utilize real-time scientific principles and technology.", real-time sys-

tems and the systems that desire to apply real-time discipline are becoming ubiquitous
with the advent of Internet of Things (IoTs) and Cyber-Physical Systems (CPS). The
increasing complexity of real-time software and the emerging new hardware inspire
us to revisit the “old-wise” in the embedded system community and the real-time com-
munity and to propose novel solutions dealing with the drastic changes in real-time
systems.

TheHRT scheduling framework proposed in [BS13] establishes a bridge between
the data-flowmodels and the real-time theories, enabling us to directly apply real-time
theories on the well-known data-flowmodels, e.g., SDF and CSDF. TheHRT schedul-
ing framework effectively converts actors in a CSDF graph into a periodic task set with
implicit deadline and thus the majority of the theories developed in the real-time com-
munity can be applied to provide fast admission control and real-time guarantee for
applications. However, the conversion done by theHRT scheduling framework comes
at the cost of hurting the application latency which is one of the primary performance
metrics for streaming applications. The proposers of HRT scheduling framework are
aware of this issue [BS12] and suggest to select a smaller relative deadline for each

117

CHAPTER 7. SUMMARY AND FUTURE WORK

task to reduce the latency. In the real-time theories, such scaling down of deadlines of
tasks negatively affects the schedulability of a multiprocessor real-time systems, and
thus has to use more processors to compensate this negative effect, i.e., a larger num-
ber of processors are required to schedule the task set. The authors in [BS12] propose
a simple way to uniformly select deadlines for all tasks but this approach is really
ineffective in terms of resource minimization while meeting latency requirements.
Therefore, to deal with this problem, in Chapter 3, we have proposed a new method to
optimize the resource usage in the context of the HRT scheduling of CSDFs, where
we formalize the resource minimization problem into an integer convex programming
problem. By means of a off-the-shelf convex programming solver, we can obtain an
optimal deadline selection for each task while minimizing the resource requirement
and meanwhile ensuring the latency guarantee for CSDF-modeled streaming appli-
cations. The experimental results demonstrate the effectiveness of our approach over
the existing approach in [BS12].

Due to the growing power consumption of increasingly complex applications, en-
ergy/power consumption is deemed as one of the major concerns when designing
embedded systems. The single-ISA heterogeneous multicore systems are proposed
to alleviate this energy pain. Nowadays such systems are prevalent in commercial
electronic devices, such as mobile phones, TV boxs, etc. These systems provide de-
signers a new opportunity to achieve energy efficiency and high performance and on
the other hand they also require to find a new methodology to efficiently and effec-
tively utilize the underlying hardware in an energy-efficient manner. Therefore, in
Chapter 4, we have proposed a polynomial time algorithm to energy-efficiently map
real-time streaming applications with latency and throughput constraints to cluster
single-ISA heterogeneous multicore systems. Compared with existing approaches,
the experimental results show that our proposed algorithm outperforms the existing
approaches by finding a more energy efficient mapping. Our algorithm can save up to
34% energy on the cluster heterogeneous single-ISA multicore systems.

In Chapter 5, we have continued to study the problem of energy-efficient map-
ping on heterogeneous multicore systems. In this work, we have investigated the ap-
plication of the C=D task-splitting [BDWZ12] on heterogeneous systems. We have
analyzed and extended the C=D task-splitting for heterogeneous multicore systems.
With our analysis and extension, we have proposed the ASHM algorithm to allocate
and split real-time tasks on a heterogeneous multicore system. In contrast to fully
partitioned allocation approaches, our proposed ASHM algorithm can effectively uti-
lize energy-efficient cores to achieve more energy saving. The experimental results
show the effectiveness of our proposed ASHM in terms of energy saving, where the
maximum energy saving by ASHM compared to related approaches is up to 60%.

The trend towards integrating applications with different criticality levels on a

118

CHAPTER 7. SUMMARY AND FUTURE WORK

single HW/SW platform is emerging in safety-critical real-time systems. In order
to satisfy the rigorous requirements of certification authorities and at the same time
to better utilize the underlying HW/SW platform, a classical Mixed-Criticality (MC)
model is proposed in [Ves07]. Although this classical MC model is able to capture
the core features of MC systems, it receives criticism from system designers due to its
pessimistic behavior of completely discarding all low critical application tasks when
any high critical application task overruns. Imprecise MC (IMC) model is proposed
in [BB13] to resolve the criticism, but its schedulability analysis under EDF-VD still
was not studied. Therefore, in Chapter 6, we have studied the schedulability of the
IMC model under EDF-VD and proposed a sufficient test. Based on the proposed
sufficient test, we have derived a speedup factor function with respect to the utilization
variation ratio α of all high-criticality tasks and the utilization variation ratio λ of all
low-criticality tasks. This speedup factor function provides a good insight to observe
the impact ofα andλ on the speedup factor and enables us to quantify the optimality of
EDF-VD for the IMCmodel in terms of speedup factor. Our experimental results show
that our proposed sufficient test outperforms the existing AMC approach in terms of
acceptance ratio. Moreover, the extensive experiments also confirm the observations
we obtained for the speedup factor.

7.2 Future work

Although this dissertation has made several contributions to the real-time embedded
system field, there remains interesting topics which can be researched based on our
contributions. This section discusses some issues or challenges which deserve further
investigation in the future.

7.2.1 The real convergence of data-flow models and real-time theories

An increasingly hot topic in the real-time community is the scheduling problem of
parallel real-time directed acyclic graphs (DAG). We can clearly see the conceptual
similarity between the DAGmodel used in the real-time community and the data-flow
models used in the embedded system community. Considering the analogy of these
models, it is worth to investigate how the DAG theories can be directly applied to
data-flow models. Such directed application might be able to provide a better perfor-
mance and real-time analysis framework and the conversion overhead occurred in the
HRT scheduling framework, e.g., the increased latency (see in the problem studied in
Chapter 3), might also be eliminated.

119

CHAPTER 7. SUMMARY AND FUTURE WORK

7.2.2 The multi-objective mapping of heterogeneous multicore systems

Our algorithms presented in Chapter 4 and 5 demonstrate the effectiveness in terms of
energy efficiency. However, there are more objectives worth to be investigated in the
complex HW/SW heterogeneous multicore, i.e., the thermal objective, the reliability
objective and the security objective. These objectives interact with each other, thereby
leaving us a large design space to exploit and requiring us to find a good trade-off be-
tween multiple objectives. Therefore, it is a very interesting and challenging problem
to design an efficient and effective algorithm to map real-time applications onto a
heterogeneous system with multiple objectives considered.

