Trips on Trees

Published in Acta Cybernetica 14 (1999), 51-64

a special issue on the occasion of the 60th birthday of Prof. F. Gécseg

Joost Engelfriet, Hendrik Jan Hoogeboom, Jan-Pascal Van Best

Department of Computer Science, Leiden University
P.O.Box 9512, 2300 RA Leiden, The Netherlands
e-mail: engelfriQwi.leidenuniv.nl

Abstract. A “trip” is a triple (g,u,v) where g is, in general, a graph
and w and v are nodes of that graph. The trip is from u to v on the graph
g. For the special case that g is a tree (or even a string) we investigate
ways of specifying and implementing sets of trips. The main result is
that a regular set of trips, specified as a regular tree language, can be
implemented by a tree-walking automaton that uses marbles and one
pebble.

1 Introduction

A specification of a function describes the result of the function in terms of its
argument. The goal of the programmer is to implement this specification by
a program that, for a given argument as input, produces the function result
as output. From an elementary point of view, the program can be seen as a
device that walks on a graph g. The nodes of g are the possible contents of
the program variables, and there is an edge from node m to node n if m can be
transformed into n by an atomic programming statement, such as an assignment.
The program should find its way through this graph from the initial state w,
determined by the input, to the final state v, that determines the output.

In this paper we consider a special case of this general situation, viz. the
case that the graph is a finite tree (or even a finite string). In particular, the
specification describes a set of triples of the form (%, u,v) where ¢ is a tree (over
a ranked alphabet) and u and v are nodes of ¢. Each such triple can be viewed
as a “trip” from u to v on the tree t. Thus, the specification describes a set of
trips, i.e., a “trip type”. To simplify terminology we will also call this a trip. An
example of a trip (type) is: from the left-most leaf to the right-most leaf. This
is, of course, the set of all triples (¢,u,v) where t is an arbitrary tree, u is its
left-most leaf, and v is its right-most leaf.

A set of triples (¢, u,v) is said to be regular if it forms a regular tree language
when, as is quite usual, the nodes v and v are indicated by special marks in ¢.
Thus, a regular trip can be specified by a finite tree automaton (that recognizes



the trip) or a regular tree grammar (that generates the trip) or a regular expres-
sion (that describes the trip). Moreover, as is well known from [Don,ThaWri]
(and from [Biic,Elg] for strings), it can be specified by a formula ¢(u,v) of
monadic second-order logic (on trees), with two free variables v and v. Thus,
monadic second-order logic is the highest-level specification language for regular
trips.

Our main interest is the implementation of regular trip specifications. Given
such a specification of trips (¢,u,v), we wish to know how we can walk from u
to v on t. In other words, we are looking for a general type of automaton that,
when started at node u of ¢t can walk to node v along the edges of the tree.
Thus, for the trip mentioned above, the automaton should be able to walk to
the right-most leaf, whenever it is “dropped” at the left-most leaf (and go into
a rejecting state when dropped at any other node).

It is known from [Blo,BloEng2] that, in general, this cannot be done by a
finite state tree-walking automaton (as used, in the form of ‘routing expressions’,
in [KlaSch] to specify data types consisting of trees with additional pointers).
The solution in [Blo,BloEng2,BloEngl] is to equip the finite state tree-walking
automaton with more powerful tests; in fact, it is allowed to test any property of
its current node that can be expressed by a formula (with one free variable) of
monadic second-order logic. This is of course not a complete implementation be-
cause the tests are still specified in logic. Thus, the question remained how these
tests can be implemented. Here we show that regular trips can be implemented
by a finite state tree-walking automaton that uses “marbles” and one pebble to
find its way through the tree (as Tom Thumb through the forest). The precise
way of using marbles and pebble will be explained in Section 4. In Section 3 we
start with the easier case of regular trips on strings, and show how to implement
them by 2-way finite state automata with one pebble (and no marbles). Section 2
contains the formal definition of a trip.

The results of this paper are part of the Master’s Thesis [vBest] of the last
author, where more detailed definitions and proofs can be found.

2 Trips and Sites

It should be clear that the reader is assumed to be familiar with formal lan-
guage theory, and in particular with tree language theory. Thus, the notions of
regular tree language and (bottom-up) finite tree automaton are assumed to be
good friends of the reader. This can be accomplished by reading [GécStel] and
[GécSte2]. Shame on the reader if he/she did not do so yet!

