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Abstract. In this paper we consider various methods for nonmetric multidimensional scaling. We focus on the nonmetric
phase, for which we consider various alternatives: Kruskal’s nonmetric phase, Guttman’s nonmetric phase, monotone regression
by monotone splines, and monotone regression by a monotone neural network. All methods are briefly described. We use
sequential quadratic programming to estimate the weights of the neural network. An experimental comparison of the methods is
given for various synthetic and real-life datasets. The monotone neural network performs comparable to the traditional methods.
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1. Introduction

This paper is concerned with visualization of multidimensional data using nonmetric multidimensional
scaling. Generally stated, multidimensional scaling (abbreviated MDS) is a collection of techniques for
embedding dissimilarity data, given in the form of a dissimilarity matrix, in a space with a chosen
dimensionality. The embedding is often used for the purpose of data visualization and exploratory
data analysis. Traditional MDS techniques are subdivided into metric MDS, where the dissimilarities
between objects are assumed to be proportional to Euclidean distances, and nonmetric MDS, where
the dissimilarities are only assumed to be related to Euclidean distances by some unknown monotone
transformation. Nonmetric MDS nevertheless attempts to find a good embedding in Euclidean space by
finding the inverse of the transformation.

In the case where the dissimilarities represent, e.g., distances between the capitals of the European
countries, the Euclidean distance assumption of metric MDS is realistic. However, in the case of
dissimilarities between soda brands that have been reported by a panel of test persons, nonmetric MDS
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seems more appropriate. In fact, the cars dataset mentioned in Section 4 is an example of a nonmetric
dataset because it consists of a mere ranking of similarities.

Although traditional MDS is a well established pattern recognition technique (see, e.g., [1,2]), to our
knowledge this subject has not received a lot of attention from researchers in the field of neural networks
(or, for that matter, artificial intelligence in general). In particular, all publications concerning neural
networks for MDS that are known to us concern metric MDS. In [14] a simple neural network is given
for metric MDS. This neural network merely performs a gradient descent on the cost function, which
carries the risk of getting stuck in local minima in the error function. To prevent this, in [8] Klöck and
Buhmann apply annealing methods from statistical mechanics to the metric MDS problem.

No neural algorithms have been applied to nonmetric MDS so far, besides in [15], where a multilayer
perceptron with a special architecture was used to perform the monotone transformation that forms an
essential part of all nonmetric MDS algorithms. The aim of the current paper is to extend the method
proposed in [15], and to place it in a context by a comparison with other techniques. In particular, in
this paper we use the minimization technique sequential quadratic programming for the estimation of
the network weights and compare the performance with monotone splines and Kruskal’s and Guttman’s
methods.

Because MDS is a data visualization technique, it is a competitor for projection techniques such as
a Kohonen SOM and principal component analysis. However, although MDS can be used for data
projection, it can also be used for the embedding of dissimilarity data – something that can’t be done
with projection techniques. Dissimilarity-based data analysis has applications in a number of domains,
such as marketing and image analysis, and thus it deserves attention from the AI community. We hope
that this paper helps in raising some interest in the topic.

This paper is organized as follows. First, an exact problem statement is presented in Section 2. Next,
the various methods for the nonmetric phase of MDS are described in Section 3. After that, the results
of some experiments are given in Section 4 and finally Section 5 gives conclusions. This paper does not
give an in-depth treatment of MDS in general. The reader is referred to [1,2] for more information on
the subject.

2. Multidimensional scaling: Problem statement

Roughly stated, multidimensional scaling attempts to find an embedding in a metric space and a
suitable dimension for this space. Before we are able to describe the analysis problem in metric and
nonmetric MDS accurately, we introduce some terminology and notation:

Dissimilarities: In MDS analyses, the starting point is a matrixδ of dissimilarities, of which an element
δij denotes the dissimilarity between two objectsi andj. The number of objects is denoted byn.

Embedding: An embedding of the objects in Euclidean space. The coordinates of an objecti in this
embedding are denoted by�xi. The dimensionality of the embedding space is denoted bym, so
�xi = (xi1, . . . , xim)T .