7.2.3 Practical and flexible MC model

Even though the IMC model has dealt successfully with some of the criticism from
system designers, one assumption in the IMC model is still somehow pessimistic and
in some cases impractical, i.e., if any high-criticality task overruns, all the other high-
criticality tasks are assumed to overrun their smaller WCETs and thus be scheduled
with their large WCETs (pessimistic ones). This assumption makes the system over-
react to the overrun of a single high-criticality task and consequently it leads to an
unnecessary degradation (i.e., reduced execution time) of low-criticality tasks. There-
fore, further research can be conducted in the context of defining an MCmodel which
can effectively reduce the pessimism of the current model and provide a more flexible
execution semantics. To meet this goal, some existing theories, like control theories,
might help.

120

Bibliography

[ARM16] ARMv8-A cores. https://www.arm.com/products/processors/
cortex-a, Retrieved June 2016.

[ART14] ARTEMIS. http://www.artemis\-ju.eu/home_page, 2014.

[AS00] J. H. Anderson and A. Srinivasan. Pfair scheduling: beyond periodic task sys-
tems. In Real-Time Computing Systems and Applications, 2000. Proceedings.
Seventh International Conference on, pages 297–306, 2000.

[AY03] Hakan Aydin and Qi Yang. Energy-aware partitioning for multiprocessor real-
time systems. In Proceedings of the 17th International Symposium on Parallel
and Distributed Processing, IPDPS ’03, pages 113.2–, Washington, DC, USA,
2003. IEEE Computer Society.

[BB07] Theodore P. Baker and Sanjoy K. Baruah. Schedulability analysis of multipro-
cessor sporadic task systems. InHandbook of Realtime and Embedded Systems.
CRC Press, 2007.

[BB13] Alan Burns and Sanjoy Baruah. Towards a more practical model for mixed
criticality systems. In Workshop on Mixed-Criticality Systems (colocated with
RTSS), 2013.

[BBA10] Andrea Bastoni, Bjorn B. Brandenburg, and James H. Anderson. An empirical
comparison of global, partitioned, and clustered multiprocessor edf schedulers.
In Proceedings of the 2010 31st IEEE Real-Time Systems Symposium, RTSS
’10, pages 14–24, Washington, DC, USA, 2010. IEEE Computer Society.

[BBA11] A. Bastoni, B. B. Brandenburg, and J. H. Anderson. Is semi-partitioned schedul-
ing practical? In 2011 23rd Euromicro Conference on Real-Time Systems, pages
125–135, July 2011.

[BBB+09] J. Barhorst, T. Belote, P. Binns, J. Hoffman, J. Paunicka, P. Sarathy, J. S. P.
Stanfill, D. Stuart, and R. Urzi. White paper: A research agenda for mixed-
criticality systems. http://www.cse.wustl.edu/~cdgill/CPSWEEK09_
MCAR/, April 2009.

[BBD11] S. K. Baruah, A. Burns, and R. I. Davis. Response-time analysis for mixed
criticality systems. In Proceedings of the 2011 IEEE 32Nd Real-Time Systems

121

BIBLIOGRAPHY

Symposium, RTSS ’11, pages 34–43, Washington, DC, USA, 2011. IEEE Com-
puter Society.

[BBD+12] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
S. van der Ster, and L. Stougie. The preemptive uniprocessor scheduling of
mixed-criticality implicit-deadline sporadic task systems. In Proceedings of
the 2012 24th Euromicro Conference on Real-Time Systems, ECRTS ’12, pages
145–154, Washington, DC, USA, 2012. IEEE Computer Society.

[BBG16] S. Baruah, A. Burns, and Z. Guo. Scheduling mixed-criticality systems to guar-
antee some service under all non-erroneous behaviors. In 2016 28th Euromicro
Conference on Real-Time Systems (ECRTS), pages 131–138, July 2016.

[BCPV93a] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportion-
ate progress: A notion of fairness in resource allocation. In Proceedings of
the Twenty-fifth Annual ACM Symposium on Theory of Computing, STOC ’93,
pages 345–354, New York, NY, USA, 1993. ACM.

[BCPV93b] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportion-
ate progress: A notion of fairness in resource allocation. In Proceedings of
the Twenty-fifth Annual ACM Symposium on Theory of Computing, STOC ’93,
pages 345–354, New York, NY, USA, 1993. ACM.

[BD15] Alan Burns and Robert Davis. Mixed criticality systems-a review. University
of York, Tech. Rep, 2015.

[BDWZ12] A. Burns, R. I. Davis, P. Wang, and F. Zhang. Partitioned edf scheduling for
multiprocessors using a c=d task splitting scheme. Real-Time Systems, 48(1):3–
33, 2012.

[BELP96] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete. Cycle-static dataflow.
IEEE Transactions on Signal Processing, 44(2):397–408, Feb 1996.

[BMAB16] Mario Bambagini, Mauro Marinoni, Hakan Aydin, and Giorgio Buttazzo.
Energy-aware scheduling for real-time systems: A survey. ACM Trans. Embed.
Comput. Syst., 15(1):7:1–7:34, January 2016.

[BMR90] S. K. Baruah, A. K. Mok, and L. E. Rosier. Preemptively scheduling hard-real-
time sporadic tasks on one processor. In Real-Time Systems Symposium, 1990.
Proceedings., 11th, pages 182–190, Dec 1990.

[BRC06] P. Balbastre, I. Ripoll, and A. Crespo. Optimal deadline assignment for periodic
real-time tasks in dynamic priority systems. In 18th Euromicro Conference on
Real-Time Systems (ECRTS’06), pages 10 pp.–74, 2006.

[BS11] MohamedBamakhrama and Todor Stefanov. Hard-real-time scheduling of data-
dependent tasks in embedded streaming applications. In Proceedings of the
Ninth ACM International Conference on Embedded Software, EMSOFT ’11,
pages 195–204, New York, NY, USA, 2011. ACM.

122

BIBLIOGRAPHY

[BS12] Mohamed A. Bamakhrama and Todor Stefanov. Managing latency in embed-
ded streaming applications under hard-real-time scheduling. In Proceedings of
the Eighth IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis, CODES+ISSS ’12, pages 83–92, New York,
NY, USA, 2012. ACM.

[BS13] Mohamed A. Bamakhrama and Todor P. Stefanov. On the hard-real-time
scheduling of embedded streaming applications. Design Automation for Em-
bedded Systems, 17(2):221–249, 2013.

