Data Structures

September 28

Hierachical structures: Trees

Objectives

Discuss the following topics:

 Trees, Binary Trees, and Binary Search Trees
 Implementing Binary Trees

e Tree Traversal

e Searching a Binary Search Tree

* |nsertion
e Deletion

Objectives (continued)

Discuss the following topics:
e Heaps

 Balancing a Tree

e Self-Adjusting Trees

Trees, Binary Trees, and Binary
Search Trees

A tree is a data type that consists of nodes
and arcs

These trees are depicted upside down with
the root at the top and the leaves (terminal
nodes) at the bottom

The root is a node that has no parent; it can
have only child nodes

Leaves have no children (their children are
null)

Trees, Binary Trees, and Binary

Search Trees (continued)

Each node has to be reachable from the root
through a unique sequence of arcs, called a
path

The number of arcs in a path is called the
length of the path

The level of a node is the length of the path
from the root to the node plus 1, which is the
number of nodes in the path

The height of a nonempty tree is the
maximum level of a node in the tree

Trees, Binary Trees, and Binary
Search Trees (continued)

O L/J)\:
(a) (b) ©

(a) 1s an empty tree

(d) (e) () (g)

Figure 6-1 Examples of trees

Trees, Binary Trees, and Binary
Search Trees (continued)

Campus A Campus B
Dept 1 Dept 2 Dept N Dept 1 Dept2 =+« DeptM
. = Professors M] I ng Mlngri -----------------
students students

Figure 6-2 Hierarchical structure of a university s hown as a tree

Trees (adt)

[rees: abstract/mathematical

important, great number of varieties

 terminology

(knoop, wortel, vader, kind)

node/vertex, root, father/parent, child

(non) directed

(non) orderly

binary trees (left # right)

full (sometimes called decision trees, see Drozdek), complete (all
levels are filled, except the last one)

e categorization

structure
number of children (binary, B-boom)
height of subtrees (AVL-, B-trees)
compleet (heap)

Location of keys
search tree, heap

Gy

G2

expression

Ca

fri sat
AN
C sun
code bst
expr
elxlor/lo\term
te:m ter\m fact
fa\ct fact L

|
a a

syntax

sat tues

fri mon

B-tree (2,3 tree)

16

12

10

Recall Definition of Tree

1. An empty structure is a tree

2. Iftl, ..., tk are disjoint trees, then the
structure whose root has as its children the
roots of t1,...,tk is also a tree

3. Only structures generated by rule 1 and 2 are
trees

Alternatively: a connected graph which contains
no cycles is a tree

Equivalent statements (see ¢1)

 Let T be graph with n vertices then the
following are equivalent:
a) Tis atree (= no cycles and connected)
b) T contains no cycles, and has n-1 edges
c) T is connected, and has n-1 edges
d) T is connected, and every edge is a bridge

e) Any two vertices are connected by exactly one
path

f) T contains no cycles, but the addition of any new
edge creates exactly one circuit (cycle with no
repeated edges).

Trees, Binary Trees, and Binary
Search Trees (continued)

 An orderly tree is where all elements are
stored according to some predetermined
criterion of ordering

2 > 10 > 12 > 13 20 25 29 > 31

(a)

H),//,////’j;ER%&NMM\\l3
SN

20 25 29 31

(b)

Figure 6-3 Transforming (a) a linked list into (b) a tree

Binary Trees

A binary tree is a tree whose nodes have two
children (possibly empty), and each child is
designated as either a left child or a right child

/ \ / \
/ N\

Figure 6-4 Examples of binary trees

Binary Trees

* |[n a complete binary tree, all the nodes at all
levels have two children except the last level.

