Pebbles at WTA

Automata with

Nested Pebbles

and

FO Logic with

Transitive Closure

bottom-up tree automata

walking along the tree

cf. two-way finite state automaton

tree walking automaton

example: tree traversal

TW

walk along edges, moves based on

- state
- node label
- child number(= incoming edge)

tree-walking automaton

walk along edges, moves based on

- state
- node label
- child number(= incoming edge)

tree-walking automata

Doner; Thatcher & Wright

tree-walking automata

Doner; Thatcher & Wright

tree-walking automata

adding nested pebbles

pebble: marks a node

- nested lifetimes LIFO
- fixed number for automaton
- can be distinguished

'regular' extension
(for single head on trees)

this talk

transitive closure

 $\phi^*(u,v)$ unary to deterministic to: ϕ functional $\phi(u,v,z)$

background

- XML document transformation single head on (unranked) trees
- transitive closure vs. automata descriptive complexity strings, trees, n-dim grids, ...
- graph exploration
 many heads on graphs 'robots'
 grids, toruses, mazes, ...

classic result for strings

[non]deterministic logarithmic space

Immerman

Multi-Head Automata (two-way)

$$\varphi^*(\underline{x},\underline{y})$$

fits in our framework

on strings, trees, grids, toruses, mazes, ...

First-Order Logic + transitive closure Multi-Head Automata
+ 'nested pebbles'

$$\phi^*(\underline{x},\underline{y})$$

arity k

k heads

(but this is not a talk on trees only)

single head on trees

main result

(1) logic to nested pebbles

lab_a(x)
edg_i(x,y)

$$x \leq y$$

$$x = y$$

 $\neg \land \lor \\ \forall x \exists x$

 $\phi^*(x,y)$

$$x \leq y$$

always halting free variables ~ fixed pebbles

$$\forall x \ \phi(x)$$

(1ctd) transitive closure

(2) nested pebbles to logic

ii computation ~ tc with states

Kleene: removing states finite aut to reg expr

(2ctd) dropping pebbles

$$\phi_{pq}^{n}(u,v) = \phi_{p'q'}^{(n-1)\#}(u,v)$$
replacing x_n by u

single head on trees

single head on strings

note

The following slides on graphs were not shown during the presentation. They were designed to illustrate that our result is valid for more general families that have a 'guide', a (pebble) automaton that visits all nodes and halts. Note the torus (one head two pebble guide) and the maze (two heads). Only small adaptations to either the logical or automaton framework are necessary.

from trees to graphs

locally injective

grid, torus

nested pebbles to logic

$$X \leq Y$$

 $X = Y$

$$\forall x \exists x$$

$$\phi^*(x,y)$$

$dPTW^k \subseteq FO+dTC^k$

for families of graphs (i.e. with fixed label alphabets)

walking the torus

graphs with a guide

$$FO+dTC^k = dPTW^k$$

for families of *searchable* graphs with a 'guide'

 $(\forall x) \ lab_0(x)$

unranked trees, grids, toruses, ... 2 pebbles

mazes

mazes

mazes

Blum & Kozen

two heads!

(not nested)

searching with many heads

$$FO+dTC^k = dPTW^k$$

for families of *k-searchable* graphs

additional instruction
move head to pebble

Cook & Rackoff 'Jumping Automata' mazes not all graphs

finally: work to do ...

open for single head on trees:

- \bigcirc dPTW \subset PTW \subset REG
- \bigcirc F0+dTC \subset F0+posTC \subset F0+TC \subset MS0
- pebble hierarchy
- 🕜 type of pebbles strong vs. weak
- 🕜 alternation

finally: work to do ...

see ICALP'06

Bojańczyk, Samuelides, Schwentick, Segoufin

- $FO+dTC \subseteq FO+posTC \subseteq FO+TC \subseteq MSO$
- pebble hierarchy
- type of pebbles physical vs. abstract
- alternation

many heads? graphs?

finally: work to do ...

because ... we forgot about trees

Bojańczyk, Samuelides, Schwentick, Segoufin ICALP'06 and next talk ...