[But11] Giorgio C. Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Springer Publishing Company, In-
corporated, 3rd edition, 2011.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

[BZNS12] Mohamed A. Bamakhrama, Jiali Teddy Zhai, Hristo Nikolov, and Todor Ste-
fanov. A methodology for automated design of hard-real-time embedded
streaming systems. In Proceedings of the Conference on Design, Automation
and Test in Europe, DATE ’12, pages 941–946, San Jose, CA, USA, 2012. EDA
Consortium.

[CGHJ09] J. Cong, K. Gururaj, G. Han, andW. Jiang. Synthesis algorithm for application-
specific homogeneous processor networks. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 17(9):1318–1329, Sept 2009.

[CGJ97] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation algorithms
for np-hard problems. chapter Approximation Algorithms for Bin Packing: A
Survey, pages 46–93. PWS Publishing Co., Boston, MA, USA, 1997.

[CHBK13] G. Chen, K. Huang, C. Buckl, and A. Knoll. Energy optimization with worst-
case deadline guarantee for pipelined multiprocessor systems. In Design, Au-
tomation Test in Europe Conference Exhibition (DATE), 2013, pages 45–50,
March 2013.

[CHC+04] Jian-Jia Chen, Heng-Ruey Hsu, Kai-Hsiang Chuang, Chia-Lin Yang, Ai-Chun
Pang, and Tei-Wei Kuo. Multiprocessor energy-efficient scheduling with task
migration considerations. In Proceedings of the 16th Euromicro Conference on
Real-Time Systems, ECRTS ’04, pages 101–108, Washington, DC, USA, 2004.
IEEE Computer Society.

[Civ16] Civil Aviation Authority. https://www.caa.co.uk/home/, 2016.

[CK07] Jian-Jia Chen and Chin-Fu Kuo. Energy-efficient scheduling for real-time sys-
tems on dynamic voltage scaling (dvs) platforms. In Proceedings of the 13th
IEEE International Conference on Embedded and Real-Time Computing Sys-
tems and Applications, RTCSA ’07, pages 28–38,Washington, DC, USA, 2007.
IEEE Computer Society.

123

BIBLIOGRAPHY

[CKR14] A. Colin, A. Kandhalu, and R. Rajkumar. Energy-efficient allocation of real-
time applications onto heterogeneous processors. In 2014 IEEE 20th Interna-
tional Conference on Embedded and Real-Time Computing Systems and Appli-
cations, pages 1–10, Aug 2014.

[CLL90] J.-Y. Chung, J.W.S. Liu, and Kwei-Jay Lin. Scheduling periodic jobs that allow
imprecise results. Computers, IEEE Transactions on, 1990.

[CRJ06] Hyeonjoong Cho, Binoy Ravindran, and E. Douglas Jensen. An optimal real-
time scheduling algorithm for multiprocessors. InProceedings of the 27th IEEE
International Real-Time Systems Symposium, RTSS ’06, pages 101–110, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[CST09] J. J. Chen, A. Schranzhofer, and L. Thiele. Energy minimization for periodic
real-time tasks on heterogeneous processing units. In Parallel Distributed Pro-
cessing, 2009. IPDPS 2009. IEEE International Symposium on, pages 1–12,
May 2009.

[CT08] Jian-Jia Chen and Lothar Thiele. Energy-efficient task partition for periodic
real-time tasks on platforms with dual processing elements. In Proceedings of
the 2008 14th IEEE International Conference on Parallel and Distributed Sys-
tems, ICPADS ’08, pages 161–168, Washington, DC, USA, 2008. IEEE Com-
puter Society.

[CWLH08] T. Chantem, X. Wang, M. D. Lemmon, and X. S. Hu. Period and deadline
selection for schedulability in real-time systems. In 2008 Euromicro Conference
on Real-Time Systems, pages 168–177, July 2008.

[CZZ+15] Hsiang-Yun Cheng, Jia Zhan, Jishen Zhao, Yuan Xie, Jack Sampson, and
Mary Jane Irwin. Core vs. uncore: The heart of darkness. In Proceedings
of the 52Nd Annual Design Automation Conference, DAC ’15, pages 121:1–
121:6, New York, NY, USA, 2015. ACM.

[DB11] Robert I. Davis and Alan Burns. A survey of hard real-time scheduling for
multiprocessor systems. ACMComput. Surv., 43(4):35:1–35:44, October 2011.

[Der74] MLDertouzos. Control robotics: the procedural control of physical processes,"
information processing 74, 1974.

[DGR+74] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc.
Design of ion-implanted mosfet’s with very small physical dimensions. IEEE
Journal of Solid-State Circuits, 9(5):256–268, Oct 1974.

[DZDN+07] Abhijit Davare, Qi Zhu, Marco Di Natale, Claudio Pinello, Sri Kanajan, and
Alberto Sangiovanni-Vincentelli. Period optimization for hard real-time dis-
tributed automotive systems. In Proceedings of the 44th Annual Design Au-
tomation Conference, DAC ’07, pages 278–283, New York, NY, USA, 2007.
ACM.

124

BIBLIOGRAPHY

[Eas13] Arvind Easwaran. Demand-based scheduling of mixed-criticality sporadic
tasks on one processor. In Real-Time Systems Symposium (RTSS), 2013 IEEE
34th, pages 78–87. IEEE, 2013.

[EBSA+11] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankar-
alingam, and Doug Burger. Dark silicon and the end of multicore scaling. In
Proceedings of the 38th Annual International Symposium on Computer Archi-
tecture, ISCA ’11, pages 365–376, New York, NY, USA, 2011. ACM.

[EET04] EETimes. Intel cancels tejas, moves to dual-core designs. http://www.
eetimes.com/document.asp?doc_id=1150169, May 2004.

[ENNT15] Alexandre Esper, Geoffrey Nelissen, Vincent Nélis, and Eduardo Tovar. How
realistic is the mixed-criticality real-time system model? In Proceedings of the
23rd International Conference on Real Time and Networks Systems, RTNS ’15,
pages 139–148, New York, NY, USA, 2015. ACM.

[ESAS14] Abdullah Elewi, Mohamed Shalan, Medhat Awadalla, and Elsayed M. Saad.
Energy-efficient task allocation techniques for asymmetric multiprocessor em-
bedded systems. ACM Trans. Embed. Comput. Syst., 13(2s):71:1–71:27, Jan-
uary 2014.

[EY14] Pontus Ekberg and Wang Yi. Bounding and shaping the demand of generalized
mixed-criticality sporadic task systems. Real-time systems, 50(1):48–86, 2014.

[Fed16] Federal Aviation Administration. http://www.faa.gov/, 2016.