As explained in the introduction, we are interested in trips on trees. These
are now formally defined. Let X be a ranked alphabet.

Definition 1. A trip is a set of triples (¢,u,v) where t is a tree over X, and u
and v are nodes of t.

Trips go from sites to sites (or from sights to sights?). This is an auxiliary
notion that we will need too.



Definition 2. A site is a set of pairs (¢,u) where ¢ is a tree over X and u is a
node of t.

To define regular trips (and sites) we first have to show how nodes of trees
can be marked. As usual, to code (¢, u,v), two booleans are added to the labels
of t, one for u and one for v. We define the “marked” ranked alphabet m(X) =
{(0,b1,b2) | 0 € X,b1,bs € {0,1}}, where (o, by, bz) has the same rank as . We
identify (o,0,0) with o; thus, for each o € X, m(X) contains the symbols o,
(0,1,0), (0,0,1), and (0,1,1). Let ¢ be a tree over X' and let  and v be nodes
of t. We define mark(¢, u,v) to be the tree over m(X), with the same nodes and
edges as t but with different node labels: if node z has label ¢ in ¢, then it has
label (o, = u,x = v) in mark(¢, u,v). Thus, in mark(t, u,v), either u # v and u
is marked by (1,0) and v by (0,1), or u = v and it is marked by (1, 1); the other
nodes are not marked. This defines the coding of trips as tree languages. To code
sites as tree languages, we define mark(¢,u) = mark(¢,u,u). Thus, for technical
convenience, a site (t,u) gets the same encoding as the “round-trip” (¢, u,u). As
usual, for a trip T', we define mark(T") = {mark(¢, u,v) | (¢,u,v) € T'}, and for a
site S, mark(S) = {mark(t,u) | (t,u) € S}.

Definition 3. A trip T is regular if mark(T") is a regular tree language. A site
S is regular if mark(S) is a regular tree language.

As observed in the Introduction, it is well known from the classical results of
[Don,ThaWri] that a trip T is regular iff it can be defined by a formula ¢(z, y) of
monadic second-order logic, in the sense that T is the set of all (¢, u,v) such that
t = ¢(u,v). And similarly for sites and formulas ¢(x) with one free variable.

We will be interested in particular in functional trips, i.e., trips in which the
destination is determined by the place of departure. We will show that functional
trips can be implemented by deterministic tree-walking automata. It is easy to
see that functionality is decidable for regular trips.

Definition 4. A trip T is functional if there are no triples (t,u,v1), (t,u,v2) € T
with vy # va.

Finally, all the above definitions also apply to the case of strings over an
(ordinary) alphabet X, with the appropriate changes. Thus, a trip on strings is a
set of triples (w, u,v) with w € X* and u, v are positions of w (i.e., 1 < u,v < |w|,
where |w| is the length of w). Note that w cannot be the empty string.

3 Trips on Strings

To find our way on strings we will use 2-way pebble automata. A 2-way pebble
automaton is an ordinary 2-way (nondeterministic) finite state automaton with
one pebble. The input string is surrounded by endmarkers on the input tape,
and at each moment the automaton is at a certain cell of the tape, in a certain
state. It can test the input symbol at the current cell, and move one cell to the



left or right, changing state. Additionally, it can drop the pebble on the current
cell, it can test whether the pebble is at the current cell, and it can lift the
pebble from the current cell (when it lies there, of course). Initially the pebble is
not on the input tape, and it is also required that at the end of a computation
the pebble is not on the input tape. A 2-way pebble automaton A recognizes
a language L(A) in the usual way, but we want to use it to compute a trip, as
follows. The trip T(A) computed by A consists of all triples (w,u,v) such that
when A is started at position u of w on the input tape, in its initial state, it can
walk to position v, enter a final state, and halt. In other words, if you want to
make trip T'(A), catch automaton A!

