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Hierachical structures: Trees

•
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Objectives

Discuss the following topics: 

• Trees, Binary Trees, and Binary Search Trees

• Implementing Binary Trees

• Tree Traversal
• Searching a Binary Search Tree

• Insertion

• Deletion
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Objectives (continued)

Discuss the following topics: 

• Heaps
• Balancing a Tree

• Self-Adjusting Trees
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Trees, Binary Trees, and Binary 

Search Trees

• A tree is a data type that consists of nodes

and arcs

• These trees are depicted upside down with 

the root at the top and the leaves (terminal 

nodes) at the bottom

• The root is a node that has no parent; it can 

have only child nodes

• Leaves have no children (their children are 

null)
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Trees, Binary Trees, and Binary 

Search Trees (continued)

• Each node has to be reachable from the root 
through a unique sequence of arcs, called a 
path

• The number of arcs in a path is called the 
length of the path

• The level of a node is the length of the path 
from the root to the node plus 1, which is the 
number of nodes in the path 

• The height of a nonempty tree is the 
maximum level of a node in the tree
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Trees, Binary Trees, and Binary 

Search Trees (continued)

Figure 6-1 Examples of trees
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Trees, Binary Trees, and Binary 

Search Trees (continued)

Figure 6-2 Hierarchical structure of a university s hown as a tree
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Trees: abstract/mathematical
important, great number of varieties

• terminology
(knoop, wortel, vader, kind)
node/vertex, root, father/parent, child
(non) directed
(non) orderly
binary trees (left ≠≠≠≠ right)
full (sometimes called decision trees, see Drozdek), complete (all
levels are filled, except the last one) 

• categorization
structure

number of children (binary, B-boom)
height of subtrees (AVL-, B-trees)
compleet (heap)

Location of keys
search tree, heap
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Recall Definition of Tree

1. An empty structure is a tree

2. If t1, ..., tk are disjoint trees,  then the 

structure whose root has as its children the 

roots of t1,...,tk is also a tree

3. Only structures generated by rule 1 and 2 are 

trees

Alternatively: a connected graph which contains

no cycles is a tree

11



Equivalent statements (see φ1)

• Let T be graph with n vertices then the 

following are equivalent:

a) T is a tree ( =  no cycles and connected ) 

b) T contains no cycles, and has n-1 edges

c) T is connected, and has n-1 edges

d) T is connected, and every edge is a bridge

e) Any two vertices are connected by exactly one

path

f) T contains no cycles, but the addition of any new

edge creates exactly one circuit (cycle with no

repeated edges). 12
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Trees, Binary Trees, and Binary 

Search Trees (continued)

• An orderly tree is where all elements are 

stored according to some predetermined 

criterion of ordering

Figure 6-3 Transforming (a) a linked list into (b) a tree
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Binary Trees

• A binary tree is a tree whose nodes have two 

children (possibly empty), and each child is 

designated as either a left child or a right child

Figure 6-4 Examples of binary trees



15

Binary Trees

• In a complete binary tree, all the nodes at all 

levels have two children except the last level.

• A decision tree is a binary tree in which all 

nodes have either zero or two nonempty 

children

Complete
Binary tree
Dutch: compleet)
The more common
def

Decision tree 
(Dutch: vol) complete

Tree (Drozdek def)incomplete
Binary tree



Remark on definition of Complete 

Binary Tree
• Drozdek Page218 uses the following definition: a 

complete binary tree is a binary tree of which all 

non-terminal nodes have both their children, and all 

leaves are at the same level

• The more common definition is as follows: A 

complete binary tree is a binary tree in which every 

level, except possibly the last, is completed filled, 

and all nodes are as far left as posssible





Binary Trees

• At level i in binary tree at most 2i-1 nodes

• For non-empty binary tree whose nonterminal

nodes (i.e., a full binary tree) have exactly two

nonempty children: #of leaves = 

1+#nonterminal nodes

• In a Drozdek-complete tree:   # of nodes = 

2height-1; one way to see this is to use the 

statement #of leaves = 1+#nonterminal

nodes; another way is to count how many

nodes there are in each level and then sum

the geometric progression;
18
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Binary Trees

Figure 6-5 Adding a leaf to tree (a), preserving th e relation of the 
number of leaves to the number of nonterminal nodes (b)



ADT Binary Tree  (more explicitly)

createBinaryTree() //creates an empty binary tree

createBinary(rootItem) // creates a one-node bin tree whose root contains

rootItem

createBinary(rootItem, leftTree, rightTree) //creates a bin tree whose root 

contains rootItem //and  has leftTree and rightTree, respectively, as its

left and right subtrees

destroyBinaryTree() // destroys a binary tree

rootData() // returns the data portion of the root of a nonempty binary tree

setRootData(newItem) // replaces the the data portion of the root of a 

//nonempty bin tree with newItem. If the bin tree is empty, however, 

//creates a root node whose data portion is newItem and inserts the new

//node into the tree

attachLeft(newItem, success) //  attaches a left child containing newItem to

//the root of a binary tree. Success indicates whether the operation was 

//successful.

attachRight(newItem, success) // ananlogous to attachLeft
20



ADT Binary Tree (continued)

attachLeftSubtree(leftTree, success) // Attaches leftTree as the left subtree 

to the root of a bin tree. Success indicates whether the operation was 

successful. 

attachRightSubtree(rightTree, success) // analogous to attachLeftSubtree

detachLeftSubtree(leftTree, success)  // detaches the left subtree of a bin 

tree’s root and retains it in leftTree. Success indicates whether the op was 

successful. 

detachRightSubtree(rightTree, success)  // similar to detachLeftSubtree

leftSubtree() // Returns, but does not detach, the left subtree of a bin tree’s

root

rightSubtree() // analogous to leftSubtree

preorderTraverse(visit) // traverses a binary tree in preorder and calls the 

function visit once for each node

inorderTraverse(visit) // analogous: inorder

postorderTraverse(visit) // analogous: postorder

21
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Implementing Binary Trees

• Binary trees can be implemented in at least 

two ways: 

– As arrays 

– As linked structures

• To implement a tree as an array, a node is 

declared as an object with an information 

field and two “reference” fields
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Implementing Binary Trees (continued)

Figure 6-7 Array representation of the tree in Figu re 6.6c

Can do for complete binary trees;
A[i] with children A[2i] and A[2i+1]. 
Parent of A[i] is A[i div 2].