A decision tree is a binary tree in which all
nodes have either zero or two nonempty

children

iIncomplete
Binary tree

SO

Complete Decision tree

Binary tree (Dutch: vol) complete

Dutch: compleet) Tree (Drozdek def)
The more common .

def

Remark on definition of Complete
Binary Tree

 Drozdek Page218 uses the following definition: a
complete binary tree is a binary tree of which all

non-terminal nodes have both their children, and all
leaves are at the same level

e The more common definition is as follows: A
complete binary tree is a binary tree in which every
level, except possibly the last, is completed filled,

and all nodes are as far left as posssible/<\

Binary Trees

* Atleveliin binary tree at most 2" nodes

 For non-empty binary tree whose nonterminal
nodes (i.e., a full binary tree) have exactly two
nonempty children: #of leaves =
1+#nonterminal nodes

 In a Drozdek-complete tree: # of nodes =
2height_1- one way to see this is to use the
statement #of leaves = 1+#nonterminal
nodes; another way is to count how many
nodes there are in each level and then sum
the geometric progression;

Binary Trees

k nonterminal nodes k + 1 nonterminal nodes
m leaves (m— 1)+ 2leaves
(a) (b)

Figure 6-5 Adding a leaf to tree (a), preserving th e relation of the
number of leaves to the number of nonterminal nodes (b)

19

ADT Binary Tree (more explicitly)

createBinaryTree() //creates an empty binary tree

createBinary(rootitem) // creates a one-node bin tree whose root contains
rootltem

createBinary(rootitem, leftTree, rightTree) //creates a bin tree whose root
contains rootltem //and has leftTree and rightTree, respectively, as its
left and right subtrees

destroyBinaryTree() // destroys a binary tree
rootData() // returns the data portion of the root of a nonempty binary tree

setRootData(newltem) // replaces the the data portion of the root of a
//nonempty bin tree with newltem. If the bin tree is empty, however,
//creates a root node whose data portion is newltem and inserts the new
//node into the tree

attachLeft(newltem, success) // attaches a left child containing newltem to
//the root of a binary tree. Success indicates whether the operation was
//successful.

attachRight(newltem, success) // ananlogous to attachLeft

ADT Binary Tree (continued)

attachLeftSubtree(leftTree, success) // Attaches leftTree as the left subtree
to the root of a bin tree. Success indicates whether the operation was
successful.

attachRightSubtree(rightTree, success) // analogous to attachLeftSubtree

detachLeftSubtree(leftTree, success) // detaches the left subtree of a bin
tree’s root and retains it in leftTree. Success indicates whether the op was
successful.

detachRightSubtree(rightTree, success) // similar to detachLeftSubtree

leftSubtree() // Returns, but does not detach, the left subtree of a bin tree’s
root

rightSubtree() // analogous to leftSubtree

preorderTraverse(visit) // traverses a binary tree in preorder and calls the
function visit once for each node

inorderTraverse(visit) // analogous: inorder
postorderTraverse(visit) // analogous: postorder

Implementing Binary Trees

e Binary trees can be implemented in at least
two ways:
— As arrays
— As linked structures

e Toimplement a tree as an array, a node is

declared as an object with an information
field and two “reference” fields

Implementing Binary Trees (continued)

root free Index Info Left Right
0 3 0 13 4 2
1 3] 6 -1
2 25 7 1
Can do for complete binary trees; 3 12 1 1
A[l] with children A[2i] and A[2i+1]. . o : :
Parent of AJi] is A[i div 2].
5 2 | -1
6 29 -1 -1
7 20 -1 -1
K collar 13
/ \ ,f”gf hhh“‘uh a”ff N\\N\
A P caller color 10 23
E / \ \ / \ / \ / \
N R choler collier colour 2 12 20 31
/
29

(a) (b) (c)

23

Implementing Binary Trees (continued)

Can do array for complete binary trees;
Level order storage;

A[i] with children A[2i] and A[2i+1].
Parent of A[i] is AJ[i div 2]:

MaxNode

Heapsort
Also for trees of max degree k (at most k children) 33

Binary Tree C++

W\

template <class T>

template

struct TreeNode {
T Info;
TreeNode<T> *left, * right;
Int tag /[a.0. For threading

| constructor

TreeNode (const T& |,
TreeNode<T> *left = NULL,

T

TreeNode<T> *right = NULL)

. info(i)
{left =1I; righy=r; tag = 0; }

constructor
of type T

See the next slide for the proof of concept; type T=int,

default

IS hardwired 25

The programmed ADT Binary Tree (refers to slide 20, 21: ADT Binary Tree)

not parametrized: itemType = int

#pragma. once
#include <iostream:
u=ing hamnespace =td;

ztruct TresNode
TreeHode * left;
int data:
TresNode * right:

b Il ADT

class Tres {
public:
Tre=si): 7 creates enpty tres
Tresiint rootltem);
Treseiint rootltem, Tree leftTree, Tree rightTree);

vold setRootDataiint newltem)

woid attachleftiint newltem):
woid attachFighti{int newltem):

void attachleftSubtres(Tres leftTres);
Fewold attachRightSubtres(Tres rightTrees)

Sovoid detachlef tSubtres(Tres & leftTres) !
Sowoid detachRightSubtres(Tree & rightTrees)
more zee ADT zpecification

private
TresNode * root;

#include "tree h"
#include <iostream: H
uzing namnespace =td; // Cllent
int main (){

Tree t;

t setRootDatai(b):

t.attachleft(3):

t.attachRight{7):

A0 temporarily made svervthing public in order to inspect
cout << "t root—:data: "<¢ t. root-:data << "wn';

cout << "t.root - left —» data: " << t.root—:left—:data << "sn";
cout << "t . root - right —-: data: " <¢ t.root-rright-:data << "~n":
return 1:

tinclude "tree. h"
Tree: :Tree{) {root=0;}

Tree: :Trese(int rootltem) {
TreelNode # root = new TreeNode():
root —» left =0:
root —» right=0;
root —: data=rootltem;

/Il Impl.

h

Tree: :Tree(int rootltem, Trese leftTrese. Treese rightTree){
TreeHode * root = new TresNode():
root —r data = rootltem:

root —xleft =0;
root —rright=0;

“wattachlef tSubtres(leftTres);
s<attachRightSubtree{rightTres):

vold Tree: setREootDatal(int newvltem)]
1f {root != 03
root —»: data = newltem:
T oelse {
root = new TresNode():
root —» data = newltem:
root = left = 0;
root —:right =0;

k

vwoid Tree::attachleft{int newltem){
if (root 1= 0314
if (root —:left == 0} {
root —: left = new TreeNode():
root —:left —rdata = newltem:
root —:left-:left =0;
root —:left—:right=0:

¥

vold Trees: ;attachREight{int newltem){
1f {root l= 03
if (root —:right == 0] {
root —» right = newv TreeNode():
root —» right —-rdata = newvltem:
root —» right-:left =0:
root —» right—-rright=0;

Drozdek Does not showHow to implement

Generic Binary Tree

FIGURE 6.8 Implementation of a generic binary search tree.

[/ xRF R Rk T KK KRk kR kk kR kkx* genBST.h *xkkkkkdkkkkdhhkhkkhhkkr ok

v generic binary search tree

#include <gueue>
#include <stack>

using namespace std;

#ifndef BINARY_ SEARCH_TREE
#define BINARY_SEARCH_TREE

template<class T>
class Stack : public stack<T> { ... } // as in Figure 4.21

template<class T>
class Queue : public queue<T> {
public:
T degqueue() {
T tmp = front();
gqueue<T>: :pop();
return tmp;

}

void enqueue(const T& el) {
pushi{el);

}

template<class T>
class BSTNode {
public:
BSTNode() {
left = right = 0;
}
BSTNode(const T& el, BSTNode #*1 = 0, BSTNode *r = 0) {
key = el; left = 1; right = r;
}
T key;
BSTNode *left, #*right;