[GB08] Michael Grant and Stephen Boyd. Graph implementations for nonsmooth con-
vex programs. In V. Blondel, S. Boyd, and H. Kimura, editors, Recent Advances
in Learning and Control, Lecture Notes in Control and Information Sciences,
pages 95–110. Springer-Verlag Limited, 2008.

[GB14] Michael Grant and Stephen Boyd. CVX:Matlab software for disciplined convex
programming, version 2.1. http://cvxr.com/cvx, March 2014.

[GBK+12] Vishal Gupta, Paul Brett, David Koufaty, Dheeraj Reddy, Scott Hahn, Karsten
Schwan, and Ganapati Srinivasa. The forgotten ’uncore’: On the energy-
efficiency of heterogeneous cores. In Proceedings of the 2012 USENIX Confer-
ence on Annual Technical Conference, USENIX ATC’12, pages 34–34, Berke-
ley, CA, USA, 2012. USENIX Association.

[Gil15] Lori Gil. Nvidia’s tegra x1 crushes the competition. http://liliputing.
com/2015/02/nvidias-tegra-x1
-crushes-the-competition.html, Mar 2015.

[GJ79] Michael R. Garey andDavid S. Johnson. Computers and Intractability: AGuide
to the Theory of NP-Completeness. W. H. Freeman&Co., NewYork, NY, USA,
1979.

125

BIBLIOGRAPHY

[GSYY10] Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. Fixed-priority multiprocessor
scheduling with liu and layland’s utilization bound. In Proceedings of the 2010
16th IEEE Real-Time and Embedded Technology and Applications Symposium,
RTAS ’10, pages 165–174, Washington, DC, USA, 2010. IEEE Computer So-
ciety.

[HCH11] S. Hong, T. Chantem, and X. S. Hu. Meeting end-to-end deadlines through dis-
tributed local deadline assignments. In Real-Time Systems Symposium (RTSS),
2011 IEEE 32nd, pages 183–192, Nov 2011.

[HGST14] P. Huang, G. Giannopoulou, N. Stoimenov, and L. Thiele. Service adaptions
for mixed-criticality systems. In 2014 19th Asia and South Pacific Design Au-
tomation Conference (ASP-DAC), pages 125–130, Jan 2014.

[HKPS15] Jörg Henkel, Heba Khdr, Santiago Pagani, and Muhammad Shafique. New
trends in dark silicon. In Proceedings of the 52Nd Annual Design Automation
Conference, DAC ’15, pages 119:1–119:6, New York, NY, USA, 2015. ACM.

[HM07] Sebastian Herbert and Diana Marculescu. Analysis of dynamic volt-
age/frequency scaling in chip-multiprocessors. In Proceedings of the 2007 In-
ternational Symposium on Low Power Electronics and Design, ISLPED ’07,
pages 38–43, New York, NY, USA, 2007. ACM.

[HTC07] T. Y. Huang, Y. C. Tsai, and E. T. H. Chu. A near-optimal solution for the
heterogeneous multi-processor single-level voltage setup problem. In 2007
IEEE International Parallel and Distributed Processing Symposium, pages 1–
10, March 2007.

[J+13] Mathieu Jan et al. Maximizing the execution rate of low-criticality tasks in
mixed criticality system. In Proceddings of Workshop of Mixed-Criticality
(WMC), Real-Time Systems Symposium (RTSS), 2013.

[Jef12] Brain Jeff. Advances in big.little technology for power and energy savings.
Technical report, ARM Ltd, Sept 2012.

[JHIP10] H. Javaid, X. He, A. Ignjatovic, and S. Parameswaran. Optimal synthesis of la-
tency and throughput constrained pipelined mpsocs targeting streaming appli-
cations. InHardware/Software Codesign and System Synthesis (CODES+ISSS),
2010 IEEE/ACM/IFIP International Conference on, pages 75–84, Oct 2010.

[JLBK13] J. Augusto Santos Júnior, George Lima, Konstantinos Bletsas, and Shinpei
Kato. Multiprocessor real-time scheduling with a few migrating tasks. In
Proceedings of the 2013 IEEE 34th Real-Time Systems Symposium, RTSS ’13,
pages 170–181, Washington, DC, USA, 2013. IEEE Computer Society.

[Joh74] David S. Johnson. Fast algorithms for bin packing. J. Comput. Syst. Sci.,
8(3):272–314, jun 1974.

[JSM91] K. Jeffay, D. F. Stanat, and C. U. Martel. On non-preemptive scheduling of pe-
riod and sporadic tasks. In Real-Time Systems Symposium, 1991. Proceedings.,
Twelfth, pages 129–139, Dec 1991.

126

BIBLIOGRAPHY

[KAB+03] Nam SungKim, ToddAustin, David Blaauw, TrevorMudge, Krisztián Flautner,
Jie S. Hu, Mary Jane Irwin, Mahmut Kandemir, and Vijaykrishnan Narayanan.
Leakage current: Moore’s law meets static power. Computer, 36(12):68–75,
December 2003.

[KFJ+03] Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Parthasarathy Ranganathan,
and Dean M. Tullsen. Single-isa heterogeneous multi-core architectures: The
potential for processor power reduction. In Proceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 36, pages
81–, Washington, DC, USA, 2003. IEEE Computer Society.

[KT51] H. W. Kuhn and A. W. Tucker. Nonlinear programming. In Proceedings of
the Second Berkeley Symposium on Mathematical Statistics and Probability,
Berkeley, Calif., 1951. University of California Press.

[KYD11] F. Kong, W. Yi, and Q. Deng. Energy-efficient scheduling of real-time tasks
on cluster-based multicores. In 2011 Design, Automation Test in Europe, pages
1–6, March 2011.

[Leu89] Joseph Y-T Leung. A new algorithm for scheduling periodic, real-time tasks.
Algorithmica, 4(1-4):209–219, 1989.

[LG11] J. Lu and Y. Guo. Energy-aware fixed-priority multi-core scheduling for real-
time systems. In 2011 IEEE 17th International Conference on Embedded and
Real-Time Computing Systems and Applications, volume 1, pages 277–281,
Aug 2011.

[LL73] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. J. ACM, 20(1):46–61, January 1973.

[LLS+91] Jane W.-S. Liu, Kwei-Jay Lin, Wei Kuan Shih, Albert Chuang-shi Yu, Jen-Yao
Chung, and Wei Zhao. Algorithms for scheduling imprecise computations. In
Foundations of Real-Time Computing: Scheduling and Resource Management,
pages 203–249. Springer, 1991.