It is well known that 2-way finite automata (without pebble) recognize the
regular languages [RabSco,She]. In fact, a 2-way finite automaton A can be sim-
ulated by an ordinary (1-way) finite automaton M that, at each cell, computes
the transition table of A, i.e., the finite set of pairs (g, ¢') such that when A is
started in state ¢ at this cell, it can make an excursion to the left, and return to
the cell in state ¢’. The same technique of transition tables can be used to show
that also 2-way pebble automata recognize the regular languages ([BluHew]; cf.
[Bir,GloHar] and Exercise 3.19 of [HopUll]): a 2-way pebble automaton A can
be simulated by a 2-way automaton A’ (without pebble) that at each cell com-
putes two transition tables of the automaton A (without the instructions that
manipulate the pebble), one for excursions to the left and one for excursions to
the right. Instead of dropping a pebble on a cell, making excursions to the left
and right, and then lifting the pebble again, A’ can just stay at the cell and
compute A’s state change from the two transition tables.

From this it is easy to see that every trip computed by a 2-way pebble
automaton is regular.

Lemma 5. For every 2-way pebble automaton A, T(A) is a regular trip.

Proof. We have to show that mark(T'(4)) = {mark(w, u,v) | (w,u,v) € T(A)}is
aregular language. In fact, there is a 2-way pebble automaton A’ that recognizes
mark(7T'(A)),i.e., L(A") = mark(T'(A)). The automaton A’ first walks to u (which
is marked by (1,0) or (1,1)), then simulates a successful walk of A (ignoring
marks), and finally checks that it is at v (which is marked by (0,1) or (1,1)). O

Determinism of 2-way pebble automata is defined in the usual way. It should
be clear that the trip T'(A) computed by a deterministic 2-way pebble automaton
A is functional (cf. Definition 4). We now prove that every regular trip can be
computed by a 2-way pebble automaton, and in particular by a deterministic
automaton if the trip is functional.

Lemma 6. For every reqular trip T on strings there is a 2-way pebble automaton
A with T(A) = T. Moreover, if T is functional, then A is deterministic.

Proof. Let M be an ordinary, deterministic finite automaton that recognizes
mark(T"). First we describe a nondeterministic automaton A that computes T'.
The automaton A is started at position u of string w, and it has to walk to



position v, with (w,u,v) € T. To do this, A first guesses whether v is to the left
or to the right of u, or v = u. Suppose that it guesses v to be to the right of u. A
drops the pebble at the start position u, walks to the head of the input tape, and
then simulates M walking to the right, until it detects the pebble. It picks up
the pebble and continues the simulation of M, treating the symbol ¢ at position
u as (0,1,0). Then, nondeterministically, A drops the pebble at some position
v, treats the symbol o at position v as (o,0,1), and continues the simulation of
M until it reaches the end of the input tape. If M is in a final state, A backs
up until it finds the pebble at position v, lifts the pebble, and goes into a final
state. In the case that v is to the left of u, A simulates a deterministic finite
automaton that recognizes the mirror image of mark(T"), walking from the end
to the beginning of the input tape. The case that v = u is obvious.

Let us now assume that T is functional, and describe a deterministic au-
tomaton A. It is a variation of the nondeterministic automaton A above. First
we argue that A can find out deterministically whether v is to the left or
right of u, or at w. Since mark(T) is a regular language, it should be clear
that the language {mark(w,u,v) | (w,u,v) € T and v is to the right of u} is
regular too. Hence, applying the string homomorphism that changes (o,1,0)
into (o,1,1), and (0,0,1) into o, to this language, we obtain that the site
S = {(w,u) | (w,u,v) € T for some v to the right of u} is regular. Thus, A
can test whether or not v is to the right of u by testing whether or not (w,u)
is in site S, and it can do that by dropping its pebble at u and simulating a
deterministic finite automaton that recognizes mark(S), treating the symbol o
at position u as (o,1,1). Obviously, A can test in a similar way whether or not
v is to the left of u, or at u. Suppose now that v is to the right of u. A then be-
haves as in the nondeterministic case, simulating M, until it picks up the pebble
from wu. After that, instead of guessing v nondeterministically, A just tries out
all positions v to the right of u, one by one from left to right, moving its pebble
from one v to the next. Note that, when walking from v to the end of the tape,
A should not only keep track of the current state of M but also remember the
state in which M arrived in v; this allows A to continue the simulation of M
with the next v. O

Altogether we have proved that the 2-way pebble automaton is the imple-
mentation model of regular trips on strings.