Distances: The (real) Euclidean distance between objectsi andj is denoted byd̂ij . So,d̂ij denotes the
distances in the ‘true’ embedding inm-space. It is this embedding that we attempt to reconstruct.
The distance between the estimates for the spatial representations�x i and�xj of objectsi andj is
denoted bydij = ‖ �xi − �xj ‖, where‖ . ‖ denotes the Euclidean norm. Collectively these distances
are denoted by the matrixd.
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Disparities: These quantities are used in nonmetric scaling. Disparitiesδ̂ are as close as possible to
distances between the corresponding coordinate estimatesd but with the restriction that they are
monotonically related to the original dissimilarity dataδ. 1

Using the above concepts, the MDS problem can be accurately described. We differentiate between
metric and nonmetric MDS. Inmetric MDS, it is assumed that the dissimilarities areproportional to
Euclidean distances:δij = cd̂ij . One way to obtain a spatial representation of dissimilarity data under
the above assumption is to minimize the following error function

Emetric mds =
∑

ij,i�=j

(δij − dij)2. (1)

This minimization gives us the correct coordinates up to a scale factor, a translation and a rotation.2

In nonmetric MDS the ‘distance assumption’δij = cd̂ij is relaxed to a ‘monotonicity assumption’. It
is assumed that the dissimilaritiesδ aremonotonically related to Euclidean distances:

∀i, j, k, � : d̂ij < d̂k� ⇒ δij < δk� . (2)

One can look upon theδ values as being monotonically transformed distance values:δ ij = f(d̂ij) where
f(·) is an unknown strict3 monotonically increasing function. Examples of such functions include some
linear, power and logarithmic functions. Nonmetric MDS algorithms estimate a spatial representation
for a given dissimilarity matrix in which the rank order of the distances between the embedded objects
agrees with the rank order of the dissimilarities as much as possible.

Traditionally, in nonmetric MDS one attempts to minimize the following cost function, often called
Stress-1 (due to Kruskal [9]), in an iterative fashion:

Enonmetric mds =
√ ∑

ij,i�=j

(δ̂ij − dij)2/
∑

ij,i�=j

d2
ij . (3)

By keeping the inter-pattern distances normalized (
∑

ij,i�=j d2
ij = 1), as suggested in [2], the error

function reduces to (ignoring the square root)

Enm =
∑

ij,i�=j

(δ̂ij − dij)2, (4)

which is computationally simpler. In this paper we useEnm with normalized distances as the error
function and refer to it as ‘normalized stress’.

The disparitieŝδ must be re-estimated in each iteration in a so-called nonmetric phase. This nonmetric
phase is alternated with a metric phase in which a metric MDS problem is solved where the current
disparitiesδ̂ play the role of dissimilarities. In this phase, the embedding coordinates are altered as to
minimize Eq. (4). We used the conjugate gradient minimization algorithm from the Numerical Recipes
library ([12]) for this phase. The whole procedure is schematically depicted in Fig. 1.

1In the literature the disparities are often denoted byd̂ij , but we usêδij , following [2].
2Solutions are prone to be local minima. Much research has gone into avoiding this.
3In the literature this strict monotonicity restriction is often relaxed to a monotonicity restriction, wheref(·) is monotone

and∀i, j, k, � : d̂ij < d̂k� ⇒ δij � δk�. Existence of an inverse forf(·) is not guaranteed in this case.
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Fig. 1. Schematic representation of a nonmetric MDS algorithm.

The most suitable embedding dimensionality in MDS is usually found by considering ‘fit versus
number of dimensions’. We do not consider this problem in this paper, nor do we pay attention to the
metric phase of nonmetric MDS. Instead, we focus on various possibilities for the nonmetric phase.

In the nonmetric phase, the disparities are chosen to resemble the distancesd of the current embedding
as close as possible subject to a monotonicity constraint:

∀i, j, k, � : δij < δk� ⇒ δ̂ij � δ̂k�. (5)

This is done by performing a monotone regression (also called isotonic regression) with the current
distancesd as targets and dissimilaritiesδ as inputs. Note that Eq. (5) is a non-strict monotonicity
condition. This is standard practice in MDS and, although it is inconsistent with condition Eq. (2), we
follow it.

By minimizing Stress-1 (Eq. (3)), nonmetric MDS finds a spatial representation in which the dissimilar-
ities are transformed by the monotone transformation in a way that inverts the monotone transformation
that distorted the true distances between the objects inm-space, and thus improves the final fit to the
data.