[LM87] Edward Ashford Lee and David G. Messerschmitt. Static scheduling of syn-
chronous data flow programs for digital signal processing. IEEE Trans. Com-
put., 36(1):24–35, January 1987.

[LPG+14] J. Lee, K. M. Phan, X. Gu, J. Lee, A. Easwaran, I. Shin, and I. Lee. Mc-fluid:
Fluid model-based mixed-criticality scheduling on multiprocessors. In Real-
Time Systems Symposium (RTSS), 2014 IEEE, pages 41–52, Dec 2014.

[LSCS15] D. Liu, J. Spasic, G. Chen, and T. Stefanov. Energy-efficient mapping of real-
time streaming applications on cluster heterogeneous mpsocs. In Embedded
Systems For Real-time Multimedia (ESTIMedia), 2015 13th IEEE Symposium
on, pages 1–10, Oct 2015.

[LSG+16] D. Liu, J. Spasic, N. Guan, G. Chen, S. Liu, T. Stefanov, and W. Yi. Edf-vd
scheduling of mixed-criticality systems with degraded quality guarantees. In
2016 IEEE Real-Time Systems Symposium (RTSS), pages 35–46, Nov 2016.

127

BIBLIOGRAPHY

[LSL+94] J. W. S. Liu, Wei-Kuan Shih, Kwei-Jay Lin, R. Bettati, and Jen-Yao Chung.
Imprecise computations. Proceedings of the IEEE, 82(1):83–94, Jan 1994.

[MB07] Orlando M. Moreira and Marco J. G. Bekooij. Self-timed scheduling analysis
for real-time applications. EURASIP Journal on Advances in Signal Processing,
2007(1):083710, 2007.

[Mit15] Tulika Mitra. Heterogeneous multi-core architectures. Information and Media
Technologies, 10(3):383–394, 2015.

[Mit16] Sparsh Mittal. A survey of techniques for architecting and managing asymmet-
ric multicore processors. ACM Computing Surveys, 2016.

[Nor] Sven Nordhoff. Do-178c/ed-12c. https://www.sqs.com/nl/_download/
DO-178C_ED-12C.pdf.

[ODR16] ODROID. http://www.hardkernel.com/, 2016.

[RKKK14a] RC Ravindran, C Mani Krishna, Israel Koren, and Zahava Koren. Schedul-
ing imprecise task graphs for real-time applications. International Journal of
Embedded Systems, 6(1):73–85, 2014.

[RKKK14b] R.C. Ravindran, C. Mani Krishna, Israel Koren, and Zahava Koren. Schedul-
ing imprecise task graphs for real-time applications. International Journal of
Embedded Systems (IJES), 6, 2014.

[Sam16] Samsung Exynos. http://www.samsung.com/, 2016.

[SDK13] Amit Kumar Singh, Anup Das, and Akash Kumar. Energy optimization by ex-
ploiting execution slacks in streaming applications on multiprocessor systems.
In Proceedings of the 50th Annual Design Automation Conference, DAC ’13,
pages 115:1–115:7, New York, NY, USA, 2013. ACM.

[SGB06] S. Stuijk, M.C.W. Geilen, and T. Basten. SDF3: SDF For Free. In Appli-
cation of Concurrency to System Design, 6th International Conference, ACSD
2006, Proceedings, pages 276–278. IEEE Computer Society Press, Los Alami-
tos, CA, USA, June 2006.

[SGTG12] F. Santy, L. George, P. Thierry, and J. Goossens. Relaxing mixed-criticality
scheduling strictness for task sets scheduled with fp. In Proceedings of the 24th
Euromicro Conference on Real-Time Systems, July 2012.

[SGZ14] Hang Su, Nan Guan, and Dakai Zhu. Service guarantee exploration for mixed-
criticality systems. In Embedded and Real-Time Computing Systems and Ap-
plications (RTCSA), 2014 IEEE 20th International Conference on, pages 1–10,
Aug 2014.

[SLCS16] Jelena Spasic, Di Liu, Emanuele Cannella, and Todor Stefanov. On the im-
proved hard real-time scheduling of cyclo-static dataflow. ACM Trans. Embed.
Comput. Syst., 15(4):68:1–68:26, August 2016.

128

[SLS16] J. Spasic, D. Liu, and T. Stefanov. Exploiting resource-constrained parallelism
in hard real-time streaming applications. In 2016 Design, Automation Test in
Europe Conference Exhibition (DATE), pages 954–959, March 2016.

[Sta88] John A. Stankovic. Misconceptions about real-time computing: A serious prob-
lem for next-generation systems. Computer, 21(10):10–19, October 1988.

[SZ13] Hang Su andDakai Zhu. An elastic mixed-criticality taskmodel and its schedul-
ing algorithm. In Proceedings of the Conference on Design, Automation and
Test in Europe, DATE ’13, pages 147–152, San Jose, CA, USA, 2013. EDA
Consortium.

[TA10] William Thies and Saman Amarasinghe. An empirical characterization of
stream programs and its implications for language and compiler design. In
Proceedings of the 19th International Conference on Parallel Architectures
and Compilation Techniques, PACT ’10, pages 365–376, New York, NY, USA,
2010. ACM.

[Tho12] Haydn Thompson. Mixed criticality systems. http://cordis.europa.eu/
fp7/ict/embedded-systems-engineering
/presentations/thompson.pdf, February 2012.

[Ves07] Steve Vestal. Preemptive scheduling of multi-criticality systems with varying
degrees of execution time assurance. In Proceedings of the 28th IEEE Interna-
tional Real-Time Systems Symposium, RTSS ’07, pages 239–243, Washington,
DC, USA, 2007. IEEE Computer Society.

[WLL+11] Yi Wang, Hui Liu, Duo Liu, Zhiwei Qin, Zili Shao, and Edwin H.-M. Sha.
Overhead-aware energy optimization for real-time streaming applications on
multiprocessor system-on-chip. ACM Trans. Des. Autom. Electron. Syst.,
16(2):14:1–14:32, apr 2011.

[XMM07] Ruibin Xu, Rami Melhem, and Daniel Mosse. Energy-aware scheduling for
streaming applications on chip multiprocessors. In Proceedings of the 28th
IEEE International Real-Time Systems Symposium, RTSS ’07, pages 25–38,
Washington, DC, USA, 2007. IEEE Computer Society.

[ZB09] Fengxiang Zhang and Alan Burns. Schedulability analysis for real-time systems
with edf scheduling. IEEE Trans. Comput., 58(9):1250–1258, September 2009.