Theorem 7. A trip on strings is reqular iff it can be computed by a 2-way pebble
automaton. A functional trip on strings is regular iff it can be computed by a
deterministic 2-way pebble automaton.

Since a trip is regular iff it can be expressed in monadic second-order logic,
this theorem can be viewed as the generalization from languages to trips of the
classical result of Biichi and Elgot [Biic,Elg).

It is shown in [Blo,BloEng2] (for the more general case of trees) that 2-way
finite automata cannot compute all regular trips. Thus, the pebble is really
needed. We strengthen this result in Theorem 15. On the other hand, it is well



known that two pebbles are more powerful than one; a 2-way automaton with
two pebbles can easily recognize, e.g., the language {wew | w € {a,b}*}, and
thus also compute non-regular trips.

4 Tree-Walking Automata

In the case of strings we have used 2-way automata to walk from one position of
a string to another. For trees we need an automaton that walks from one node
of a tree to another. Such tree-walking automata were introduced in [AhoUll],
and were studied, e.g., in [ERS,KamSlu]. A (nondeterministic) finite state tree-
walking automaton (or tw automaton, for short) is similar to a 2-way automaton
on strings. At each moment the tw automaton is at a certain node of the input
tree, in a certain state. It can test the label of the current node, and move to
the parent or to one of the children of the node, changing state. A child can
be specified by a number between 1 and the rank of the current node label.
The automaton can also test whether the current node is the root of the input
tree, and if not, what is its “child number”, i.e., which child it is of its parent
(specified by a number between 1 and the rank of the label of its parent). The
language L(A) recognized by a tree-walking automaton A consists of all trees
on which A has a computation that starts at the root of the input tree in its
initial state, and ends in a final state. As in the case of strings, it can be shown,
using the technique of transition tables (for excursions in a subtree), that every
tree-walking automaton can be simulated by an ordinary (bottom-up) finite tree
automaton. However, as opposed to the case of strings, it is not known whether
every finite tree automaton can be simulated by a tree-walking automaton!

Conjecture. The class of tree languages recognized by tree-walking automata
is a proper subclass of the regular tree languages.

It should be mentioned here that a statement similar to the one above is
proved in [KamSlu]. However, the tree-walking automata of [KamSlu] are weaker
than ours: they cannot test the child number of a node; and for this reason, as
shown in [KamSlu], they cannot even make a depth-first left-to-right search of
the input tree.

Clearly, a type of automaton that can compute all regular trips on trees,
should be able to recognize the regular tree languages: for every regular tree
language L, {(t,u,u) | t € L,u is the root of t} is a regular trip, and obviously,
an automaton that computes this trip also recognizes L. Thus we are led to
an automaton that is known to recognize the regular tree languages: the tree-
walking marble automaton.

A tree-walking marble automaton is a tree-walking automaton that, addition-
ally, can use “marbles” to drop on the nodes of the input tree. The difference
between a pebble and a marble is that the automaton has an unlimited supply of
marbles (i.e., a marbles bag of infinite size!). Moreover, we want our automaton
to have marbles of different colours (which is the reason to call them marbles).
Thus, each automaton has a fixed (but arbitrary) number of marble colours, and



it has an unlimited supply of marbles of each colour. During its computation, the
automaton can drop a marble of a given colour on the current node (provided
there is not yet one of that colour), it can test whether a marble of a given colour
is at the current node, and it can lift a marble of a given colour from the current
node (provided there is one there). Note that there cannot be two marbles of
the same colour on a node. There is, however, an important additional restric-
tion on the behaviour of the tw marble automaton: if there are marbles on the
current node, then the automaton is not allowed to move up to the parent node.
In other words, dropping a marble on a node u closes off the context of u, in
the sense that the automaton can only visit u and its descendants, but has to
lift all marbles from u to visit the other nodes. Since the automaton starts its
computation without marbles on the input tree, this restriction implies that at
each moment of time all marbles lie on the path from the current node to the
root.