3. Approaches to the nonmetric phase

Various methods have been proposed to perform the monotone regression in the nonmetric phase.
We consider four methods here: Kruskal’s nonmetric phase, Guttman’s nonmetric phase, monotone
regression by monotone splines, and monotone regression by a monotone neural network. The first two
methods manipulate the disparities directly in order to minimize Eq. (4), the latter two methods estimate
parameters for a monotone regression model which is then used to compute the disparity values for the
dissimilarities. For clarity we note that in the MDS literature the term monotone regression usually refers
to Kruskal’s method.

The reason for this explicit modeling using a monotone regression model is threefold. First, explicit
modeling gives the user the opportunity to visualize and examine the total monotone transformation,
because the regression models perform interpolation. Second, the use of interpolation yields a smooth,
continuous mapping from dissimilarities to disparities, which is intuitively more plausible than a step
function, which results from Kruskal’s and Guttman’s nonmetric phases. Third, the use of interpolation
in the nonmetric phase can potentially speed up the nonmetric phase in the case where the dissimilarity
matrix is of substantial size. The reason for this is that traditional nonmetric phases (like Guttman’s)
have a high worst case time complexity. E.g., for Guttman’s nonmetric phase it isO(n4(log n2)2).
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The time complexity for the monotone regression models is likely to be linear in the number of data
pointsn2 whenever the shape of the monotone transformation being fitted is simple. This leads to a
potential benefit for large dissimilarity matrices, which is demonstrated in our experiments in Section 4.
Furthermore, the explicit regression models can be ‘trained’ using only a subset of all available data, and
can be used as an interpolator for the remaining data, leading to a further performance gain, but this is
not exploited in this paper.

3.1. Kruskal’s and Guttman’s nonmetric phases

If Kruskal’s nonmetric phase [9,10] is employed, the first step is the computation of the rank order of
the original dissimilarity data. Letr(i) denote the disparity associated with thei-th smallest dissimilarity
(i.e., occupying the same position in the matrix). E.g., whenδ34 happens to be the4-th smallest
dissimilarity, r(4) = δ̂34. In a given iteration of the nonmetric scaling algorithm the computations
proceed as follows.

First, the disparities are set equal to the distances between objects in the current embedding (i.e.,
δ̂ = d). Then, a monotonicity check follows: for eachi = 1, . . . , n − 1, disparitiesr(i) andr(i + 1)
associated with thei-th andi + 1-th smallest dissimilarities are compared. If this disparity pair does
not violate the monotonicity constraint, sor(i) � r(i + 1), nothing is done. If, however, this disparity
pair violates the monotonicity constraint, two blocks of disparities with equal values tor(i) andr(i + 1)
are identified. The first block is(a, i) with a � i, (r(a − 1) �= r(a) ∨ a = 1), r(a) = r(i), the second
block is (i + 1, b) with i + 1 � b, (r(b + 1) �= r(b) ∨ b = n), r(b) = r(i + 1). So, these are blocks
of equal disparities tor(i) andr(i + 1) of which the associated dissimilarities are adjoining in rank
order. Subsequently, the two blocks are unified, i.e., all disparities in block(a, b) are set to the average
value of the disparities in(a, b). The pairwise monotonicity check of the disparities is continued until
all disparities have been considered. If any unifications took place, another iteration follows.

Kruskal’s approach to the nonmetric phase has been proven to be least-squares optimal by de Leeuw
in [3]. Unfortunately, the mapping that results often resembles a step function. Since it is reasonable to
assume that the mapping we are after has at least second order continuity this can be considered to be a
demerit.

It should be noted that the above version of Kruskal’s algorithm, which was taken from Davison [2],
is somewhat different from the version described by Borg and Groenen [1] – the latter authors describe
a version of the algorithm where a new block value is immediately compared with the adjoining block
value of lower rank order, instead of waiting until the next iteration.

If Guttman’s nonmetric phase (also called Guttman’s rank image procedure [7]) is employed, the first
step is the computation of the rank order of the original dissimilarity data. Letr(i) be as before. In a
given iteration of the nonmetric scaling algorithm the computation proceeds as follows. First, the rank
order of the current distance estimatesd is computed. Letr ′(i) denote the value of thei-th smallest
distance estimate. Then, fori = 1, . . . , n, r(i) = r ′(i). So, the disparity associated with thei-th smallest
dissimilarity is set to thei-th smallest distance estimate.

