Assignment 3

Computer Science Tutor 2011/2012
Due 29-02 2012

A doubly linked list L is a data-structure that can be used to maintain an ordered set of data elements. Typically it allows the following operations:

Isempty()

- equal to true, if the list L is empty
- equal to false, if the list L contains at least one element

Insert(data)

- if the data element is not already stored in L, it will be stored in L
- if the data element is already stored in L, nothing happens

Delete(data)

- if the data element is stored in L, it will be deleted from L
- if the data element is not stored in L , nothing happens

List()

- an ordered list of the elements stored in L will be printed

Query(data)

- equal to true, if the data element is stored in L
- equal to false, if the data element is not stored in L

Max()

- if the list L is not empty, equal to the largest element stored in L
- if the list L is empty, equal to -1

Min()

- if the list L is not empty, equal to the smallest element stored in L
- if the list L is empty, equal to -1

In this assignment you are asked to implement an ordered doubly linked list that stores strictly positive integers ordered from small to large. A user should be able to issue commands at the command line that have the following forms and results:

'e'	the program will respond with ' L is empty', or ' L is not empty', if the list L is empty, not empty, respectively.
'I <number>'	where <number> is a strictly positive integer, resulting in the <number> being inserted in L.
'D <number>'	where <number> is a strictly positive integer, resulting in the <number> being deleted from L.
'L'	resulting in a listing of all the elements stored in L ordered from small to large.
'Q <number>'	where <number> is a strictly positive integer, resulting in '<number> is element of L ', if <number> is stored in L , and ' $<$ Number $>$ is no element of L ', if <number> is not stored in L.
${ }^{\prime} \mathbf{M}$ '	results in the output '<number> is the largest element in L'.
'm'	results in the output '<number> is the smallest element in L'.
' q '	the program stops.