It is shown in [KamSlu] (cf. also [ERS]) that the tw marble automaton recog-
nizes exactly the regular tree languages. However, the model of tw marble au-
tomaton is described in a different way in these papers. Instead of marbles, the
tree-walking automaton has a pushdown, which has the same length as the path
from the current node to the root. The pushdown is synchronized with the move-
ments of the automaton on the tree: a symbol is pushed on the pushdown when
the automaton moves to a child, and the top symbol is popped from the push-
down when the automaton moves to the parent. It should be clear that these
two types of automata recognize the same tree languages. Each symbol on the
pushdown can be simulated by a marble on the corresponding node, taking all
pushdown symbols as marble colours. Vice versa, the marbles on the path from
the current node to the root can be simulated by a pushdown containing in each
cell the colours of the marbles that are on the corresponding node, taking all sets
of marble colours as pushdown symbols. The only reason that we have turned
the tree-walking pushdown automaton into a tree-walking marble automaton is
that the pushdown automaton is not suitable for the computation of trips: when
started at a node of the input tree, what would be the content of its pushdown?

The result of [KamSlu] is stated next, together with a sketch of the proof.

Proposition 8. Both the nondeterministic and the deterministic tw marble au-
tomata recognize the regular tree languages.

Proof. The fact that the language recognized by a nondeterministic tw marble
automaton is regular can be proved in the usual way using transition tables, and
we will not go into that (cf. the discussion before Lemma 5).

The other way around we sketch how a deterministic tw marble automaton
A can simulate a (deterministic, bottom-up) finite tree automaton M. Let us
assume for convenience that the input trees are binary, i.e., that the rank of an
input symbol is either 2 or 0. A traverses the input tree t in a depth-first left-to-
right fashion, and uses the states of M as marble colours. At each node u of ¢ it
determines the state in which M arrives at v (in its own state), as follows. If u
is a leaf, it determines M’s state from the transition function of M. Otherwise,



suppose it has determined the state ¢; at the first child of u. It then drops a
marble of colour ¢; on u, walks down to the second child of u, and determines
the state ¢o at that child. Moving up to u again, it picks up the marble g1, and
determines the state at u from ¢; and ¢, using M’s transition function.

For arbitrary input trees, A uses as marble colours all pairs (4, q), indicating
that ¢ is the state of M at the i-th child of u. O

As in the case of strings, to obtain an implementation model for the regular
trips an additional pebble is needed. This finally leads us to the main automaton
model of this paper: the tree-walking marble/pebble automaton. A tree-walking
marble/pebble automaton is a tw marble automaton that uses one additional
pebble. The pebble can be dropped on a node, detected at a node, and lifted from
a node, as usual. Initially and finally, there are no marbles and no pebble on the
input tree. However, we need an additional restriction on the behaviour of this
automaton, because otherwise non-regular tree languages could be recognized
(and hence non-regular trips computed).

Ezample 9. Consider the non-regular monadic tree language {a™cb™e | n > 0},
with a, b, ¢ of rank 1 and e of rank 0. This language can be recognized as follows,
using the pebble and just one marble: put the marble at the root, and the pebble
at the lowest b; then move the marble one node down, and the pebble one node
up; repeat this last step, until both the marble and the pebble are at the c-
labeled node. O

The additional restriction on the tw marble/pebble automaton is: the pebble
can only be dropped or lifted when there are no marbles on the tree. Note that
the automaton is able to keep track of this condition by giving a special colour
to the first marble it drops on the tree. At the end of this section we will discuss
a less restrictive definition.

The trip T(A) computed by a tw marble/pebble automaton A is defined just
as in the case of 2-way pebble automata on strings: T'(A) consists of all triples
(t,u,v) such that when A is started at node u of input tree ¢, in its initial state,
it can walk to node v, enter a final state, and halt. So, for this trip you have to
catch marble/pebble automaton A!

We first want to prove that every trip computed by a tw marble/pebble
automaton is regular. As in the case of strings (cf. Lemma 5), this easily follows
from the fact that the tree languages recognized by tw marble/pebble automata
are regular, i.e., that the above restriction has been effective.

We need some terminology on finite tree automata. Let M be a (determinis-
tic, bottom-up) finite tree automaton, and let u be a node of an input tree ¢. By
stateps +(u) we denote the state in which M arrives at node u. By succyy(u) we
denote the set of states ¢ of M such that M arrives in a final state at the root
of t when it is assumed to be in state ¢ at node u (and thus skips the processing
of the subtree with root u); such a state ¢ is said to be “successful” at u. Note
that, for every node u, t € L(M) iff statep¢(u) € succpr,(u). Note also that,
for a child v of u, succar,(v) can be determined, using M’s transition function



(for the label of u), from succar¢(u) and the states statear (v') for all children
v' # v of u: to determine whether state p is successful at v, one applies M’s
transition function to p and all statear(v'), and checks whether the resulting
state ¢ is successful at u.