[ZBS13] Jiali Teddy Zhai, Mohamed A. Bamakhrama, and Todor Stefanov. Exploiting
just-enough parallelism when mapping streaming applications in hard real-time
systems. In Proceedings of the 50th Annual Design Automation Conference,
DAC ’13, pages 170:1–170:8, New York, NY, USA, 2013. ACM.

Appendix

Appendix I
Lemma 1. The minimum value of piece-wise function (6.22) given in Section 6.4 is
obtained when b = b0.

s(b) =

{
(αλ2−αλ)b2+b−1

(αλ−α+1)b−1 0 < b ≤ b0
(1−α)b2+(αλ+α−1)b−α

(αλ−α+1)b−1 b0 < b ≤ 1
(1)

Proof. For case of 0 < b ≤ b0, its derivative is

s′(b) =
α(λ− 1)(λ(αy − α+ 1)b2 − 2λb+ 1)

((αλ− α+ 1)b− 1)2

The denominator is obviously positive. For the numerator, since the discriminant of
λ(αλ − α + 1)b2 − 2λb + 1 = 0 is (2λ)2 − 4λ(αλ − λ + 1), which is negative
since 0 < λ < 1, so we know λ(αλ− α + 1)b2 − 2λb+ 1 > 0. Moreover, we have
λ− 1 < 0, so putting them together we know the numerator is negative. In summary,
s′(b) is negative and thus s(b) is monotonically decreasing with respect to b in the
range b ∈ (0, b0].

For case of b0 < b ≤ 1, we can compute the derivative of s(b) by

s′(b) =
(1− λ)((λy − x+ 1)b2 − 2b− (λy − x− 1))

((λy − x+ 1)b− 1)2

The denominator is obviously positive. For the numerator, we focus on (xλ − x +
1)b2 − 2b− (xλ− x− 1) part. The following equation

(xλ− x+ 1)b2 − 2b− (xλ− x− 1) = 0

has two roots b1 = 1 and b2 = 1+(x−xλ)
1−(x−xλ) , which is greater than 1, so we know (xλ−

x+ 1)b2− 2b− (xλ−x− 1) is either always positive or always negative in the range

131

of b ∈ (b0, 1). Since we can construct (xλ − x + 1)b2 − 2b − (xλ − x − 1) > 0
with x = λ = b = 0.5, so we know (xλ − x + 1)b2 − 2b − (xλ − x − 1) is always
positive. Moreover, since 1−x > 0, the numerator of s′(b) is positive, so overall s′(b)
is positive, and thus s(b) is monotonically increasing with respect to b in the range of
b ∈ (b0, 1].

In summary, we have proved s(b) is monotonically decreasing in (0, b0], and
monotonically increasing in (b0, 1], both with respect to b, so the smallest value of
s(b) must occur at b0.

Lemma 2. If 0 < α < 1 and 0 ≤ λ < 1, then

b10 =
(2− αλ− α) + (1− λ)

√
−3α2 + 4α

2(−αλ2 + αλ− α+ 1)
> 1 (2)

b20 =
(2− αλ− α)− (1− λ)

√
−3α2 + 4α

2(−αλ2 + αλ− α+ 1)
∈ [0, 1] (3)

Proof. We start with proving b10 > 1. We first prove b10 ≥ 0 by showing both the nu-
merator and dominator are positive. For simplicity, we use N1 andM1 to denote the
numerator and denominator of b10 in (2), andN2 andM2 the numerator and denomina-
tor of b20 in (3). Note that the following reasoning relies on that α ∈ (0, 1), λ ∈ [0, 1).

1. N1 > 0. First, we have

N1 ×N2

= (2− αλ− α)2 − (1− λ)2(−3α2 + 4α)

= 4αλ(1− λ)(1− α) + 4(1− α)2

> 0

Moreover, it is easy to see N2 > 0. Therefore, we can conclude that N1 is also
positive.

2. M1 > 0. 2(−αλ2 +αλ−α+ 1) = 2(αλ(1−λ) + (1−α)), which is positive.

In summary, both the numerator and the denominator of b10 in (2) are positive, so
b10 ≥ 0. Next we prove b10 ≤ 1 by showing N1 −M1 ≤ 0:

N1 −M1

= (λ− 1)(
√
−3α2 + 4α+ α(2λ− 1))

which is negative if λ ≥ 0.5 (since λ−1 < 0 and
√
−3α2 + 4α+α(2λ−1) ≥ 0). So

in the following we focus on the case of λ < 0.5. Since λ < 0.5, we know α(2λ− 1)

is negative, so we define two positive number A and B as follows

A =
√
−3α2 + 4α (4)

B = α(1− 2λ) (5)

soN1−M1 = (λ− 1)(A−B). Since λ− 1 < 0, we only need to prove A−B > 0,
which is equivalent to provingA2−B2 > 0 (as bothA andB are positive): A2−B2 >
0, which is done as follows:

A2 −B2 =− 3α2 + 4α− α2(2λ− 1)2

=4α(1− α) + 4α2λ(1− λ)

>0

so we have A−B > 0 and thus N1 −M1 = (λ− 1)(A−B) < 0. In summary, we
have proved N1 −M1 < 0 for the cases of both λ ≥ 0.5 and λ < 0.5, so we know
b10 ∈ [0, 1].

Next we prove b20 > 1, by showing N2 −M2 > 0

N2 −M2

= (1− λ)(
√
−3α2 + 4α− α(2λ− 1))

If λ ≤ 0.5, then
√
−3α2 + 4α − α(2λ − 1) > 0, and since 1 − λ > 0 we have

N2 −M2 > 0. If λ > 0.5, we let C = α(2λ − 1) > 0 and also use A as defined
above, N2 − M2 = (1 − λ)(A − C). To prove A − C > 0, it suffices to prove
A2 − C2 > 0, as shown in the following:

A2 − C2 = − 3α2 + 4α− α2(2λ− 1)2

= 4α− (3 + (2λ− 1)2)α2

> 4α− 4α2 (λ < 1 ,so 2λ− 1 < 1)

> 0

By nowwe have provedN2−M2 for both cases of λ ≤ 0.5 and λ > 0.5, so we known
b20 > 1.

Appendix II
Experimental results between EDF-VD and AMC are depicted in Figure 1 - 3, where
pCriticality= 0.3.