FIGURE 6.8

(continued)

template<class T>
class BST {

public:
BST() {
root = 0;
}
~BST() {
clear();
}

void clear() {

clear(root); root

}

bool isEmpty() const {
return root == 0;

}

void preorder() {

preorder(root);

}

void inorder() {
inorder(root);

}

void postorder() {

postorder(root);

}

T* search(const T& el) const {
return search(root,el);

}

void breadthFirst();

0;

void iterativePreorder();

void iterativeInorder();

void iterativePostorder();

void MorrisInorder();

void insert(const T&);

void deleteByMerging(BSTNode<T>*&);
void findAndDeleteByMerging(const T&);
void deleteByCopying(BSTNode<T>*&);

void balance(T#*,int,int);

protected:
BSTNode<T>* root;

.

.

.

.

.

.

/Y

/Y

/Y

/Y

/Y
/Y
/Y
/Y
/Y
/Y
/Y
/Y
/Y
/Y

Figure

Figure

Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

6.11

6.11

6.11

6.9

6.10
6.15
6.17
6.16
6.20
6.23
6.29
6.29
6.32

Section 6.7

bst

28

FIGURE 6.8 (continued)

vold clear{BSTNode<T>%) ;

T* search(BSTNode<T>*, const T&) const;

vold preorder(BSTNode<T>%*);

vold ilnorder(BSTHode<T>%*) ;

vold postorder (BSTNode<T>%) ;

virtual void visit(BSTNode<T>* p) {
cout << p->key << ' ';

#endif

// Figure
// Figure
// Figure
// Figure

bst

6.9

6.11
6.11
6.11

Traversal of Binary Trees

Traversal of Binary Trees

Traversals of Binary Trees
* |s the process of visiting each node (precisely

O n Ce) i n a SySte m at i C Way (visiting has technical meaning, a visit can possibly

‘write’ to the node, or change the structure of the tree, so you need to do it precisely once for each node; you can ‘pass ‘by
a node many times when are only reading , for instance)

e Why?
— Get info, updates
— Check for structural properties, updating
— Definitely can be extended to graphs (with
cycles)!
e Methods:

— Depth first (recursively or iteratively with stacks):
e preorder (VLR),
e inorder(symmetric)-LVR,
e postorder (LRV)

1 1 1 /11 1.1 re n \

Traversals of Binary Trees

Recursively

lteratively: stacks (Depth First)
Queues for Breadth First
Threaded Trees

Tree Transformation (e.g., Morris)

Tree Traversal: breadth-first

 Breadth-first traversal is visiting each node
starting from the lowest (or highest) level and
moving down (or up) level by level, visiting
nodes on each level from left to right (or from
right to left)

Tree Traversal: breadth-first

URE 6.10 Top-down, left-to-right, breadth-first traversal implementation.

template<class T>
vold BST<T>: :breadthFirst() {
Queue<BSTNode<T>*> gqueue;
BSTNode<T> *p = root;
if (p != 0) {
queue.enqueue(p);
while (!gueue.empty()) {
p = queue.dequeue();
visit(p);
if (p->left != 0)
queue.enqueue(p->left);
if (p->right != 0)
gueue.engueue({p->right);

Depth-First Traversal

* Depth-first traversal proceeds as far as
possible to the left (or right), then backs up
until the first crossroad, goes one step to the
right (or left), and again as far as possible to
the left (or right)

— V — Visiting a node
— L — Traversing the left subtree
— R — Traversing the right subtree

FIGURE 6.11 Depth-first traversal implementation. De ptl i-l IrSt I rave rsal

template<class T>
void BST<T>: :inorder(BSTNode<T> *p) {
if (p 1= 0) {
incorder(p->left);
visit(p);
incrder(p->right} ;

template<class T>
void BST<T>: :preorder (BSTNode<T> *p) {
if (p != 0) {
visit(p);
preorder (p->left);
preorder (p->right);

template<class T>
void BST<T>: :postorder(BSTNode<T>* p) {
if (p = 0) {
postorder(p->left);
postorder (p->right);
visit(p);

Inorder Tree Traversal

FIGURE 6.12 Inorder tree traversal.