Theorem 10. The tw marble/pebble automata recognize the regular tree lan-
guages.

Proof. By Proposition 8 it suffices to show that every tw marble/pebble au-
tomaton A can be simulated by a tw marble automaton A’. Consider a part of a
computation of A which starts by dropping the pebble on node u of ¢, in state g,
and ends by lifting it again from u, in state ¢'. Note that at both moments there
are no marbles on t. When simulating A, A’ can of course not put a pebble on
u (and a marble would not help because it closes off the context of u). Instead
it should, somehow, test whether A can make one of the excursions described
above, where ¢ is the current state of A and ¢’ is any state of A. In other words,
it should be able to test whether (¢, u) is in the site Sy o that consists of all pairs
(t,u) such that A can make the excursion described above. We first observe that
the site Sy 4 is regular. In fact, it is quite clear that mark(S, ) can be recog-
nized by a tw marble automaton (and hence is regular by Proposition 8): the
automaton first walks to node u which is marked by (1,1), and then simulates
A, starting in state ¢, treating the mark (1, 1) as the pebble of A, and ending in
state ¢’ at u.

Thus, it now suffices to show that a tw marble automaton A’ can always be
modified in such a way that it can, at each moment, test whether its current node
belongs to a given site S. Moreover, the test should be done in a deterministic
way because, in the simulation above, several of these sites have to be tested
sequentially, viz. Sg o for all ¢'. Let M be a bottom-up finite tree automaton that
recognizes mark(S). Note that the input alphabet of M is m(X) where X is the
input alphabet of A'. Clearly, at node u of ¢, A’ can always compute statear,:(u),
using the procedure described in the proof of Proposition 8 (first dropping a
marble with a special colour on u, to recognize it after traversing the subtree).
Let u have label o of rank k. To determine whether (t,u) is in S, A’ visits the
children w,...,u; of u, computes statear (u;) for every 1 <4 < k, and returns
to u. It then computes ¢ = states, mark(t,u) (1), using M’s transition function for
the symbol (o,1,1). Finally, it checks whether ¢ € succar,¢(u). Thus, it remains
to explain how the latter test can be implemented. During its computation, A
keeps track of succas,(u) by using additional marbles that have the sets of states
of M as colours; in particular, there is a marble with colour succas(u') on every
node u’ on the path from the current node to the root of t. When A moves from
a node u to one of its children v, it can compute succp,(v) (i-e., the colour
of the new marble) as described just before this theorem, from succys¢(u) (the
colour of the marble at u) and the states of M at the other children v’ # v of u
(which it can compute as shown above). When A moves up to the parent of u,
it of course first lifts the “succ-marble” from wu. Initially A puts a succ-marble
with colour F' on the root of ¢, where F' is the set of final states of M. O



It is now easy to prove the analogue of Lemma 5 for trees.
Lemma 11. For every tw marble/pebble automaton A, T(A) is a regular trip.

Proof. By the previous theorem it suffices to show that there is a tw mar-
ble/pebble automaton A’ that recognizes mark(7T'(A)). As in the proof of Lemma 5,
A’ walks to u, simulates A, and checks that it is at v. O

Next we prove that regular trips can be computed by tw marble/pebble
automata.

Lemma 12. For every regular trip T on trees there is a tw marble/pebble au-
tomaton A with T(A) = T. Moreover, if T is functional, then A is deterministic.

Proof. Tt is shown in [Blo,BloEngl,BloEng2] (using terminology from monadic
second-order logic) that regular trips can be computed by tree-walking automata
with regular site tests, i.e., tw automata that, additionally, have the ability to
test whether the current node belongs to a given regular site (for a fixed, but
arbitrary number of regular sites). Clearly, a tw marble/pebble automaton can
test whether (¢,u) is in site S by dropping its pebble on u, checking (according
to Proposition 8) whether mark(¢, ) is in the regular tree language mark(S),
with the pebble treated as the mark (1, 1), returning to u, and lifting the pebble.
We note that the tw automata with regular site tests are called tw automata
with MSO tests in [BloEngl,BloEng2].