The same problems as with Kruskal’s method apply to Guttman’s method. As for the time complexity:
the computation of the ranking of the distance estimates requires sorting of these estimates. The
fastest available sorting algorithm, quicksort, has aO(n log n) worst case time complexity. In practice,
however, Guttman’s method performs well, even though convergence of the overall algorithm cannot be
guaranteed.
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Fig. 2. Examples of spline bases withM -splines left andI-splines right. The linear combinations0.3M1 + 0.2M2

+ 0.1M3 + 0.1M4 + 0.4M5 + 0.2M6 and 0.3I1 + 0.2I2 + 0.1I3 + 0.1I4 + 0.4I5 + 0.2I6 are shown as the bold dot-
ted lines. The interior knots are situated at0.15, 0.3, 0.45, and0.71. The spline order in this example is 3.

3.2. Nonmetric phase using monotone regression splines

As an alternative to manipulating the disparities directly, one can also construct an explicit model
for the relation between dissimilarities and disparities. The first of these models we will consider is
monotone regression based on monotone splines. In this subsection we briefly explain how (monotone)
splines work. In Section 4 we present the results obtained with this technique.

A useful reference for monotone regression splines is the paper by Ramsay [13], where the application
in nonmetric MDS is also mentioned. In the article, two types of splines are discussed: normal regression
splines (M -splines) and monotone splines (I-splines). We will briefly explain both types below. For a
more elaborate treatment, the reader is referred to [13], upon which the discussion below is inspired.

3.2.1. M-splines
BasicallyM -splines are piecewise polynomials with a certain degreek − 1, and thus orderk, which

have a nonzero value in a limited interval. MultipleM -splines are used to form a spline basis, which can
be linearly combined for function fitting. Figure 2 displays a basis of 7M -splines. The firstM -spline
(M1) is nonzero in the interval [0;0.15], the third one (M3) in [0;0.45]. All M -splines in the figure are
of order 3.

Central to a basis ofM splines is the so-calledknot sequence t = [t1, . . . , tn+k]. Knots are placed on
a mesh∆ consisting of pointsL = ξ1 < ξ2 < . . . < ξq = U whereq � n − k + 2. In the example
∆ = 0, 0.15, 0.3, 0.45, 0.71, 1, q = 6, k = 3, n = 7 andt = [0, 0, 0, 0.15, 0.3, 0.45, 0.71, 1, 1, 1]. In
general,t1 � . . . � tn+k, and for alli there is somej such thatti = ξj.

Commonly, one knot is placed onto each interior mesh point, whilek knots are always placed atL and
U . As will be explained shortly, this allows for discontinuity atL andU . In general, the knot sequence
has the propertiest1 = . . . = tk = L andtn+1 = . . . = tn+k = U andti < ti+k for all i.

The number of knots that is placed on one mesh point determines the order of continuity with which
adjoining splines ‘meet’ in this mesh point: the fewer knots, the higher the order of continuity. When
1 � m � k knots are placed on a mesh pointξ, splinesMi andMi+k that meet in this mesh point agree

in their derivatives up to the (k−m−1)-th order, i.e.,M (�)
i (ξ) = M

(�)
i+k(ξ), � = 0, . . . , k−m−1. In the

example there was1 knot placed at0.15 soM1 andM4 have common values in the first3 − 1 − 1 = 1
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derivatives at0.15, so we have second order continuity in 0.15. The boundariesL andU contain3 knots
each.

Ramsay [13] gives a recursive definition of theM -splinesM1, . . . ,Mn:

Mi(x|1, t) =
{ 1

ti+1−ti
if ti � x < ti+1,

0 otherwise,
(6)

Mi(x|k, t) = k[(x−ti)Mi(x|k−1,t)+(ti+k−x)Mi+1(x|k−1,t)]
(k−1)(ti+k−ti)

for k > 1. (7)

A linear combination
∑n

i=1 aiMi of theM -splines can be used in nonlinear regression.

3.2.2. I-splines
SinceM -splines are essentially nonnegative polynomials of degreek − 1, integration of anM -spline

yields a monotonically increasing polynomial of degreek. This polynomial is referred to as anI-spline:

Ii(x|k, t) =
∫ x

L
Mi(u|k, t)du . (8)

Again according to Ramsay, for knot sequences with one knot at each interior mesh point, for which
tj � x < tj+1 for all x, Ii can be written as follows:

Ii(x|k, t) =




0 if i > j,∑j

m=i
(tm+k+1−tm)Mm(x|k+1,t)

k+1 if j − k + 1 � i � j,
1 if i < j − k + 1.