0.4 0.5 0.6 0.7 0.8 0.9
Uavg

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 r
a
ti

o

AMC

EDF-VD

Figure 1: λ = 0.3

0.4 0.5 0.6 0.7 0.8 0.9
Uavg

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 r
a
ti

o

AMC

EDF-VD

Figure 2: λ = 0.5

0.4 0.5 0.6 0.7 0.8 0.9
Uavg

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 r
a
ti

o

AMC

EDF-VD

Figure 3: λ = 0.7

List of Publications

First Author Publications

1. Di Liu, Jelena Spasic, Jiali Teddy Zhai, Gang Chen, and Todor Stefanov, "Re-
source Optimization for CSDF-modeled Streaming Applications with Latency
Constraints", In Proc. "17th Int. Conf. Design, Automation and Test in Europe
(DATE’14)", pp. 1-6 , Dresden, Germany, Mar. 24-28, 2014

2. Di Liu, Jelena Spasic, Gang Chen, and Todor Stefanov, "Energy-Efficient Map-
ping of Real-Time StreamingApplications onCluster HeterogeneousMPSoCs",
In Proc. "13th Int. IEEE Symposium on Embedded Systems for Real-Time
Multimedia (ESTIMedia’15)", pp. 1-10, Amsterdam, The Netherlands, Oct.
8-9, 2015.

3. DiLiu, Jelena Spasic, PengWang, and Todor Stefanov, "Energy-Efficient Schedul-
ing of Real-Time Tasks on Heterogeneous Multicores Using Task Splitting", In
Proc. "22nd IEEE International Conference on Embedded and Real-Time Com-
puting Systems andApplications (RTCSA’16)", pp. 1-10 , Daegu, South Korea,
Aug. 17-19, 2016.

4. Di Liu, Jelena Spasic, Nan Guan, Gang Chen , Songran Liu, Todor Stefanov,
Wang Yi, "EDF-VD Scheduling of Mixed-Criticality Systems with Degraded
Quality Guarantees", in Proc. "2016 The IEEE Real-Time Systems Symposium
(RTSS’16)", pp. 35-46 , Porto, Portugal, Nov. 29 - Dec. 02, 2016

Co-author Publications

1. Gang Chen, Biao Hu, Kai Huang, Alois Knoll, Di Liu, "Abstract: Shared L2
Cache Management in Multicore Real-Time System," 2014 IEEE 22nd Annual
International Symposium on Field-Programmable CustomComputingMachines
(FCCM), pp. 170-170, Boston, USA, 11-13 May 2014

135

2. Gang Chen, Biao Hu, Kai Huang, Alois Knoll, Di Liu, and Todor Stefanov,
"Automatic Cache Partitioning and Time-triggered Scheduling for Real-time
MPSoCs", In Proc. "2014 International Conference on Reconfigurable Com-
puting and FPGAs (ReConFig 2014)", pp. 1-8., Cancun, Mexico, Dec. 8-10,
2014.

3. Jelena Spasic, Di Liu, Emanuele Cannella, and Todor Stefanov, "Improved
Hard Real-Time Scheduling of CSDF-modeled Streaming Applications", In
Proc. "IEEE/ACM/IFIP Int. Conf. on HW/SWCodesign and System Synthesis
(CODES+ISSS’15)", pp. 65-74, Amsterdam, The Netherlands, Oct. 4-9, 2015.

4. Jelena Spasic, Di Liu, Emanuele Cannella, and Todor Stefanov, "Exploiting
Resource-constrained Parallelism in Hard Real-Time Streaming Applications",
In Proc. "19th Int. Conf. Design, Automation and Test in Europe (DATE’16)",
pp. 954-959, Dresden, Germany, Mar. 14-18, 2016.

5. Jelena Spasic, Di Liu, Emanuele Cannella, and Todor Stefanov, "On the Im-
proved Hard Real-Time Scheduling of Cyclo-Static Dataflow", ACM Transac-
tions on Embedded Computing Systems (TECS), vol. 15, Issue 4, Article 68,
Aug 2016

6. Jelena Spasic, Di Liu, and Todor Stefanov, "Energy-Efficient Mapping of Real-
TimeApplications onHeterogeneousMPSoCs using TaskReplication", In Proc.
"IEEE/ACM/IFIP Int. Conf. on HW/SW Codesign and System Synthesis
(CODES+ISSS’16)", pp. 1-10, Pittsburgh, USA, Oct. 2-7, 2016.

Index

actor, 13
ASHM, 10, 68

big.LITTLE, 4, 72

C=D, 67
Cyclo-static dataflow (CSDF), 13

dark silicon, 4
deadline (D), 16
DO-178B/C, 2, 3

earliest deadline first, 9, 71
EDF-VD, 9, 11, 94
edge, 13
embedded systems, 1

Frequency Driven Mapping (FDM), 41

Hard-Real-Time (HRT) Scheduling, 23
heterogeneous multicore, 4

IEC61508, 2
imprecise mixed-criticality, 8
ISO26262, 2

Latency, 25

Mixed-Criticality, 5, 93
Models-of-Computation, 6
multicore, 3

period (Ti), 16
production/consumption sequence, 13

Quick convergence Processor-demandAnal-
ysis, 68

real-time systems, 1

single-ISA, 4, 69
speedup factor function, 94
Synchronous dataflow (SDF), 13

Throughput, 25

unmanned aerial vehicles, 2

worst-case execution time (WCET), 7

137

Samenvatting

Systemen worden real-time systemen genoemd wanneer de correctheid van het sys-
teem niet enkel afhangt van de juistheid van de systeemoutput, maar ook van het feit
of de output tijdig geleverd kan worden. Medische systemen, voertuigen, luchtvaar-
tuigen enz. zijn voorbeelden van real-time systemen. Door de komst van ‘Het Internet
der Dingen’ (IoT) en Cyber-fysieke Systemen (CPS) zijn real-time systemen en syste-
men die een real-time inbreng vereisen alomtegenwoordig. De stijgende complexiteit
van real-time software en de opkomst van nieuwe hardware zetten ons aan om even
stil te staan bij de bekende embeded system community en de real-time community,
en om nieuwe oplossingen betreffende drastische veranderingen op het vlak van real-
time systemen voor te stellen. Daarom stellen we in dit proefschrift nieuwe technieken
en algoritmen voor om de prestaties betreffende vertraging, energie en schedulability
van real-time systemen te verbeteren.