For the reader who is not familiar with monadic second-order logic, we give a
second, direct proof of this lemma (essentially the same as the one in Theorem 8
of [BloEngl] and Theorem 13 of [BloEng2]). Let M be a bottom-up finite tree
automaton that recognizes mark(7"). As in the proof of Lemma, 6 we first describe
a nondeterministic automaton A that computes T'. The automaton A is started
at node u of tree t, and it has to walk to node v, with (¢,u,v) € T. Note that
we cannot use the same method as in the proof of Lemma 6; in fact, we cannot
pick up the pebble from v during the simulation of M (during a depth-first
traversal of the tree), because there will in general be marbles on the tree at
that moment. Thus, a more clever simulation is needed. A walks straight from
u to v, along the shortest path in ¢. At each node on that path it uses its pebble
and marbles to compute the relevant states of M. First, A guesses whether v
is a descendant of u, an ancestor of u, or neither of the two. Suppose that v is
neither a descendant nor an ancestor of u. Then A walks up to the least common
ancestor z of u and v (which it has to guess) and walks down to v, guessing its
way down. On the way up it computes statens, () for every node = between u
and z, where t' = mark(¢,u,v), and on the way down it computes succas,y (y)
for every node y between z and v; finally it computes statey ¢ (v) and checks
whether stateps, ¢ (v) € succps,v(v). Let us see in more detail how A can do this.
It starts by dropping the pebble on u and computing statears (v), using the
procedure in the proof of Proposition 8 and treating the label o of u as (o, 1,0).
It then lifts the pebble from u, moves one node up, say to x, drops its pebble on
x, computes statear y (u') for all children «’ of  different from u (and note that

10



this equals statear¢(u')), and applies the state transition function of M to obtain
stateary (z). This step is repeated until A arrives at a child, say zo, of the least
common ancestor z. A then computes succarp (2) (which equals succar(2)) by
dropping its pebble on z and, for every state g of M, simulating M on ¢ under
the assumption that M is in state ¢ at node z (and, of course, lifting the pebble
from z after doing this). Let yo be the child of z on the path from z to v. Now A
computes stateys . (w) for all children w of z different from o and yo, and uses
these states, together with stateys i (o) and succys +(2), to compute suce s, (yo)
as indicated just before Theorem 10. Let y be the child of yg on the path from
Yo to v. A then computes statens,:(y’) for all children y' of yy different from y,
and uses them, together with succas,e (yo), to compute succarp (y). This step is
now repeated until A arrives in v. Finally A computes stateas (v), treating the
label o of v as (0,0, 1), and checks whether that state is in succar,y (v).

The cases that v is a descendant or ancestor of u are similar (A4 just walks
down, or just walks up, respectively). They are therefore left to the reader.

It remains to show that A can be made deterministic if T is a functional
trip (cf. Theorem 9 of [BloEngl] and Theorem 14 of [BloEng2]). Note that since
the procedure in the proof of Proposition 8 is deterministic, the automaton A
only makes nondeterministic moves when there are no marbles or pebble on the
tree. Thus, it suffices to show that for such an automaton a deterministic tw
marble/pebble automaton A’ can be constructed that computes the same trip.
Suppose that A is at node w of ¢ in state ¢, and that A has several possible moves
may,...,mg, of which, of course, at most one is successful, i.e., leads to a final
state of A (at the destination v). We claim that A’ can find out, for each of these
moves m, whether m is successful or not. Consider the site Sy, that consists of
all (t,w) such that A has a successful computation on ¢, starting at node w in
state ¢ with move m. Since there is a tw marble/pebble automaton that walks
to w and simulates A, starting with move m, it follows from Theorem 10 that
Sq,m is a regular site. Thus, as explained in the first paragraph of this proof,
A’ can test whether (¢,w) is in Sy, using the (deterministic) procedure in the
proof of Proposition 8. O

Taking the last two lemmas together we can state the main result of this
paper: the tw marble/pebble automaton is the implementation model of regular
trips on trees.