(9)

A basis ofI-splines can be used in monotonic regression by imposing a nonnegativity constraint on the
coefficients in

∑n
i=1 aiIi. In the case of a squared error function (like Eq. (4)) this leads to a quadratic

programming problem, which is easily solved by a quadratic programming solver. We used the SQP
solver BPMPD by Ḿesźaros [11].

3.3. Nonmetric phase using a monotone neural network

A fourth possibility for the nonmetric phase is the use of a a multilayer perceptron neural network that
is only capable of modeling monotone transformations. We will refer to this network type as amono-nn
in the remainder. It takes the dissimilaritiesδ̂ as inputs and generates the disparitiesδ̂ as outputs. It
uses the distancesd as targets, and has one hidden layer with non-linear (hyperbolic tangent) transfer
functions. The output unit uses the identity as a transfer function. Since the individual transfer functions
are monotonically increasing, the monotonicity constraint is always satisfied if we impose a positivity
constraint on all weights of the neural network except the biases. A network of this kind is depicted in
Fig. 3.

We implemented two approaches to enforce the positivity constraint on the weights. In the first
approach, wesquared all the weight values prior to their use. So, the input to a unitb in the hidden
layer, when dissimilarityδij is offered, would beinb|ij = w2

bδij + θb, wherewb andθb denote unitb’s
weight and bias. The learning rule has to be altered to incorporate the squared weights. Details can
be found in [15]. This minimization procedure takes very long to converge and its use is therefore not
recommended.
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Fig. 3. Monotone neural network for nonmetric phase in MDS.

In the second approach, we used the minimization techniquesequential quadratic programming
(SQP) for estimation of the weights. SQP is a technique for minimization of a general (possibly
nonlinear) function under general (possibly nonlinear) equality- and inequality-constraints.4 It obtains
a solution by replacing the original objective function by a succession of quadratic approximations,
so that each iteration involves solving a quadratic programming problem. We used the SQP code
CFSQP in our experiments.CFSQP is available for free to the academic research community (see
http://www.aemdesign.com). The amount of computation required by the SQP method is acceptable.

The estimation of the parameters for the mono-nn is accelerated by using a good initial embedding. In
the experiments reported in the next section, we used the solution obtained by metric MDS as the initial
embedding.

4. Experiments and results

To assess the quality of the final embedding obtained with all nonmetric scaling methods, we used the
following datasets:

cars: This dataset, shown in Table 1, comes with SPSS and contains pairwise dissimilarity judgments
on 11 car models. The dataset was created by having a test person make a dissimilarity ranking of
all 55 possible model pairs, which was done by splitting the original55 dissimilarities into two sets
– one set of similar pairs and one set of dissimilar pairs – and applying this procedure recursively
onto both subsets. This yields rank ordered dissimilarities. The procedure is described in [5].

4Our constraints are linear while our objective function is nonlinear. Algorithms for this special case also exist (see [4]) but
an implementation of such a method was not available to us.
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Table 1
The cars dataset

FordM Merc Linc FordT FordF Chry Jag AMC Plym Buick
Merc 8
Linc 50 38
FordT 31 9 11
FordF 12 33 55 44
Chry 48 37 1 13 54
Jag 36 22 23 16 53 26
AMC 2 6 46 19 30 47 29
Plym 5 4 41 25 28 40 35 3
Buick 39 14 17 18 45 24 34 27 20
Chevy 10 32 52 42 7 51 49 15 21 43

Table 2
Theriasec dataset: Vocational preference dissimilarity data

R I A S E C
Realistic 0.0000 1.0392 1.2961 1.2570 1.1832 1.1314
Investigative 1.0392 0.0000 1.1489 1.1832 1.2961 1.2961
Artistic 1.2961 1.1489 0.0000 1.0770 1.1402 1.3342
Social 1.2570 1.1832 1.0770 0.0000 0.9592 1.1136
Enterprising 1.1832 1.2961 1.1402 0.9592 0.0000 0.8000
Conventional 1.1314 1.2961 1.3342 1.1136 0.8000 0.0000
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Fig. 4. Theoretical hexagon for vocational preferences (left). Embedding found by neural MDS (middle). Transformation
implemented by mono-nn (right).