15 15
AN N e
2 4 2 4 20
/\ /\\ /\ / /\
16 25 1 16 25 1 16 25
(b)
15
~
20

/ ﬁ \
1 25 1

)

(d

4

/

1

15
(a)
15

~

0
4 20
/ /%“j
16

(e)

0
4

38

.|
FIGURE 6.17 A nonrecursive implementation of inorder tree traversal,

template<class T>
void BST<T>::iterativelnorder() {
Stack<BSTNode<T>*> travStack;
BSTNode<T> *p = root:
while (p != 0) {
while (p = 0) { // stack the right child (if any)
if (p->right) // and the node itself when going
travsStack.push(p->right): // to the left:
travStack.puship):;
p = p->left;

}

p = travStack.pop(): // pop a node with no left child
while (!travStack.empty() && p->right == 0) { // visit it
visit(p): // and all nodes with no right

p = travstack.pop(); // child;
}
visit(p); // visit also the first node with

if (!travstack.empty()) // a right child (if any);
p = travStack.pop();
else p = 0;

Preorder Traversal — iterative

uses a stack
S.create();

S.push(root);
while (not S.isEmpty()) {
current = S.pop() // a retrieving pop
while (current # NULL) {
visit(current);
S.push(current -> right);
current = current -> left
} // end while
} // end while :

Preorder Traversal — iterative

FIGURE 6.15 A nonrecursive implementation of preorder tree traversal.

template<class T>
void BST<T>::iterativePreorder() {
Stack<BSTNode<T>*> travStack:;
BSTNode<T> *p = root:
if (p = 0) {
travsStack.push(p);
while (!travStack.empty()) {
p = travStack.pop():;
visit(p):
if (p->right != 0)
travStack.push(p->right);
if (p->left != 0) // left child pushed after right
travstack.push(p->left); // to be on the top of
h; // the stack;

Stackless Depth-First Traversal

 Threads are references to the predecessor
and successor of the node according to an
inorder traversal

e Trees whose nodes use threads are called
threaded trees

A threaded tree; an inorder traversal’s path in athrea ded tree with
Right successors only

Successor (right Pointer)
—

43

A threaded tree; right pointers: successors; left poin ters: predecessors

Successor (right Pointer)
—

Predecessor (left Pointer)
—>

44

MorrisinOrder ()
while not finished
If node has NO left descendant
Vvisit it;
go to the right;
else make this node the right child of the rightmost node
In its left descendant;

go to th|S Ieft descendant FIGURE 6.21 Tree traversal with the Morris method.

10 <p 5<p 5<p tmp—»ﬁ’j«—p
S AN /\ \
= 5 20 3| 7 tmp tmp >3 | 7 =45
c /\ \ \ \
& 3 7 <—tmp 10 10 [7
5 \ \ N
R 20 20 10
7)) (a) (b) (c) \
= 20
E 3 <t 3 <t @
— <~ tmp < tmp
8 C\S <p C\S «~p 5 5
= \ \ /\ /:\
— 7 7 tmp >3 | 7<p tmp >3 | 7
c \ \ \ \
(@) 10 10 10 10 <P
= \ \ \ \
= © 2 ® @ 2 m %
—
C_U 5 10 ~tmp 10 < tmp
7 /A /' \ /' \
5] 3 [‘ 7 < tmp 5 20 < p 5 20 f
> \ \ /\ /\ null
E 10 <P 3 7 3 7
o \

20

(1)) (k)

Traversal Through Tree Transformation

5/ \20 3/ \T < tmp tmp ?/Q

3/ \? <~ tmp \10 \10 \?
e e e

(a) (b) (c) \

10 — 10 — 10 10 =—Pp
\ \ \ \
@ 2 ® % @ 2 0y 2
5 10 < tmp 10 < tmp
/A\ /' \ / N\
3 7 < tmp 5 20 —p 5 20 P
\ /\ /\ nill
10 =P 3 7 Y
\
20