0 8
root free
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Implementing Binary Trees (continued)

Can do array for complete binary trees;
Level order storage; 
A[i] with children A[2i] and A[2i+1]. 
Parent of A[i] is A[i div 2]: 

1

2

3

MaxNode

....

Heapsort
Also for trees of max degree k (at most k children)
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template <class T>
struct  TreeNode { 

T info;
TreeNode<T> *left, * right;
int       tag        // a.o. For threading

TreeNode ( const T& i,
TreeNode<T> *left = NULL, 
TreeNode<T> *right = NULL )

: info(i) 

{ left = l; right = r; tag = 0; } 

};

constructor
of type T

default

constructor

template

See the next slide for the proof of concept; type T=int,  is hardwired 25



The programmed ADT Binary Tree (refers to slide 20, 21: ADT Binary Tree) 
not parametrized: itemType =  int

// Client

// ADT

// Impl. 

26
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bst
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bst



Traversal of Binary Trees 30



Traversal of Binary Trees 31



Traversals of Binary Trees
• Is the process of visiting each node (precisely

once) in a systematic way (visiting has technical meaning, a visit can possibly

‘write’ to the node, or change the structure of the tree, so you need to do it precisely once for each node;  you can ‘pass ‘by

a node many times when are only reading , for instance)

• Why?

– Get info, updates

– Check for structural properties, updating

– Definitely can be extended to graphs (with

cycles)!

• Methods: 

– Depth first (recursively or iteratively with stacks): 

• preorder (VLR),  

• inorder(symmetric)-LVR, 

• postorder (LRV)

– in level order (breadth first) -- queues 

32



Traversals of Binary Trees

• Recursively

• Iteratively: stacks (Depth First)

• Queues for Breadth First 

• Threaded Trees

• Tree Transformation (e.g., Morris)

33
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Tree Traversal: breadth-first

• Breadth-first traversal is visiting each node 

starting from the lowest (or highest) level and 

moving down (or up) level by level, visiting 

nodes on each level from left to right (or from 

right to left)
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Tree Traversal: breadth-first
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Depth-First Traversal

• Depth-first traversal proceeds as far as 

possible to the left (or right), then backs up 

until the first crossroad, goes one step to the 

right (or left), and again as far as possible to 

the left (or right)

– V — Visiting a node

– L — Traversing the left subtree

– R — Traversing the right subtree
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Depth-First Traversal
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Inorder Tree Traversal
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Preorder Traversal – iterative

uses a stack
S.create();

S.push(root);

while (not S.isEmpty()) {

current = S.pop() // a retrieving pop

while (current ≠ NULL) {

visit(current); 

S.push(current -> right);

current = current -> left

} // end while

} // end while 40
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Preorder Traversal – iterative
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Stackless Depth-First Traversal

• Threads are references to the predecessor 

and successor of the node according to an 

inorder traversal

• Trees whose nodes use threads are called 

threaded trees
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Successor (right Pointer)

A threaded tree; an inorder traversal´s path in a threa ded tree with
Right successors only
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Successor (right Pointer)

A threaded tree; right pointers: successors; left poin ters: predecessors

Predecessor (left Pointer)
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MorrisInOrder ()
while not finished

if node has NO left descendant
visit it;
go to the right;

else make this node the right child of the rightmost node 
in its left descendant;
go to this left descendant
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Traversal Through Tree Transformation

Figure 6-20 Implementation of the Morris algorithm for inorder traversal
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Binary Search Trees 

Figure 6-6 Examples of binary search trees
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Searching a Binary Search Tree 

(continued)

• The internal path length (IPL) is the sum of all 

path lengths of all nodes

• It is calculated by summing Σ(i – 1)li over all 

levels i, where li is the number of nodes on 

level I

• A depth of a node in the tree is determined by 

the path length 

• An average depth, called an average path

length, is given by the formula IPL/n, which 

depends on the shape of the tree
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Insertion

Figure 6-22 Inserting nodes into binary search tree s
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Insertion (continued)

Figure 6-23 Implementation of the insertion algorit hm
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Insertion (continued)

Figure 6-25 Inserting nodes into a threaded tree
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Deletion in BSTs

• There are three cases of deleting a node from 

the binary search tree:

– The node is a leaf; it has no children

– The node has one child

– The node has two children
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Deletion (continued)

Figure 6-26 Deleting a leaf

Figure 6-27 Deleting a node with one child
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Deletion by Merging

• Making one tree out of the two subtrees of 

the node and then attaching it to the node’s 

parent is called deleting by merging

Figure 6-28 Summary of deleting by merging
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Deletion by Copying

• If the node has two children, the problem can 

be reduced to: 

– The node is a leaf 

– The node has only one nonempty child

• Solution: replace the key being deleted with 

its immediate predecessor (or successor)

• A key’s predecessor is the key in the rightmost 

node in the left subtree