square: This dataset was artificially generated. First, we created a dataset consisting of 16 points
arranged in a square in[0; 1]2. The distances between all points were computed and transformed by
a nonlinear transformation:0.5(tanh(5(x − 0.5)) + 1). This yielded the dissimilaritiesδ that we
used as a starting point for our algorithm.

riasec: We adopted this dataset from the MDS textbook of Davison [2] who, in turn, adopted it from
psychometric literature. The dataset is shown in Table 2. It contains dissimilarities between six
‘vocational preference inventory’ scales in a sample of 1234 men. In psychological literature these
six occupational types are often displayed in a hexagon (see the left side of Fig. 4). It is claimed
that the vocational interests of persons in occupational types adjacent to each other in the hexagon
are more similar than the interests of people with occupational types more distant from each other.

citations: This dataset was adopted from a paper by Groenen and Heiser [6]. It consists of citation
numbers between journals in the psychometric literature. Visualization of these data gives insight
into the positioning of journals relative to each other – thematically linked journals will appear in
each other’s vicinity on the map. Since the raw data in this table are similarities (reference counts)
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Table 3
Normalized stress (Enm) values obtained for all four datasets with metric and various types of nonmetric scaling,
averaged over 50 runs

avg stdv min max avg stdv min max
cars square

Metric 0.009911 0.000213 0.009845 0.010640 0.017536 0.013033 0.010766 0.043688
Kruskal 0.001215 0.000000 0.001214 0.001215 0.001463 0.007313 0.000000 0.037328
Guttman 0.002609 0.000004 0.002604 0.002624 0.000000 0.000000 0.000000 0.000000
Spline 0.003606 0.000001 0.003606 0.003607 0.004855 0.012246 0.000019 0.036478
Neural 0.007260 0.000201 0.007094 0.008635 0.012375 0.014460 0.002173 0.035308
SQP neural 0.006416 0.001096 0.002187 0.006780 0.006325 0.010753 0.000070 0.035434

riasec citations
Metric 0.023089 0.006914 0.016013 0.036849 0.661513 0.003918 0.658505 0.687850
Kruskal 0.004635 0.006764 0.000000 0.017992 0.057253 0.000293 0.057174 0.059301
Guttman 0.000000 0.000000 0.000000 0.000000 0.072910 0.000031 0.072838 0.072994
Spline 0.006940 0.007838 0.000472 0.022375 0.056720 0.000013 0.056691 0.056744
Neural 0.010163 0.009910 0.000150 0.023258 0.059584 0.001811 0.056677 0.064066
SQP Neural 0.009947 0.010895 0.000071 0.035881 0.057731 0.002347 0.053119 0.064688

rather than dissimilarities, they were transformed into dissimilarities using the transformation

δij =
mi+m+j

nij
, (10)

wherenij is the number of citations between journalsi andj, i.e., half of the the number of citations
from journali to journalj and vice versa.mi+ denotes the number of citations to journali andm+j

is the number of citations from journalj.

Table 3 shows the resulting normalized stress values of the embeddings of these datasets. All results
are averaged over 50 independent runs, to compensate for the variance in the final error values due to
different initial configurations. The normalized error values for metric MDS can be computed by dividing
Emetric mds by (

∑
ij,i�=j d2

ij)
2, which is equivalent to normalizing both dissimilarities and distances by

dividing by
∑

ij,i�=j d2
ij . The dimension of the embedding space was2 in all experiments.

One can see that the all nonmetric MDS methods clearly improve the data fit compared to the metric
MDS method. In general, the ‘non-interpolating’ nonmetric MDS methods (Kruskal and Guttman) give
a better fit than the interpolating MDS methods. The remaining nonmetric MDS methods, the monotone
neural network and the monotone spline, are close to one-another with respect to the normalized stress
value, but the spline based monotone regression outperforms the neural network by a small factor. More
specifically, when neural network based nonmetric scaling is applied the metric normalized stress level
is reduced by a factor4.52 on average, whereas the use of monotone splines in the nonmetric phase
reduces the metric normalized stress level by a factor 5.34.