In het eerste deel ligt de focus vooral op de optimalisatie van de vertraging van
real-time applicaties die uitgedrukt worden in cyclo-statische-dataflow (CSDF) gra-
fieken. Binnen de context van een hard-real-time planningskader wordt de vertraging
van een door een CSDF gemodelleerde real-time applicatie beïnvloed door het se-
lecteren van een passende deadline voor elk knooppunt in de CSDF-grafiek. Hierbij
wordt de deadline gebruikt om te controleren of de berekening van de werklast tij-
dig wordt uitgevoerd. Naast vertraging heeft de deadline-sectie ook een invloed op
de noodzakelijke middelen voor de planning van de CSDF gemodelleerde real-time
applicatie. Daarom moeten de deadlines van CSDF-knooppunten zorgvuldig gese-
lecteerd worden, zodat aan de beoogde vertraging van de applicatie voldaan kan wor-
den en gelijktijdig de middelen, die de applicatie vereist, verminderd kunnen worden.
Wij bewijzen dat, met het paradigma van de globale planning, het probleem van de
deadlineselectie geformuleerd kan worden als een integraal convex programmeerpro-
bleem. Aan de hand van de pasklare convexe programmeeroplosser kan dit probleem
optimaal opgelost worden.

In het tweede deel ligt de focus op de energie-optimalisatie van real-time ap-
plicaties of heterogene multicore-systemen. Heterogene multicore-systemen nemen
gaandeweg de plaats in van de traditionele homogene multicore-systemen om zo de

energie-efficiëntie van systemen te verhogen. De energieconsumptie van real-time
applicaties kan verminderd worden door de berekening van de werklast van real-time
applicaties toe te kennen aan passende kernen terwijl de prestatie gegarandeerd blijft.

In het laatste deel ligt de focus op het garanderen van real-time beperkingen van
‘mixed-criticality’-systemen – een specifiek type van real-time systemen – waarbij
real-time applicaties met een verschillende belangrijkheidsgraad uitgevoerd worden
op een gedeeld hardware-platform. Zo is bijvoorbeeld het infotainment in een voer-
tuig minder belangrijk dan de besturingsapplicatie van de auto en kunnen beide via
hetzelfde verwerkingsplatform werken om zo de grootte, het gewicht en de kracht
van het systeem te verminderen. Wij stellen een beknopte test voor om de real-time
beperkingen van zulke ‘mixed-criticality’-systemen effectief en efficiënt te testen.

Acknowledgements

It would not have been possible forme to approach the end of the difficult Ph.D journey
without numerous support and help I received during the past six years.

First of all, I’d like to thank China Scholarship Council for sponsoring me to pur-
sue my Ph.D in Leiden University.

My unique and big ‘hvala’ (thank) goes to Jelena Spasic. She exemplifies what
an excellent roommate would look like, and I was really fortunate to have her as my
roommate since the very first day of my Ph.D until the end. She is really helpful and
supportive whenever I need a favor. Academically, she is a diligent and smart girl.
I benefit a lot from our technical brainstorm, through which many of my raw ideas
are concretized, refined, and eventually distilled into the final publications. Addition-
ally, I would like to show my gratitude to Milos Acanski, Jelena’s husband, for the
great times we had together. I believe that the friendship between us will never be
evanescent regardless of geo-distance.

Working in the ‘United Nation’ (the embedded system group) was a pleasure expe-
rience because of my colleagues. Mohammad Al Hissi, Mohamed Bamakhrama,
Emanuele Cannella, and Teddy Zhai, I really appreciate the assistance and advice
I obtained from you guys, which paved the way for me to establish my inceptively
academic insight. Also it has been a great pleasure to work with Tsvetan Shoshkov,
Hristo Nikolov, and Sven van Haastregt, thank you. Sobhan Niknam, PengWang,
Hongchang Shan, Christian Fuchs, and Erqian Tang, our new colleagues in the
group, I wish you to go well with your own Ph.D journey.

I want to thank the following friends in LIACS for so many interesting talks and
great moments. Song Wu, Yu Liu, Yanming Guo, Fuyu Cai, Yuanhao Guo, Xiao-
qing Tang, Zhan Xiong, HaoWang, Kaifeng Yang, Zhiwei Yang, Bilal Karasneh,
Mohamed Tleis and Mohd Hafeez Osman.

In Leiden, I have been really lucky to make many terrific friends. I am grateful
to Shenfa Miao for his help in many ways. I cannot remember how many times
I knocked his door asking for help, never rejected. My appreciation also goes to
Shenfa’s family and thank them for being the friends of my wife and daughter. Peng
Ye, Chenjie Xing, Jiaqi Zhao, Yang Liu, Zhiguo Zhou, Hui Liu, Jianbing Jiang,

141

Wei Wang, Yaowang Li, Bo Wang, and Yihao Li. I would like to thank you for the
help and happy times we had together.

I sincerely appreciateDr. Nan Guan from Hong Kong Polytechnic University for
offering a five-month visit to his group. Although the visit is transitory, I am impressed
by his broad knowledge and benefited a lot from his kind guidance. This experience
will definitely have a long-term impact on my career. My HK life was fulfilled with
joy and laughter because of some new friends, Xu Jiang, Zhu Wang, Jinghao Sun,
Yue Tang, Tao Yang, Xuxuan Zhou, JunWang, andYujun Fu, thank you. I believe
our friendship will never fade away.

I want to express the gratitude to my grow-up friend, Zhuozhou Qin. So many
times, he came to the airport and picked me up no matter how later my flight was. A
couple also gets my special thank, Qi Huang and Qian Ding (my dear panda). They
always encouraged me to insist during the difficult Ph.D journey and provided many
precious advice. In addition, I would like to thank them for their ‘luxury’ schedule,
when I visited San Diego. When chatting in the living room, I really felt like that we
were back to NWPU ten years ago.

Finally, I want to thank my family member for their unselfish support and pa-
tience, my brother-in-law Deqiang Huang, my nephew Chen Huang, my mother-
in-law Yonghong Zhang, and my father-in-law Chugang Xiong. I am sincerely in-
debted to my sister Yun Liu, my mother Shixiang Yang, and my father Wenguang
Liu. Without their unconditional support and continuous love, this thesis would not
have been possible. In particular, I am very very grateful to my wife Yan Liu for
being patient and kind to such an anxious PhD student. It was not an easy decision to
start an unpredictable oversea journey with me, thank you for the sacrifice, love, and
support. My little angel, Ruolai Liu, thank you for bringing many joyful times to our
family. Your smiling face is my source of the courage, enabling me to overcome any
difficulties during the journey.

Curriculum Vitae

Di Liu was born on October 25, 1984 in Lijiang, Yunnan, China. He obtained his
B.Eng degree and M.Eng degree from Northwestern Polytechnical University, China
in 2011. After his graduation, he joined the Leiden Embedded Research Center at
Leiden University as a PhD student, where his research work was mainly sponsored
by China Scholarship Council. From November 2016 till April 2017, he worked as a
research assistant in the Real-Time System group of Hong Kong Polytechnic Univer-
sity, Hong Kong.

143