(1) (1) (k)

Traversal Through Tree Transformation

FIGURE 6.20 Implementation of the Morris algorithm for inorder traversal.

template<class T>
void BST<T>: :MorrisInorder() {
BSTNode<T> *p = root, *tmp;
while (p != 0)
if (p->left == 0) {
visit(p);
p = p->right;

}
else {
tmp = p->left;
while (tmp->right != 0 &&// go to the rightmost node
tmp->right != p) // of the left subtree or
tmp = tmp->right; // to the temporary parent
if (tmp->right == 0) { // of p; if ‘true’
tmp->right = p; // rightmost node was
p = p->left; // reached, make it a
} // temporary parent of the
else { // ecurrent rocot, else
// a temporary parent has
visit(p): // been found; wvisit node p
tmp->right = 0; // and then cut the right
// pointer of the current
p = p->right; // parent, whereby it
} // ceases to be a parent;
}

}
Figure 6-20 Implementation of the Morris algorithm for inorder traversal

/ \
/

(a)

Binary Search Trees

(b) (c)

Figure 6-6 Examples of binary search trees

48

collar 13
#f”H# hhﬂ“‘mu a”ff N\\\\
P caller color 10 25
\ \ / \ / \ / \
R choler collier colour 2 12 20 31
/
29

Searching a Binary Search Tree
(continued)

The internal path length (IPL) is the sum of all
path lengths of all nodes

t is calculated by summing (i — 1)/. over all
evels i, where /. is the number of nodes on
evel /

A depth of a node in the tree is determined by
the path length

An average depth, called an average path
length, is given by the formula IPL/n, which
depends on the shape of the tree

null

(a)

15

N

(d)

Insertion

15

(b)

ff"_ 19
15
20

17

(e)

15

(c)

(f)

Figure 6-22 Inserting nodes into binary search tree

50

Insertion (continued)

FIGURE 6.23 Implementation of the insertion algorithm.

template<class T>
vold BST<T>::insert(const T& el) {
BSTNode<T> *p = root, *prev = 0:
while (p != 0) { // find a place for inserting new node;
prev = p;
if (p->key < el)
p = p->right;
else p = p->left;
¥
if (root == 0) // tree is empty;
root = new BSTNode<T>{(el);
else if (prev->key < el)
prev->right = new BSTNode<T>{el);
else prev->left = new BSTNode<T>(el);

Figure 6-23 Implementation of the insertion algorit hm

Insertion (continued)

null 15 15

o)

7 19
15 15 15
40\2[1 40\2[:- 40\20
17/) 1?/ >

\
19

Figure 6-25 Inserting nodes into a threaded tree

52

Deletion in BSTs

e There are three cases of deleting a node from
the binary search tree:

— The node is a leaf; it has no children
— The node has one child

— The node has two children

1

/

4 2() «— node

Deletion (continued)

1> Delete node

4 20

/ /

16 <—node 1 16

Figure 6-26 Deleting a leaf

15
7\ > N
4 2

0

-«— Free the space

Delete node
-

20

Free the space

/

16 1 16

Figure 6-27 Deleting a node with one

child

54

Deletion by Merging

 Making one tree out of the two subtrees of
the node and then attaching it to the node’s
parent is called deleting by merging

-<— Root <— Root

Delete node

-

-— node —node.left

node.left— <« node.right

<« node.right

Rightmost node
of the left subtree

Figure 6-28 Summary of deleting by merging

Deletion by Copying

e |If the node has two children, the problem can
be reduced to:

— The node is a leaf
— The node has only one nonempty child

e Solution: replace the key being deleted with
its immediate predecessor (or successor)

 Akey’s predecessor is the key in the rightmost
node in the left subtree