The monotone transformations yielded for thecitations dataset by the various scaling methods
are depicted in Fig. 5. It is clearly visible that the non-interpolating methods yield a non-smooth
transformation, which is not very plausible. Also shown in Fig. 5 are the embeddings yielded by metric
scaling and by nonmetric scaling using a neural network (trained with SQP) in the nonmetric phase for
thesquaredataset. It is clear that nonmetric scaling improves the embedding yielded by metric scaling:
the original square shaped embedding is nearly perfectly reconstructed by the nonmetric embedding,
whereas the metric embedding has a rounder appearance.

In order to verify the hypothesis that vocational interests of persons in occupational types adjacent to
each other in the hexagon are more similar than the interests of people with occupational types more
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for thesquare dataset (right) by metric and nonmetric scaling.
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Fig. 6. Nonmetric embedding of the citations dataset.

distant from each other, we applied our neural nonmetric scaling algorithm to the riasec dataset and ended
up with the embedding shown in the middle of Fig. 4. In this embedding, the data points representing
the six occupational types have indeed settled themselves in a roughly hexagonal shape.

An embedding of thecitations dataset yielded by nonmetric MDS using a neural network in the
nonmetric phase is shown in Fig. 6. Note that the statistically oriented journals are located at the bottom
of the embedding, while psychological journals are located at the top.

To examine the computational demands of the various methods we created artificial dissimilarity
matrices of various sizes by randomly generating a number of pointsn in a 2-dimensional space,
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Table 4
Wall clock computation times required by the various nonmetric MDS methods. Shown between brackets are the resulting
normalized stress values. The final column shows the quotient of the required time with 500 (t500) and 10 (t10) objects

Number of objectsn
10 50 100 300 500 t500/t10

Metric 0.01 (0.019) 0.21 (0.027) 2.03 (0.027) 9.99 (0.024) 34.01 (0.020) 3401
Kruskal 0.28 (0.000) 8.81 (0.000) 28.83 (0.000) 113.87 (0.000) 193.55 (0.000) 689
Guttman 0.11 (0.000) 0.39 (0.011) 21.00 (0.000) 66.79 (0.000) 209.10 (0.000) 1900
Spline 2.33 (0.000) 1.54 (0.000) 3.86 (0.000) 35.20 (0.000) 84.11 (0.000) 36
Neural 19.36 (0.000) 79.64 (0.003) 502.38 (0.001) 5051.14 (0.001) 89566.09 (0.001) 4626
SQP Neural 2.95 (0.000) 31.73 (0.000) 75.90 (0.003) 644.76 (0.004) 615.80 (0.006) 208

calculating the distance matrix and applying a nonlinear monotone transformation (f(x) = log(x +
0.01) + 5) to these distances. The same metric phase based on a conjugate gradient algorithm was used
for all experiments. All methods were implemented in C++ and compiled with the gnu C++ compiler
gcc version 2.96 under Mandrake Linux 8.1 on an IBM thinkpad type 2655 PC with a 797 MHz Intel
Celeron CPU.

Table 4 shows the wall clock times in seconds needed for the nonmetric embedding of these artificial
datasets for variousn. For largen, the use of a spline method in the nonmetric phase is relatively fast,
due to the inherit simplicity of this method. It is clear that the monotone neural network, when trained
with the modified backpropagation procedure of [15] is unacceptably slow. But when the SQP method
is used, the required computation times are acceptable, whereas the results reported in Table 3 indicate
that the obtained normalized stress values are usually lower. However, it should be pointed out that the
monotone spline method outperforms the monotone neural network both in terms of embedding quality
and computation speed.

5. Summary and conclusions

We have applied neural networks in the nonmetric phase in nonmetric multidimensional scaling. The
weights of the neural network were estimated by an altered backpropagation training procedure and by
sequential quadratic programming.

The approach was compared with other approaches (Kruskal’s and Guttman’s methods and monotone
splines) in a series of experiments. The neural network based methods perform comparable to the existing
methods – it was able to reduce the normalized stress value yielded by metric embedding by a factor
4.52 on average – but have the advantage of yielding smooth mappings instead of step functions, which
is more plausible and makes interpolation easier. We have thus shown that the use of neural networks in
the nonmetric phase of MDS is a sensible approach.

A possible benefit of the use of monotone neural networks is that they are potentially faster than
traditional nonmetric procedures for large dissimilarity matrices. This advantage also holds for the
monotone spline approach, which was found to outperform the monotone neural network both in terms
of embedding quality and speed of the MDS process. In practice, the use of monotone splines is therefore
to be preferred over the use of monotone neural networks.
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