Theorem 13. A trip on trees is regular iff it can be computed by a tw mar-
ble/pebble automaton. A functional trip on trees is regular iff it can be computed
by a deterministic tw marble/pebble automnaton.

As in the case of strings, since a trip is regular iff it can be expressed in
monadic second-order logic, this theorem can be viewed as the generalization
of the classical result of Doner and Thatcher/Wright [Don,ThaWri] from tree
languages to trips on trees.

As mentioned in the definition of tw marble/pebble automaton, there is a
less severe restriction on the behaviour of the automaton that still serves our
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purposes. To understand this new restriction, we first note that it can always
be assumed that there is at most one marble on each node (just take the sets
of marble colours as new colours and simulate a set of marbles by one marble).
It is easy to see that, under this assumption, the life times of the marbles are
nested, i.e., included in one another or disjoint from one another; this is due to
the fact that a marble closes off the context. Now, in our new definition of tw
marble/pebble automaton, rather than requiring that the pebble can only be
dropped or lifted when there are no marbles on the tree, we require that the
life times of the marbles and the pebble are nested (see [GloHar] for a similar
nesting requirement). Intuitively it means that when the pebble is lifted, the
“marble configuration” on the tree has to be exactly the same as when it was
dropped (and the involved marbles have not been touched in the mean time).
It is shown in Theorem 20 of [vBest] that Theorem 10 still holds for these more
powerful tw marble/pebble automata, and so does Theorem 13. We note that,
under this nesting restriction, the restriction that marbles close off the context
cannot be dropped.

Ezample 14. The non-regular monadic tree language {a"cb™e | n > 0} of Ex-
ample 9 can be recognized as follows, using marbles only, with nested life times.
Put a red marble at the root, and a blue marble at the lowest b; then repeat
the following step: put a red marble just below the lowest red marble, and put a
blue marble just above the highest blue marble. Do this until both the red and
blue marble are neigbours of the c-labeled node. Then remove all marbles in the
reverse order as they were laid down (i.e., repeatedly the highest blue marble
and the lowest red marble). O

We end this paper by showing that Theorem 13 does not hold for tw marble
automata, i.e., the pebble is really necessary. Note that it is an open problem
whether the marbles are necessary, cf. the Conjecture in the beginning of this
section. The proof of the pebble necessity is similar to the one in [Blo,BloEng2]
(see Theorem 15 of [BloEng2]).

Theorem 15. There is a (functional) reqular trip on trees that cannot be com-
puted by any (nondeterministic) tw marble autormnaton.

Proof. Consider the (monadic) ranked alphabet X with symbols b and r of
rank 1, standing for “black” and “red”, respectively, and one symbol e of rank 0.
Let T be the trip consisting of all (¢,u, v) such that either ¢ has a red root and v
is the root, or ¢t has a black root and v is the child of u (viewing the root as the
child of the leaf). Thus, either all trips are to the red root, or everybody visits its
child. It should be clear that T is regular. Let us now assume that there is a tw
marble automaton A that computes 7', and derive a contradiction. The idea is
that when A starts at any node u of a tree with a black root, it first has to visit
the root to be sure that it is not red. Since there is no way for A to remember
its starting point u, A cannot anymore find the child of . Note that when A is
at the root, there are no marbles on the tree, except on the root itself.
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Formally, consider the tree t = b™e with n > s - 2¢, where s is the number of
states of A and ¢ the number of marble colours. Let ¢ = rb™ 'e. Thus, t' is t
with its root coloured red. Consider, for every node u of ¢, the successful walk
of A from w to its child. Clearly, during this computation A must visit the root,
because otherwise A could make the same computation on ¢'. As observed above,
when A is at the root, all marbles are at the root. Let, at that moment, ¢, be
the state of A and let M, be the set of marble(colour)s on the root. Thus, ¢,
and M, determine the configuration of A. Hence, by the choice of n, there must
be two different nodes u and u’ such that, in the corresponding computations,
Gu = ¢ and M,, = M, and hence A visits the root in the same configuration in
both computations. This implies, however, that A can walk from u to the child
of u', a contradiction. O

One may argue that the tw marble/pebble automaton is not a very natural
type of automaton, with its rather artificial restrictions on the use of marbles
and pebble. The reader is invited to search for a more natural automaton; bread
crumbs might be an alternative to marbles and pebbles.
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